Skip to main content

Advertisement

Log in

Depletion of Mitofusin-2 Causes Mitochondrial Damage in Cisplatin-Induced Neuropathy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Sensory neuropathy is a relevant side effect of the antineoplastic agent cisplatin. Mitochondrial damage is assumed to play a critical role in cisplatin-induced peripheral neuropathy, but the pathomechanisms underlying cisplatin-induced mitotoxicity and neurodegeneration are incompletely understood. In an animal model of cisplatin-induced neuropathy, we determined in detail the extent and spatial distribution of mitochondrial damage during cisplatin treatment. Changes in the total number of axonal mitochondria during cisplatin treatment were assessed in intercostal nerves from transgenic mice that express cyan fluorescent protein. Further, we explored the impact of cisplatin on the expression of nuclear encoded molecules of mitochondrial fusion and fission, including mitofusin-2 (MFN2), optic atrophy 1 (OPA1), and dynamin-related protein 1 (DRP1). Cisplatin treatment resulted in a loss of total mitochondrial mass in axons and in an abnormal mitochondrial morphology including atypical enlargement, increased vacuolization, and loss of cristae. These changes were observed in distal and proximal nerve segments and were more prominent in axons than in Schwann cells. Transcripts of fusion and fission proteins were reduced in distal nerve segments. Significant reduced expression levels of the fusion protein MFN2 was detected in nerves of cisplatin-exposed animals. In summary, we provide for the first time an evidence that cisplatin alters mitochondrial dynamics in peripheral nerves. Loss of MFN2, previously implicated in the pathogenesis of other neurodegenerative diseases, also contributes to the pathogenesis in cisplatin-induced neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cece R, Petruccioli MG, Cavaletti G et al (1995) An ultrastructural study of neuronal changes in dorsal root ganglia (DRG) of rats after chronic cisplatin administrations. Histol Histopathol 10:837–845

    CAS  PubMed  Google Scholar 

  2. Eastman A (1987) The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacol Ther 34:155–166

    Article  CAS  PubMed  Google Scholar 

  3. Fichtinger-Schepman AM, van der Veer JL, den Hartog JH et al (1985) Adducts of the antitumor drug cis-diamminedichloroplatinum(II) with DNA: formation, identification, and quantitation. Biochemistry (Mosc) 24:707–713

    Article  CAS  Google Scholar 

  4. Hanigan MH, Devarajan P (2003) Cisplatin nephrotoxicity: molecular mechanisms. Cancer Ther 1:47–61

    PubMed  PubMed Central  Google Scholar 

  5. Lee RH, Song JM, Park MY et al (2001) Cisplatin-induced apoptosis by translocation of endogenous Bax in mouse collecting duct cells. Biochem Pharmacol 62:1013–1023

    Article  CAS  PubMed  Google Scholar 

  6. Olivero OA, Chang PK, Lopez-Larraza DM et al (1997) Preferential formation and decreased removal of cisplatin-DNA adducts in Chinese hamster ovary cell mitochondrial DNA as compared to nuclear DNA. Mutat Res 391:79–86

    Article  CAS  PubMed  Google Scholar 

  7. Podratz JL, Knight AM, Ta LE et al (2011) Cisplatin induced mitochondrial DNA damage in dorsal root ganglion neurons. Neurobiol Dis 41:661–668. doi:10.1016/j.nbd.2010.11.017

    Article  CAS  PubMed  Google Scholar 

  8. Yang Z, Schumaker LM, Egorin MJ et al (2006) Cisplatin preferentially binds mitochondrial DNA and voltage-dependent anion channel protein in the mitochondrial membrane of head and neck squamous cell carcinoma: possible role in apoptosis. Clin Cancer Res Off J Am Assoc Cancer Res 12:5817–5825. doi:10.1158/1078-0432.CCR-06-1037

    Article  CAS  Google Scholar 

  9. Baloh RH (2008) Mitochondrial dynamics and peripheral neuropathy. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry 14:12–18. doi:10.1177/1073858407307354

