Skip to main content

Advertisement

Log in

A Mitocentric View of Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease with an increasing morbidity, mortality, and economic cost. Plaques formed by amyloid beta peptide (Aβ) and neurofibrillary tangles formed by microtubule-associated protein tau are two main characters of AD. Though previous studies have focused on Aβ and tau and got some progressions on their toxicity mechanisms, no significantly effective treatments targeting the Aβ and tau have been found. However, it is worth noting that mounting evidences showed that mitochondrial dysfunction is an early event during the process of AD pathologic changes. What is more, these studies also showed an obvious association between mitochondrial dysfunction and Aβ/tau toxicity. Furthermore, both genetic and environmental factors may increase the oxidative stress and the mitochondria are also the sensitive target of ROS, which may form a vicious feedback between mitochondrial dysfunction and oxidative stress, eventually resulting in deficient energy, synaptic failure, and cell death. This article reviews the previous related studies from different aspects and concludes the critical roles of mitochondrial dysfunction in AD, suggesting a different route to AD therapy, which may guide the research and treatment direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Haapasalo A, Pikkarainen M, Soininen H (2015) Alzheimer’s disease: a report from the 7th Kuopio Alzheimer symposium. Neurodegener Dis Manag 5(5):379–382. doi:10.2217/nmt.15.31

    Article  PubMed  Google Scholar 

  2. Zhao QF, Tan L, Wang HF, Jiang T, Tan MS, Tan L, Xu W, Li JQ et al (2016) The prevalence of neuropsychiatric symptoms in Alzheimer’s disease: systematic review and meta-analysis. J Affect Disord 190:264–271. doi:10.1016/j.jad.2015.09.069

    Article  PubMed  Google Scholar 

  3. Wang ZX, Tan L, Liu J, Yu JT (2016) The essential role of soluble Abeta oligomers in Alzheimer’s disease. Mol Neurobiol 53(3):1905–1924. doi:10.1007/s12035-015-9143-0

    Article  CAS  PubMed  Google Scholar 

  4. Swerdlow RH, Burns JM, Khan SM (2014) The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta 1842(8):1219–1231. doi:10.1016/j.bbadis.2013.09.010

    Article  CAS  PubMed  Google Scholar 

  5. Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, Van der Flier WM (2016) Alzheimer’s disease. Lancet. doi:10.1016/S0140-6736(15)01124-1

    Google Scholar 

  6. Xu W, Tan L, Wang HF, Jiang T, Tan MS, Tan L, Zhao QF et al (2015) Meta-analysis of modifiable risk factors for Alzheimer’s disease. J Neurol Neurosurg Psychiatry 86(12):1299–1306. doi:10.1136/jnnp-2015-310548

    PubMed  Google Scholar 

  7. Khatri N, Man HY (2013) Synaptic activity and bioenergy homeostasis: implications in brain trauma and neurodegenerative diseases. Front Neurol 4:199. doi:10.3389/fneur.2013.00199

    Article  PubMed  PubMed Central  Google Scholar 

  8. Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G (2010) Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta 1802(1):2–10. doi:10.1016/j.bbadis.2009.10.006

    Article  CAS  PubMed  Google Scholar 

  9. Akbar M, Essa MM, Daradkeh G, Abdelmegeed MA, Choi Y, Mahmood L, Song BJ (2016) Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res. doi:10.1016/j.brainres.2016.02.016

    PubMed  PubMed Central  Google Scholar 

  10. Chiarini A, Gardenal E, Whitfield JF, Chakravarthy B, Armato U, Dal Pra I (2015) Preventing the spread of Alzheimer’s disease neuropathology: a role for calcilytics? Curr Pharm Biotechnol 16(8):696–706

    Article  CAS  PubMed  Google Scholar 

  11. Patrushev MV, Mazunin IO, Vinogradova EN, Kamenski PA (2015) Mitochondrial fission and fusion. Biochem Biokhim 80(11):1457–1464. doi:10.1134/S0006297915110061

    Article  CAS  Google Scholar 

  12. Bertholet AM, Delerue T, Millet AM, Moulis MF, David C, Daloyau M, Arnaune-Pelloquin L, Davezac N et al (2015) Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiol Dis. doi:10.1016/j.nbd.2015.10.011

