Skip to main content
Log in

The Impact of Mitochondrial Fusion and Fission Modulation in Sporadic Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Accumulating data suggests that mitochondrial deficits may underline both sporadic and familial Parkinson’s disease (PD) neurodegenerative process. Impairment of mitochondrial dynamics results in reactive oxygen species (ROS) production, decreases mitochondrial membrane potential, and could potentiate the accumulation of dysfunctional mitochondria. Excessive mitochondrial fragmentation is associated with the pathology of sporadic PD. Therefore, we modulated mitochondria fusion and fission in different sporadic PD cellular models. We found alterations in two proteins known to regulate mitochondrial fusion and fission events (OPA1 and Drp1, respectively). OPA1 long isoform cleavage seems to be, at least in part, responsible for mitochondrial fragmented pattern observed in sporadic PD cellular models. Moreover, mitochondrial fragmentation can also occur due to an increase in Drp1 that is translocated into the mitochondria by phosphorylation. To disclose the relevance of these alterations to the fragmentation of the mitochondrial network, we overexpressed OPA1 and knock down Drp1. OPA1 overexpression did not rescue MPP+-induced increase in ROS. Nevertheless, Drp1 knockdown due to an increase in mitochondrial elongation and interconnectivity rescued mitochondrial membrane potential and decreased ROS production in sporadic PD cells. Overall, our findings suggest that Drp1-dependent mitochondrial fragmentation plays a crucial role in mediating mitochondrial DNA induced mitochondria abnormalities and cellular dysfunction in sporadic PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Antony PM, Diederich NJ, Kruger R, Balling R (2013) The hallmarks of Parkinson’s disease. FEBS J 280:5981–5993

    Article  CAS  PubMed  Google Scholar 

  2. Cardoso SM (2011) The mitochondrial cascade hypothesis for Parkinson’s disease. Curr Pharm Des 17:3390–3397

    Article  CAS  PubMed  Google Scholar 

  3. Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884

    Article  CAS  PubMed  Google Scholar 

  4. Santos D, Cardoso SM (2012) Mitochondrial dynamics and neuronal fate in Parkinson’s disease. Mitochondrion 12:428–437

    Article  CAS  PubMed  Google Scholar 

  5. Liang CL, Wang TT, Luby-Phelps K, German DC (2007) Mitochondria mass is low in mouse substantia nigra dopamine neurons: implications for Parkinson’s disease. Exp Neurol 203:370–380

    Article  CAS  PubMed  Google Scholar 

  6. Su B, Wang X, Zheng L, Perry G, Smith MA, Zhu X (2010) Abnormal mitochondrial dynamics and neurodegenerative diseases. Biochim Biophys Acta 1802:135–142

    Article  CAS  PubMed  Google Scholar 

  7. Arduino DM, Esteves AR, Cardoso SM (2011) Mitochondrial fusion/fission, transport and autophagy in Parkinson’s disease: when mitochondria get nasty. Parkinsons Dis 2011:767230

    PubMed  PubMed Central  Google Scholar 

  8. Chen H, Chan DC (2009) Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Hum Mol Genet 18:R169–R176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barsoum MJ, Yuan H, Gerencser AA, Liot G, Kushnareva Y, Graber S, Kovacs I, Lee WD, Waggoner J, Cui J, White AD, Bossy B, Martinou JC, Youle RJ, Lipton SA, Ellisman MH, Perkins GA, Bossy-Wetzel E (2006) Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J 25:3900–3911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gomez-Lazaro M, Bonekamp NA, Galindo MF, Jordan J, Schrader M (2008) 6-Hydroxydopamine (6-OHDA) induces Drp1-dependent mitochondrial fragmentation in SH-SY5Y cells. Free Radic Biol Med 44:1960–1969

    Article  CAS  PubMed  Google Scholar 

  11. Wang X, Su B, Liu W, He X, Gao Y, Castellani RJ, Perry G, Smith MA, Zhu X (2011) DLP1-dependent mitochondrial fragmentation mediates 1-methyl-4-phenylpyridinium toxicity in neurons: implications for Parkinson’s disease. Aging Cell 10(5):807–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meuer K, Suppanz IE, Lingor P, Planchamp V, Goricke B, Fichtner L, Braus GH, Dietz GP, Jakobs S, Bahr M, Weishaupt JH (2007) Cyclin-dependent kinase 5 is an upstream regulator of mitochondrial fission during neuronal apoptosis. Cell Death Differ 14:651–661