    CAS  Google Scholar 

  10. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9:505–518. doi:10.1038/nrn2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang X, Su B, Lee H et al (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29:9090–9103. doi:10.1523/JNEUROSCI.1357-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Su B, Wang X, Bonda D et al (2010) Abnormal mitochondrial dynamics—a novel therapeutic target for Alzheimer’s disease? Mol Neurobiol 41:87–96. doi:10.1007/s12035-009-8095-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Manczak M, Calkins MJ, Reddy PH (2011) Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum Mol Genet 20:2495–2509. doi:10.1093/hmg/ddr139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Park J, Choi H, Min J-S et al (2015) Loss of mitofusin 2 links beta-amyloid-mediated mitochondrial fragmentation and Cdk5-induced oxidative stress in neuron cells. J Neurochem 132:687–702. doi:10.1111/jnc.12984

    Article  CAS  PubMed  Google Scholar 

  15. Schulz KL, Eckert A, Rhein V et al (2012) A new link to mitochondrial impairment in tauopathies. Mol Neurobiol 46:205–216. doi:10.1007/s12035-012-8308-3

    Article  CAS  PubMed  Google Scholar 

  16. Santos D, Esteves AR, Silva DF et al (2015) The impact of mitochondrial fusion and fission modulation in sporadic Parkinson’s disease. Mol Neurobiol 52:573–586. doi:10.1007/s12035-014-8893-4

    Article  CAS  PubMed  Google Scholar 

  17. Shirendeb UP, Calkins MJ, Manczak M et al (2012) Mutant huntingtin’s interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington’s disease. Hum Mol Genet 21:406–420. doi:10.1093/hmg/ddr475

    Article  CAS  PubMed  Google Scholar 

  18. Guo X, Disatnik M-H, Monbureau M et al (2013) Inhibition of mitochondrial fragmentation diminishes Huntington’s disease-associated neurodegeneration. J Clin Invest 123:5371–5388. doi:10.1172/JCI70911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Züchner S, Mersiyanova IV, Muglia M et al (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36:449–451. doi:10.1038/ng1341

    Article  PubMed  Google Scholar 

  20. Lehmann HC, Lopez PHH, Zhang G et al (2007) Passive immunization with anti-ganglioside antibodies directly inhibits axon regeneration in an animal model. J Neurosci 27:27–34. doi:10.1523/JNEUROSCI.4017-06.2007

    Article  CAS  PubMed  Google Scholar 

  21. Leandri M, Ghignotti M, Emionite L et al (2012) Electrophysiological features of the mouse tail nerves and their changes in chemotherapy induced peripheral neuropathy (CIPN). J Neurosci Methods 209:403–409. doi:10.1016/j.jneumeth.2012.07.005

    Article  PubMed  Google Scholar 

  22. Trevisan G, Materazzi S, Fusi C et al (2013) Novel therapeutic strategy to prevent chemotherapy-induced persistent sensory neuropathy by TRPA1 blockade. Cancer Res 73:3120–3131. doi:10.1158/0008-5472.CAN-12-4370

    Article  CAS  PubMed  Google Scholar 

  23. Ko M-H, Chen W-P, Hsieh S-T (2002) Neuropathology of skin denervation in acrylamide-induced neuropathy. Neurobiol Dis 11:155–165. doi:10.1006/nbdi.2002.0537

    Article  CAS  PubMed  Google Scholar 

  24. Kaewkhaw R, Scutt AM, Haycock JW (2012) Integrated culture and purification of rat Schwann cells from freshly isolated adult tissue. Nat Protoc 7:1996–2004. doi:10.1038/nprot.2012.118

    Article  CAS  PubMed  Google Scholar 

  25. Mao-Ying Q-L, Kavelaars A, Krukowski K et al (2014) The anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model. PLoS One 9:e100701. doi:10.1371/journal.pone.0100701

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vencappa S, Donaldson LF, Hulse RP (2015) Cisplatin induced sensory neuropathy is prevented by vascular endothelial growth factor-a. Am J Transl Res 7:1032–1044

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cavaletti G, Petruccioli MG, Tredici G et al (1991) Effects of repeated administration of low doses of cisplatin on the rat nervous system. Int J Tissue React 13:151–157

    CAS  PubMed  Google Scholar 

  28. Müller LJ, Gerritsen van der Hoop R, Moorer-van Delft CM et al (1990) Morphological and electrophysiological study of the effects of cisplatin and ORG.2766 on rat spinal ganglion neurons. Cancer Res 50:2437–2442

    PubMed  Google Scholar 

  29. Thompson SW, Davis LE, Kornfeld M et al (1984) Cisplatin neuropathy. Clinical, electrophysiologic, morphologic, and toxicologic studies. Cancer 54:1269–1275