    PubMed  Google Scholar 

  13. Zheng X, Boyer L, Jin M, Kim Y, Fan W, Bardy C, Berggren T, Evans RM, et al (2016) Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration. eLife 5. doi:10.7554/eLife.13378

  14. Kowald A, Kirkwood TB (2011) Evolution of the mitochondrial fusion-fission cycle and its role in aging. Proc Natl Acad Sci U S A 108(25):10237–10242. doi:10.1073/pnas.1101604108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu Y, Lee HC, Chen KC, Suhan J, Qiu M, Ba Q, Yang G (2016) Inner membrane fusion mediates spatial distribution of axonal mitochondria. Sci Rep 6:18981. doi:10.1038/srep18981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lin MY, Sheng ZH (2015) Regulation of mitochondrial transport in neurons. Exp Cell Res 334(1):35–44. doi:10.1016/j.yexcr.2015.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Labbe K, Murley A, Nunnari J (2014) Determinants and functions of mitochondrial behavior. Annu Rev Cell Dev Biol 30:357–391. doi:10.1146/annurev-cellbio-101011-155756

    Article  CAS  PubMed  Google Scholar 

  18. van der Bliek AM, Shen Q, Kawajiri S (2013) Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol 5(6). doi:10.1101/cshperspect.a011072

  19. Itoh K, Nakamura K, Iijima M, Sesaki H (2013) Mitochondrial dynamics in neurodegeneration. Trends Cell Biol 23(2):64–71. doi:10.1016/j.tcb.2012.10.006

    Article  CAS  PubMed  Google Scholar 

  20. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334(6054):358–362. doi:10.1126/science.1207385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Korobova F, Gauvin TJ, Higgs HN (2014) A role for myosin II in mammalian mitochondrial fission. Curr Biol CB 24(4):409–414. doi:10.1016/j.cub.2013.12.032

    Article  CAS  PubMed  Google Scholar 

  22. Wai T, Langer T (2016) Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab TEM 27(2):105–117. doi:10.1016/j.tem.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  23. Tondera D, Czauderna F, Paulick K, Schwarzer R, Kaufmann J, Santel A (2005) The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells. J Cell Sci 118(Pt 14):3049–3059. doi:10.1242/jcs.02415

    Article  CAS  PubMed  Google Scholar 

  24. Anand R, Wai T, Baker MJ, Kladt N, Schauss AC, Rugarli E, Langer T (2014) The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol 204(6):919–929. doi:10.1083/jcb.201308006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mishra P, Chan DC (2014) Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol 15(10):634–646. doi:10.1038/nrm3877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Garcia-Escudero V, Martin-Maestro P, Perry G, Avila J (2013) Deconstructing mitochondrial dysfunction in Alzheimer disease. Oxidative Med Cell Longev 2013:162152. doi:10.1155/2013/162152

    Article  CAS  Google Scholar 

  27. Baba T, Kashiwagi Y, Arimitsu N, Kogure T, Edo A, Maruyama T, Nakao K, Nakanishi H et al (2014) Phosphatidic acid (PA)-preferring phospholipase A1 regulates mitochondrial dynamics. J Biol Chem 289(16):11497–11511. doi:10.1074/jbc.M113.531921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Anand R, Langer T, Baker MJ (2013) Proteolytic control of mitochondrial function and morphogenesis. Biochim Biophys Acta 1833(1):195–204. doi:10.1016/j.bbamcr.2012.06.025

    Article  CAS  PubMed  Google Scholar 

  29. Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, Christoffersson J, Chaabane W et al (2014) Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 112:24–49. doi:10.1016/j.pneurobio.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  30. Saxton WM, Hollenbeck PJ (2012) The axonal transport of mitochondria. J Cell Sci 125(Pt 9):2095–2104. doi:10.1242/jcs.053850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cai Q, Tammineni P (2016) Alterations in mitochondrial quality control in Alzheimer’s disease. Front Cell Neurosci 10:24. doi:10.3389/fncel.2016.00024