    Article  CAS  PubMed  Google Scholar 

  13. Endo R, Saito T, Asada A, Kawahara H, Ohshima T, Hisanaga S (2009) Commitment of 1-methyl-4-phenylpyrinidinium ion-induced neuronal cell death by proteasome-mediated degradation of p35 cyclin-dependent kinase 5 activator. J Biol Chem 284:26029–26039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Benard G, Bellance N, James D, Parrone P, Fernandez H, Letellier T, Rossignol R (2007) Mitochondrial bioenergetics and structural network organization. J Cell Sci 120:838–848

    Article  CAS  PubMed  Google Scholar 

  15. Thomas KJ, McCoy MK, Blackinton J, Beilina A, van der Brug M, Sandebring A, Miller D, Maric D, Cedazo-Minguez A, Cookson MR (2011) DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Hum Mol Genet 20:40–50

    Article  CAS  PubMed  Google Scholar 

  16. Sandebring A, Thomas KJ, Beilina A, van der Brug M, Cleland MM, Ahmad R, Miller DW, Zambrano I, Cowburn RF, Behbahani H, Cedazo-Minguez A, Cookson MR (2009) Mitochondrial alterations in PINK1 deficient cells are influenced by calcineurin-dependent dephosphorylation of dynamin-related protein 1. PLoS One 4:e5701

    Article  PubMed  PubMed Central  Google Scholar 

  17. Plecita-Hlavata L, Lessard M, Santorova J, Bewersdorf J, Jezek P (2008) Mitochondrial oxidative phosphorylation and energetic status are reflected by morphology of mitochondrial network in INS-1E and HEP-G2 cells viewed by 4Pi microscopy. Biochim Biophys Acta 1777:834–846

    Article  CAS  PubMed  Google Scholar 

  18. Mortiboys H, Thomas KJ, Koopman WJ, Klaffke S, Abou-Sleiman P, Olpin S, Wood NW, Willems PH, Smeitink JA, Cookson MR, Bandmann O (2008) Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts. Ann Neurol 64:555–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Esteves AR, Arduino DM, Swerdlow RH, Oliveira CR, Cardoso SM (2010) Dysfunctional mitochondria uphold calpain activation: contribution to Parkinson’s disease pathology. Neurobiol Dis 37:723–730

    Article  CAS  PubMed  Google Scholar 

  20. Esteves AR, Arduino DM, Swerdlow RH, Oliveira CR, Cardoso SM (2009) Oxidative stress involvement in alpha-synuclein oligomerization in Parkinson’s disease cybrids. Antioxid Redox Signal 11:439–448

    Article  CAS  PubMed  Google Scholar 

  21. Esteves AR, Domingues AF, Ferreira IL, Januario C, Swerdlow RH, Oliveira CR, Cardoso SM (2008) Mitochondrial function in Parkinson’s disease cybrids containing an nt2 neuron-like nuclear background. Mitochondrion 8:219–228

    Article  CAS  PubMed  Google Scholar 

  22. Trimmer PA, Swerdlow RH, Parks JK, Keeney P, Bennett JP Jr, Miller SW, Davis RE, Parker WD Jr (2000) Abnormal mitochondrial morphology in sporadic Parkinson’s and Alzheimer’s disease cybrid cell lines. Exp Neurol 162:37–50

    Article  CAS  PubMed  Google Scholar 

  23. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martins-Branco D, Esteves AR, Santos D, Arduino DM, Swerdlow RH, Oliveira CR, Januario C, Cardoso SM (2012) Ubiquitin proteasome system in Parkinson’s disease: a keeper or a witness? Exp Neurol 238:89–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Krige D, Carroll MT, Cooper JM, Marsden CD, Schapira AH (1992) Platelet mitochondrial function in Parkinson’s disease. The Royal Kings and Queens Parkinson Disease Research Group. Ann Neurol 32:782–788

    Article  CAS  PubMed  Google Scholar 

  26. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  27. Misiuta IE, Saporta S, Sanberg PR, Zigova T, Willing AE (2006) Influence of retinoic acid and lithium on proliferation and dopaminergic potential of human NT2 cells. J Neurosci Res 83:668–679

    Article  CAS  PubMed  Google Scholar 

  28. Sodja C, Fang H, Dasgupta T, Ribecco M, Walker PR, Sikorska M (2002) Identification of functional dopamine receptors in human teratocarcinoma NT2 cells. Brain Res Mol Brain Res 99:83–91

    Article  CAS  PubMed  Google Scholar 

  29. Swerdlow RH, Parks JK, Cassarino DS, Maguire DJ, Maguire RS, Bennett JP Jr, Davis RE, Parker WD Jr (1997) Cybrids in Alzheimer’s disease: a cellular model of the disease? Neurology 49:918–925