    Article  CAS  PubMed  Google Scholar 

  30. Tomiwa K, Nolan C, Cavanagh JB (1986) The effects of cisplatin on rat spinal ganglia: a study by light and electron microscopy and by morphometry. Acta Neuropathol (Berl) 69:295–308

    Article  CAS  Google Scholar 

  31. Goshima Y, Usui H, Shiozawa T et al (2010) Computational analysis of the effects of antineoplastic agents on axonal transport. J Pharmacol Sci 114:168–179

    Article  CAS  PubMed  Google Scholar 

  32. Sole G, Ferrer X, Vital C et al (2009) Ultrastructural mitochondrial modifications characteristic of mitofusin 2 mutations (CMT2A). J Peripher Nerv Syst 14:206–207. doi:10.1111/j.1529-8027.2009.00234.x

    Article  PubMed  Google Scholar 

  33. Papanicolaou KN, Khairallah RJ, Ngoh GA et al (2011) Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol Cell Biol 31:1309–1328. doi:10.1128/MCB.00911-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pham AH, Meng S, Chu QN, Chan DC (2012) Loss of Mfn2 results in progressive, retrograde degeneration of dopaminergic neurons in the nigrostriatal circuit. Hum Mol Genet 21:4817–4826. doi:10.1093/hmg/dds311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Misko A, Sasaki Y, Tuck E et al (2012) Mitofusin2 mutations disrupt axonal mitochondrial positioning and promote axon degeneration. J Neurosci 32:4145–4155. doi:10.1523/JNEUROSCI.6338-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Leinninger GM, Backus C, Sastry AM et al (2006) Mitochondria in DRG neurons undergo hyperglycemic mediated injury through Bim, Bax and the fission protein Drp1. Neurobiol Dis 23:11–22. doi:10.1016/j.nbd.2006.01.017

    Article  CAS  PubMed  Google Scholar 

  37. Vincent AM, Edwards JL, McLean LL et al (2010) Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathol (Berl) 120:477–489. doi:10.1007/s00401-010-0697-7

    Article  CAS  Google Scholar 

  38. Günes DA, Florea A-M, Splettstoesser F, Büsselberg D (2009) Co-application of arsenic trioxide (As2O3) and cisplatin (CDDP) on human SY-5Y neuroblastoma cells has differential effects on the intracellular calcium concentration ([Ca2+]i) and cytotoxicity. Neurotoxicology 30:194–202. doi:10.1016/j.neuro.2008.12.001

    Article  PubMed  Google Scholar 

  39. Al-Taweel N, Varghese E, Florea A-M, Büsselberg D (2014) Cisplatin (CDDP) triggers cell death of MCF-7 cells following disruption of intracellular calcium ([Ca(2+)]i) homeostasis. J Toxicol Sci 39:765–774

    Article  CAS  PubMed  Google Scholar 

  40. Leo M, Schmitt L-I, Erkel M et al (2016) Cisplatin-induced neuropathic pain is mediated by upregulation of N-type voltage-gated calcium channels in dorsal root ganglion neurons. Exp Neurol 288:62–74. doi:10.1016/j.expneurol.2016.11.003

    Article  PubMed  Google Scholar 

  41. Zueva L, Rivera Y, Kucheryavykh L et al (2014) Electron microscopy in rat brain slices reveals rapid accumulation of cisplatin on ribosomes and other cellular components only in glia. Chemother Res Pract 2014:174039. doi:10.1155/2014/174039

    PubMed  PubMed Central  Google Scholar 

  42. Chen Y, Tsai Y-H, Tseng S-H (2013) RECK regulated endoplasmic reticulum stress response and enhanced cisplatin-induced cell death in neuroblastoma cells. Surgery 154:968–979. doi:10.1016/j.surg.2013.05.026

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Helmar Lehmann and Ilja Bobylev were supported by the Deutsche Krebshilfe (German Cancer Aid). The technical assistance of Claudia Drapatz (Department of Neurology, University Hospital of Cologne, Germany) and Petra Müller (Department of Anatomy I, Medical Faculty, University of Cologne, Germany) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmar C. Lehmann.

Ethics declarations

Competing Financial Interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobylev, I., Joshi, A.R., Barham, M. et al. Depletion of Mitofusin-2 Causes Mitochondrial Damage in Cisplatin-Induced Neuropathy. Mol Neurobiol 55, 1227–1235 (2018). https://doi.org/10.1007/s12035-016-0364-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0364-7

Keywords

Navigation