    PubMed  PubMed Central  Google Scholar 

  32. Misko A, Jiang S, Wegorzewska I, Milbrandt J, Baloh RH (2010) Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J Neurosci 30(12):4232–4240. doi:10.1523/JNEUROSCI.6248-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang X, Su B, Siedlak SL, Moreira PI, Fujioka H, Wang Y, Casadesus G, Zhu X (2008) Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci U S A 105(49):19318–19323. doi:10.1073/pnas.0804871105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Manczak M, Calkins MJ, Reddy PH (2011) Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum Mol Genet 20(13):2495–2509. doi:10.1093/hmg/ddr139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Borza LR (2014) A review on the cause-effect relationship between oxidative stress and toxic proteins in the pathogenesis of neurodegenerative diseases. Rev Med Chir Soc Med Nat Iasi 118(1):19–27

    PubMed  Google Scholar 

  36. Cereghetti GM, Stangherlin A, Martins de Brito O, Chang CR, Blackstone C, Bernardi P, Scorrano L (2008) Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci U S A 105(41):15803–15808. doi:10.1073/pnas.0808249105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cribbs JT, Strack S (2007) Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8(10):939–944. doi:10.1038/sj.embor.7401062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pernas L, Scorrano L (2016) Mito-Morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol 78:505–531. doi:10.1146/annurev-physiol-021115-105011

    Article  CAS  PubMed  Google Scholar 

  39. Richter V, Palmer CS, Osellame LD, Singh AP, Elgass K, Stroud DA, Sesaki H, Kvansakul M et al (2014) Structural and functional analysis of MiD51, a dynamin receptor required for mitochondrial fission. J Cell Biol 204(4):477–486. doi:10.1083/jcb.201311014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Motori E, Puyal J, Toni N, Ghanem A, Angeloni C, Malaguti M, Cantelli-Forti G, Berninger B et al (2013) Inflammation-induced alteration of astrocyte mitochondrial dynamics requires autophagy for mitochondrial network maintenance. Cell Metab 18(6):844–859. doi:10.1016/j.cmet.2013.11.005

    Article  CAS  PubMed  Google Scholar 

  41. Zhang L, Trushin S, Christensen TA, Bachmeier BV, Gateno B, Schroeder A, Yao J, Itoh K et al (2016) Altered brain energetics induces mitochondrial fission arrest in Alzheimer’s disease. Sci Rep 6:18725. doi:10.1038/srep18725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Millecamps S, Julien JP (2013) Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci 14(3):161–176. doi:10.1038/nrn3380

    Article  CAS  PubMed  Google Scholar 

  43. Calkins MJ, Reddy PH (2011) Amyloid beta impairs mitochondrial anterograde transport and degenerates synapses in Alzheimer’s disease neurons. Biochim Biophys Acta 1812(4):507–513. doi:10.1016/j.bbadis.2011.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vossel KA, Xu JC, Fomenko V, Miyamoto T, Suberbielle E, Knox JA, Ho K, Kim DH et al (2015) Tau reduction prevents Abeta-induced axonal transport deficits by blocking activation of GSK3beta. J Cell Biol 209(3):419–433. doi:10.1083/jcb.201407065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cabezas-Opazo FA, Vergara-Pulgar K, Perez MJ, Jara C, Osorio-Fuentealba C, Quintanilla RA (2015) Mitochondrial dysfunction contributes to the pathogenesis of Alzheimer’s disease. Oxidative Med Cell Longev 2015:509654. doi:10.1155/2015/509654

    Article  CAS  Google Scholar 

  46. Farrar GJ, Chadderton N, Kenna PF, Millington-Ward S (2013) Mitochondrial disorders: aetiologies, models systems, and candidate therapies. Trends Genet TIG 29(8):488–497. doi:10.1016/j.tig.2013.05.005

    Article  CAS  PubMed  Google Scholar 

  47. Tuppen HA, Blakely EL, Turnbull DM, Taylor RW (2010) Mitochondrial DNA mutations and human disease. Biochim Biophys Acta 1797(2):113–128. doi:10.1016/j.bbabio.2009.09.005

    Article  CAS  PubMed  Google Scholar 

  48. Koopman WJ, Distelmaier F, Smeitink JA, Willems PH (2013) OXPHOS mutations and neurodegeneration. EMBO J 32(1):9–29. doi:10.1038/emboj.2012.300