    Article  CAS  PubMed  Google Scholar 

  30. Binder DR, Dunn WH Jr, Swerdlow RH (2005) Molecular characterization of mtDNA depleted and repleted NT2 cell lines. Mitochondrion 5:255–265

    Article  CAS  PubMed  Google Scholar 

  31. Cardoso SM, Rego AC, Penacho N, Oliveira CR (2004) Apoptotic cell death induced by hydrogen peroxide in NT2 parental and mitochondrial DNA depleted cells. Neurochem Int 45:693–698

    Article  CAS  PubMed  Google Scholar 

  32. Swerdlow RH, Parks JK, Miller SW, Tuttle JB, Trimmer PA, Sheehan JP, Bennett JP Jr, Davis RE, Parker WD Jr (1996) Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann Neurol 40:663–671

    Article  CAS  PubMed  Google Scholar 

  33. Miller SW, Trimmer PA, Parker WD Jr, Davis RE (1996) Creation and characterization of mitochondrial DNA-depleted cell lines with “neuronal-like” properties. J Neurochem 67:1897–1907

    Article  CAS  PubMed  Google Scholar 

  34. Dagda RK, Cherra SJ 3rd, Kulich SM, Tandon A, Park D, Chu CT (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284:13843–13855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Arduino DM, Esteves AR, Cortes L, Silva DF, Patel B, Grazina M, Swerdlow RH, Oliveira CR, Cardoso SM (2012) Mitochondrial metabolism in Parkinson’s disease impairs quality control autophagy by hampering microtubule-dependent traffic. Hum Mol Genet 21:4680–4702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cardoso SM, Santos S, Swerdlow RH, Oliveira CR (2001) Functional mitochondria are required for amyloid beta-mediated neurotoxicity. FASEB J 15:1439–1441

    CAS  PubMed  Google Scholar 

  37. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Esteves AR, Arduino DM, Swerdlow RH, Oliveira CR, Cardoso SM (2010) Microtubule depolymerization potentiates alpha-synuclein oligomerization. Front Aging Neurosci 1:5

    Article  PubMed  PubMed Central  Google Scholar 

  39. Esteves AR, Gozes I, Cardoso SM (2014) The rescue of microtubule-dependent traffic recovers mitochondrial function in Parkinson’s disease. Biochim Biophys Acta 1842:7–21

    Article  CAS  PubMed  Google Scholar 

  40. Gautier CA, Corti O, Brice A (2014) Mitochondrial dysfunctions in Parkinson’s disease. Rev Neurol (Paris) 170:339–343

    Article  CAS  Google Scholar 

  41. Qi X, Qvit N, Su YC, Mochly-Rosen D (2013) A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J Cell Sci 126:789–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Su YC, Qi X (2013) Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation. Hum Mol Genet 22:4545–4561

    Article  CAS  PubMed  Google Scholar 

  43. Jahani-Asl A, Germain M, Slack RS (2010) Mitochondria: joining forces to thwart cell death. Biochim Biophys Acta 1802:162–166

    Article  CAS  PubMed  Google Scholar 

  44. Scott I, Youle RJ (2010) Mitochondrial fission and fusion. Essays Biochem 47:85–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Esteves AR, Swerdlow RH, Cardoso SM (2014) LRRK2, a puzzling protein: insights into Parkinson’s disease pathogenesis. Exp Neurol 261C:206–216

    Article  Google Scholar 

  46. Wang X, Yan MH, Fujioka H, Liu J, Wilson-Delfosse A, Chen SG, Perry G, Casadesus G, Zhu X (2012) LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet 21:1931–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K (2007) Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 282:11521–11529

    Article  CAS  PubMed  Google Scholar 

  48. Bueler H (2009) Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol 218:235–246

    Article  PubMed  Google Scholar 

  49. Delettre C, Griffoin JM, Kaplan J, Dollfus H, Lorenz B, Faivre L, Lenaers G, Belenguer P, Hamel CP (2001) Mutation spectrum and splicing variants in the OPA1 gene. Hum Genet 109:584–591

    Article  CAS  PubMed  Google Scholar 

  50. Ishihara N, Fujita Y, Oka T, Mihara K (2006) Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J 25:2966–2977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Song Z, Chen H, Fiket M, Alexander C, Chan DC (2007) OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol 178:749–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baricault L, Segui B, Guegand L, Olichon A, Valette A, Larminat F, Lenaers G (2007) OPA1 cleavage depends on decreased mitochondrial ATP level and bivalent metals. Exp Cell Res 313:3800–3808