    Article  CAS  PubMed  Google Scholar 

  49. Piscosquito G, Saveri P, Magri S, Ciano C, Di Bella D, Milani M, Taroni F, Pareyson D (2015) Mutational mechanisms in MFN2-related neuropathy: compound heterozygosity for recessive and semidominant mutations. J Peripher Nerv Syst JPNS 20(4):380–386. doi:10.1111/jns.12145

    Article  CAS  PubMed  Google Scholar 

  50. Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez M, Kellner U et al (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26(2):211–215. doi:10.1038/79944

    Article  CAS  PubMed  Google Scholar 

  51. Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, Pelloquin L, Grosgeorge J et al (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26(2):207–210. doi:10.1038/79936

    Article  CAS  PubMed  Google Scholar 

  52. Scheffler K, Krohn M, Dunkelmann T, Stenzel J, Miroux B, Ibrahim S, von Bohlen Und Halbach O, Heinze HJ et al (2012) Mitochondrial DNA polymorphisms specifically modify cerebral beta-amyloid proteostasis. Acta Neuropathol 124(2):199–208. doi:10.1007/s00401-012-0980-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lakatos A, Derbeneva O, Younes D, Keator D, Bakken T, Lvova M, Brandon M, Guffanti G, Alzheimer’s Disease Neuroimaging I et al (2010) Association between mitochondrial DNA variations and Alzheimer’s disease in the ADNI cohort. Neurobiol Aging 31(8):1355–1363. doi:10.1016/j.neurobiolaging.2010.04.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Keogh MJ, Chinnery PF (2015) Mitochondrial DNA mutations in neurodegeneration. Biochim Biophys Acta 1847(11):1401–1411. doi:10.1016/j.bbabio.2015.05.015

    Article  CAS  PubMed  Google Scholar 

  55. Phillips NR, Simpkins JW, Roby RK (2014) Mitochondrial DNA deletions in Alzheimer’s brains: a review. Alzheimer’s Dement J Alzheimer’s Assoc 10(3):393–400. doi:10.1016/j.jalz.2013.04.508

    Article  Google Scholar 

  56. Devall M, Mill J, Lunnon K (2014) The mitochondrial epigenome: a role in Alzheimer’s disease? Epigenomics 6(6):665–675. doi:10.2217/epi.14.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shock LS, Thakkar PV, Peterson EJ, Moran RG, Taylor SM (2011) DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci U S A 108(9):3630–3635. doi:10.1073/pnas.1012311108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ferreira ST, Klein WL (2011) The Abeta oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol Learn Mem 96(4):529–543. doi:10.1016/j.nlm.2011.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Goure WF, Krafft GA, Jerecic J, Hefti F (2014) Targeting the proper amyloid-beta neuronal toxins: a path forward for Alzheimer’s disease immunotherapeutics. Alzheimers Res Ther 6(4):42. doi:10.1186/alzrt272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Benilova I, Karran E, De Strooper B (2012) The toxic Abeta oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15(3):349–357. doi:10.1038/nn.3028

    Article  CAS  PubMed  Google Scholar 

  61. Butterfield DA, Swomley AM, Sultana R (2013) Amyloid beta-peptide (1-42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. Antioxid Redox Signal 19(8):823–835. doi:10.1089/ars.2012.5027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hansson Petersen CA, Alikhani N, Behbahani H, Wiehager B, Pavlov PF, Alafuzoff I, Leinonen V, Ito A et al (2008) The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci U S A 105(35):13145–13150. doi:10.1073/pnas.0806192105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bobba A, Amadoro G, Valenti D, Corsetti V, Lassandro R, Atlante A (2013) Mitochondrial respiratory chain complexes I and IV are impaired by beta-amyloid via direct interaction and through complex I-dependent ROS production, respectively. Mitochondrion 13(4):298–311. doi:10.1016/j.mito.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  64. Sileikyte J, Forte M (2016) Shutting down the pore: the search for small molecule inhibitors of the mitochondrial permeability transition. Biochim Biophys Acta. doi:10.1016/j.bbabio.2016.02.016

    PubMed  PubMed Central  Google Scholar 

  65. Tsujimoto Y, Shimizu S (2007) Role of the mitochondrial membrane permeability transition in cell death. Apoptosis Int J Programmed Cell Death 12(5):835–840. doi:10.1007/s10495-006-0525-7

    Article  CAS  Google Scholar 

  66. Rao VK, Carlson EA, Yan SS (2014) Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochim Biophys Acta 1842(8):1267–1272. doi:10.1016/j.bbadis.2013.09.003

    Article  CAS  PubMed  Google Scholar 

  67. Hou Y, Ouyang X, Wan R, Cheng H, Mattson MP, Cheng A (2012) Mitochondrial superoxide production negatively regulates neural progenitor proliferation and cerebral cortical development. Stem Cells 30(11):2535–2547. doi:10.1002/stem.1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang W, Fang H, Groom L, Cheng A, Zhang W, Liu J, Wang X, Li K et al (2008) Superoxide flashes in single mitochondria. Cell 134(2):279–290. doi:10.1016/j.cell.2008.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hou Y, Ghosh P, Wan R, Ouyang X, Cheng H, Mattson MP, Cheng A (2014) Permeability transition pore-mediated mitochondrial superoxide flashes mediate an early inhibitory effect of amyloid beta1-42 on neural progenitor cell proliferation. Neurobiol Aging 35(5):975–989. doi:10.1016/j.neurobiolaging.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  70. Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46(6):821–831. doi:10.1016/j.yjmcc.2009.02.021

    Article  CAS  PubMed  Google Scholar 

  71. Butterfield DA, Reed T, Sultana R (2011) Roles of 3-nitrotyrosine- and 4-hydroxynonenal-modified brain proteins in the progression and pathogenesis of Alzheimer’s disease. Free Radic Res 45(1):59–72. doi:10.3109/10715762.2010.520014

    Article  CAS  PubMed  Google Scholar 

  72. Du H, Guo L, Wu X, Sosunov AA, McKhann GM, Chen JX, Yan SS (2014) Cyclophilin D deficiency rescues Abeta-impaired PKA/CREB signaling and alleviates synaptic degeneration. Biochim Biophys Acta 1842(12 Pt A):2517–2527. doi:10.1016/j.bbadis.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  73. Valasani KR, Vangavaragu JR, Day VW, Yan SS (2014) Structure based design, synthesis, pharmacophore modeling, virtual screening, and molecular docking studies for identification of novel cyclophilin D inhibitors. J Chem Inf Model 54(3):902–912. doi:10.1021/ci5000196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Du H, Guo L, Zhang W, Rydzewska M, Yan S (2011) Cyclophilin D deficiency improves mitochondrial function and learning/memory in aging Alzheimer disease mouse model. Neurobiol Aging 32(3):398–406. doi:10.1016/j.neurobiolaging.2009.03.003

    Article  CAS  PubMed  Google Scholar 

  75. Guo L, Du H, Yan S, Wu X, McKhann GM, Chen JX, Yan SS (2013) Cyclophilin D deficiency rescues axonal mitochondrial transport in Alzheimer’s neurons. PLoS One 8(1):e54914. doi:10.1371/journal.pone.0054914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lopez-Erauskin J, Galino J, Bianchi P, Fourcade S, Andreu AL, Ferrer I, Munoz-Pinedo C, Pujol A (2012) Oxidative stress modulates mitochondrial failure and cyclophilin D function in X-linked adrenoleukodystrophy. Brain J Neurol 135(Pt 12):3584–3598. doi:10.1093/brain/aws292

    Article  Google Scholar 

  77. Fernandez-Echevarria C, Diaz M, Ferrer I, Canerina-Amaro A, Marin R (2014) Abeta promotes VDAC1 channel dephosphorylation in neuronal lipid rafts. Relev Mech Neurotoxicity Alzheimer’s Dis Neurosci 278:354–366. doi:10.1016/j.neuroscience.2014.07.079

    CAS  Google Scholar 

  78. Reddy PH (2013) Is the mitochondrial outermembrane protein VDAC1 therapeutic target for Alzheimer’s disease? Biochim Biophys Acta 1832(1):67–75. doi:10.1016/j.bbadis.2012.09.003