    Article  CAS  PubMed  Google Scholar 

  53. Duvezin-Caubet S, Jagasia R, Wagener J, Hofmann S, Trifunovic A, Hansson A, Chomyn A, Bauer MF, Attardi G, Larsson NG, Neupert W, Reichert AS (2006) Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J Biol Chem 281:37972–37979

    Article  CAS  PubMed  Google Scholar 

  54. Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski M, Youle RJ (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191:1367–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shirendeb U, Reddy AP, Manczak M, Calkins MJ, Mao P, Tagle DA, Reddy PH (2011) Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington’s disease: implications for selective neuronal damage. Hum Mol Genet 20:1438–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Manczak M, Calkins MJ, Reddy PH (2011) Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum Mol Genet 20:2495–2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29:9090–9103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang X, Su B, Siedlak SL, Moreira PI, Fujioka H, Wang Y, Casadesus G, Zhu X (2008) Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci U S A 105:19318–19323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, Lenaers G (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278:7743–7746

    Article  CAS  PubMed  Google Scholar 

  60. Griparic L, van der Wel NN, Orozco IJ, Peters PJ, van der Bliek AM (2004) Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem 279:18792–18798

    Article  CAS  PubMed  Google Scholar 

  61. Arnoult D, Grodet A, Lee YJ, Estaquier J, Blackstone C (2005) Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. J Biol Chem 280:35742–35750

    Article  CAS  PubMed  Google Scholar 

  62. Jahani-Asl A, Pilon-Larose K, Xu W, MacLaurin JG, Park DS, McBride HM, Slack RS (2011) The mitochondrial inner membrane GTPase, optic atrophy 1 (Opa1), restores mitochondrial morphology and promotes neuronal survival following excitotoxicity. J Biol Chem 286:4772–4782

    Article  CAS  PubMed  Google Scholar 

  63. Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, Bartoli D, Polishuck RS, Danial NN, De Strooper B, Scorrano L (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177–189

    Article  CAS  PubMed  Google Scholar 

  64. Elachouri G, Vidoni S, Zanna C, Pattyn A, Boukhaddaoui H, Gaget K, Yu-Wai-Man P, Gasparre G, Sarzi E, Delettre C, Olichon A, Loiseau D, Reynier P, Chinnery PF, Rotig A, Carelli V, Hamel CP, Rugolo M, Lenaers G (2011) OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution. Genome Res 21:12–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in our laboratory is supported by funds from PTDC/SAU-NEU/102710/2008 to SM Cardoso. AR Esteves is supported by Post-Doctoral Fellowship, and D Santos and DF Silva are supported by PhD Fellowship from Portuguese Foundation for Science and Technology (FCT-MCTES, Portugal).

Author Contributions

SMC and DS conceived and designed the experiments; DS, ARE, and DFS performed the experiments; ARE and SMC analyzed the data; ARE and SMC wrote the paper; and CJ provided the PD patient samples.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra M. Cardoso.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Mitochondrial fragmentation in PD cells. Representative immunofluorescence pictures evidencing mitochondrial network in CT and PD Cybrids, under basal conditions, and in MPP+ or Nocodazole treated CT cybrids (1 mM, 24 h; 5 nM, 24 h). Immunostaining was performed using mitotracker green. PD cybrids mitochondrial network morphology is placed between the pronounced mitochondrial fragmentation and perinuclear distribution in MPP+-treated CT cybrids and the interconnected well distributed CT cybrids mitochondrial network. Green: Mitotracker green, Blue: Hoechst. (Magnification ×63). (GIF 1090 kb)

High resolution image (TIFF 1748 kb)

Supplementary Figure 2

Expression of mitochondrial fission/fusion proteins in PD cybrids. Representative immunoblot (a) and quantification analysis (b) revealed that MPP+ treatment of CT cybrids reduces the levels of the fusion protein Mfn2 and the phosphorylation of the fission protein Drp1 (Ser616). MPP+ also modulated the conversion of Opa1 long isoforms (LI) into short isoforms (SI) (C). Data represent mean ± SEM values derived from, at least, three independent determinations. * p < 0.05, *** p < 0.001, significantly different when compared to CT cybrid group. (GIF 1755 kb)

High resolution image (TIFF 1201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, D., Esteves, A.R., Silva, D.F. et al. The Impact of Mitochondrial Fusion and Fission Modulation in Sporadic Parkinson’s Disease. Mol Neurobiol 52, 573–586 (2015). https://doi.org/10.1007/s12035-014-8893-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8893-4

Keywords

Navigation