    Article  CAS  PubMed  Google Scholar 

  79. Reddy PH (2013) Amyloid beta-induced glycogen synthase kinase 3beta phosphorylated VDAC1 in Alzheimer’s disease: implications for synaptic dysfunction and neuronal damage. Biochim Biophys Acta 1832(12):1913–1921. doi:10.1016/j.bbadis.2013.06.012

    Article  CAS  PubMed  Google Scholar 

  80. Zakaria A, Hamdi N, Abdel-Kader RM (2016) Methylene blue improves brain mitochondrial ABAD functions and decreases Abeta in a Neuroinflammatory Alzheimer’s disease mouse model. Mol Neurobiol 53(2):1220–1228. doi:10.1007/s12035-014-9088-8

    Article  CAS  PubMed  Google Scholar 

  81. Borger E, Aitken L, Du H, Zhang W, Gunn-Moore FJ, Yan SS (2013) Is amyloid binding alcohol dehydrogenase a drug target for treating Alzheimer’s disease? Curr Alzheimer Res 10(1):21–29

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lim YA, Grimm A, Giese M, Mensah-Nyagan AG, Villafranca JE, Ittner LM, Eckert A, Gotz J (2011) Inhibition of the mitochondrial enzyme ABAD restores the amyloid-beta-mediated deregulation of estradiol. PLoS One 6(12):e28887. doi:10.1371/journal.pone.0028887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dash R, Emran TB, Uddin MM, Islam A, Junaid M (2014) Molecular docking of fisetin with AD associated AChE, ABAD and BACE1 proteins. Bioinformation 10(9):562–568. doi:10.6026/97320630010562

    Article  PubMed  PubMed Central  Google Scholar 

  84. Valaasani KR, Sun Q, Hu G, Li J, Du F, Guo Y, Carlson EA, Gan X et al (2014) Identification of human ABAD inhibitors for rescuing Abeta-mediated mitochondrial dysfunction. Curr Alzheimer Res 11(2):128–136

    Article  CAS  PubMed  Google Scholar 

  85. Nakamura T, Lipton SA (2011) Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases. Cell Death Differ 18(9):1478–1486. doi:10.1038/cdd.2011.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. DuBoff B, Feany M, Gotz J (2013) Why size matters - balancing mitochondrial dynamics in Alzheimer’s disease. Trends Neurosci 36(6):325–335. doi:10.1016/j.tins.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  87. Shi C, Viccaro K, Lee HG, Shah K (2016) Cdk5-FOXO3a axis: initially neuroprotective, eventually neurodegenerative in Alzheimer’s disease models. J Cell Sci. doi:10.1242/jcs.185009

    Google Scholar 

  88. Ferber EC, Peck B, Delpuech O, Bell GP, East P, Schulze A (2012) FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ 19(6):968–979. doi:10.1038/cdd.2011.179

    Article  CAS  PubMed  Google Scholar 

  89. Shi C, Zhu J, Leng S, Long D, Luo X (2016) Mitochondrial FOXO3a is involved in amyloid beta peptide-induced mitochondrial dysfunction. J Bioenerg Biomembr. doi:10.1007/s10863-016-9645-0

    PubMed  Google Scholar 

  90. Pritchard SM, Dolan PJ, Vitkus A, Johnson GV (2011) The toxicity of tau in Alzheimer disease: turnover, targets and potential therapeutics. J Cell Mol Med 15(8):1621–1635. doi:10.1111/j.1582-4934.2011.01273.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lee S, Shea TB (2012) Caspase-mediated truncation of tau potentiates aggregation. Int J Alzheimers Dis 2012:731063. doi:10.1155/2012/731063

    PubMed  PubMed Central  Google Scholar 

  92. Pallo SP, Johnson GV (2015) Tau facilitates Abeta-induced loss of mitochondrial membrane potential independent of cytosolic calcium fluxes in mouse cortical neurons. Neurosci Lett 597:32–37. doi:10.1016/j.neulet.2015.04.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pajak B, Kania E, Orzechowski A (2016) Killing me softly: connotations to unfolded protein response and oxidative stress in Alzheimer’s disease. Oxidative Med Cell Longev 2016:1805304. doi:10.1155/2016/1805304

    Article  Google Scholar 

  94. Zempel H, Mandelkow E (2014) Lost after translation: missorting of tau protein and consequences for Alzheimer disease. Trends Neurosci 37(12):721–732. doi:10.1016/j.tins.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  95. Liu C, Song X, Nisbet R, Gotz J (2016) Co-immunoprecipitation with tau isoform-specific antibodies reveals distinct protein interactions, and highlights a putative role for 2 N tau in disease. J Biol Chem. doi:10.1074/jbc.M115.641902

    Google Scholar 

  96. Quintanilla RA, Dolan PJ, Jin YN, Johnson GV (2012) Truncated tau and Abeta cooperatively impair mitochondria in primary neurons. Neurobiol Aging 33(3):619 e625–619 e635. doi:10.1016/j.neurobiolaging.2011.02.007

    Article  CAS  Google Scholar 

  97. Patel N, Ramachandran S, Azimov R, Kagan BL, Lal R (2015) Ion Channel formation by tau protein: implications for Alzheimer’s disease and Tauopathies. Biochemistry 54(50):7320–7325. doi:10.1021/acs.biochem.5b00988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Costa LG, Garrick JM, Roque PJ, Pellacani C (2016) Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more. Oxidative Med Cell Longev 2016:2986796. doi:10.1155/2016/2986796

    Google Scholar 

  99. Abdul-Muneer PM, Chandra N, Haorah J (2015) Interactions of oxidative stress and neurovascular inflammation in the pathogenesis of traumatic brain injury. Mol Neurobiol 51(3):966–979. doi:10.1007/s12035-014-8752-3

    Article  CAS  PubMed  Google Scholar 

  100. Sanderson TH, Raghunayakula S, Kumar R (2015) Release of mitochondrial Opa1 following oxidative stress in HT22 cells. Mol Cell Neurosci 64:116–122. doi:10.1016/j.mcn.2014.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gibson GE, Shi Q (2010) A mitocentric view of Alzheimer’s disease suggests multi-faceted treatments. J Alzheimer’s Dis JAD 20(Suppl 2):S591–S607. doi:10.3233/JAD-2010-100336

    Article  PubMed  CAS  Google Scholar 

  102. Klivenyi P, Starkov AA, Calingasan NY, Gardian G, Browne SE, Yang L, Bubber P, Gibson GE et al (2004) Mice deficient in dihydrolipoamide dehydrogenase show increased vulnerability to MPTP, malonate and 3-nitropropionic acid neurotoxicity. J Neurochem 88(6):1352–1360

    Article  CAS  PubMed  Google Scholar 

  103. Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH (2000) Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7(12):1166–1173. doi:10.1038/sj.cdd.4400783

    Article  CAS  PubMed  Google Scholar 

  104. Montessuit S, Somasekharan SP, Terrones O, Lucken-Ardjomande S, Herzig S, Schwarzenbacher R, Manstein DJ, Bossy-Wetzel E et al (2010) Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell 142(6):889–901. doi:10.1016/j.cell.2010.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang Z, Jiang H, Chen S, Du F, Wang X (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148(1–2):228–243. doi:10.1016/j.cell.2011.11.030

    Article  CAS  PubMed  Google Scholar 

  106. Christofferson DE, Yuan J (2010) Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol 22(2):263–268. doi:10.1016/j.ceb.2009.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Leitao-Rocha A, Guedes-Dias P, Pinho BR, Oliveira JM (2015) Trends in mitochondrial therapeutics for neurological disease. Curr Med Chem 22(20):2458–2467

    Article  CAS  PubMed  Google Scholar 

  108. Mitalipov S, Amato P, Parry S, Falk MJ (2014) Limitations of preimplantation genetic diagnosis for mitochondrial DNA diseases. Cell Rep 7(4):935–937. doi:10.1016/j.celrep.2014.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Craven L, Tuppen HA, Greggains GD, Harbottle SJ, Murphy JL, Cree LM, Murdoch AP, Chinnery PF et al (2010) Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 465(7294):82–85. doi:10.1038/nature08958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tachibana M, Amato P, Sparman M, Woodward J, Sanchis DM, Ma H, Gutierrez NM, Tippner-Hedges R et al (2013) Towards germline gene therapy of inherited mitochondrial diseases. Nature 493(7434):627–631. doi:10.1038/nature11647

    Article  CAS  PubMed  Google Scholar 

  111. El-Khoury R, Dufour E, Rak M, Ramanantsoa N, Grandchamp N, Csaba Z, Duvillie B, Benit P et al (2013) Alternative oxidase expression in the mouse enables bypassing cytochrome c oxidase blockade and limits mitochondrial ROS overproduction. PLoS Genet 9(1):e1003182. doi:10.1371/journal.pgen.1003182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT (2013) Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 19(9):1111–1113. doi:10.1038/nm.3261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14(1):49–55. doi:10.1038/nrm3486

    Article  CAS  PubMed  Google Scholar 

  114. Qu M, Jiang Z, Liao Y, Song Z, Nan X (2016) Lycopene prevents amyloid [Beta]-induced mitochondrial oxidative stress and dysfunctions in cultured rat cortical neurons. Neurochem Res. doi:10.1007/s11064-016-1837-9

    Google Scholar 

  115. Chen Y, Han S, Huang X, Ni J, He X (2016) The protective effect of icariin on mitochondrial transport and distribution in primary hippocampal neurons from 3× Tg-AD mice. Int J Mol Sci 17(2). doi:10.3390/ijms17020163

  116. Xu S, Pi H, Zhang L, Zhang N, Li Y, Zhang H, Tang J, Li H et al (2016) Melatonin prevents abnormal mitochondrial dynamics resulting from the neurotoxicity of cadmium by blocking calcium-dependent translocation of Drp1 to the mitochondria. J Pineal Res 60(3):291–302. doi:10.1111/jpi.12310

    Article  CAS  PubMed  Google Scholar 

  117. Battigelli A, Russier J, Venturelli E, Fabbro C, Petronilli V, Bernardi P, Da Ros T, Prato M et al (2013) Peptide-based carbon nanotubes for mitochondrial targeting. Nanoscale 5(19):9110–9117. doi:10.1039/c3nr02694a

    Article  CAS  PubMed  Google Scholar 

  118. Calkins MJ, Manczak M, Mao P, Shirendeb U, Reddy PH (2011) Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Hum Mol Genet 20(23):4515–4529. doi:10.1093/hmg/ddr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. McManus MJ, Murphy MP, Franklin JL (2011) The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s disease. J Neurosc Off J Soc Neurosci 31(44):15703–15715. doi:10.1523/JNEUROSCI.0552-11.2011

    Article  CAS  Google Scholar 

  120. Smith RA, Murphy MP (2010) Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann N Y Acad Sci 1201:96–103. doi:10.1111/j.1749-6632.2010.05627.x

    Article  CAS  PubMed  Google Scholar 

  121. Szeto HH, Schiller PW (2011) Novel therapies targeting inner mitochondrial membrane--from discovery to clinical development. Pharm Res 28(11):2669–2679. doi:10.1007/s11095-011-0476-8

    Article  CAS  PubMed  Google Scholar 

  122. Dumont M, Stack C, Elipenahli C, Jainuddin S, Gerges M, Starkova N, Calingasan NY, Yang L et al (2012) Bezafibrate administration improves behavioral deficits and tau pathology in P301S mice. Hum Mol Genet 21(23):5091–5105. doi:10.1093/hmg/dds355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chang KL, Pee HN, Tan WP, Dawe GS, Holmes E, Nicholson JK, Chan EC, Ho PC (2015) Metabolic profiling of CHO-AbetaPP695 cells revealed mitochondrial dysfunction prior to amyloid-beta pathology and potential therapeutic effects of both PPARgamma and PPARalpha Agonisms for Alzheimer’s disease. J Alzheimer’s Dis JAD 44(1):215–231. doi:10.3233/JAD-140429

    CAS  PubMed  Google Scholar 

  124. Romberg C, Mattson MP, Mughal MR, Bussey TJ, Saksida LM (2011) Impaired attention in the 3xTgAD mouse model of Alzheimer’s disease: rescue by donepezil (Aricept). J Neurosc Off J Soc Neurosci 31(9):3500–3507. doi:10.1523/JNEUROSCI.5242-10.2011

    Article  CAS  Google Scholar 

  125. Tang SS, Hong H, Chen L, Mei ZL, Ji MJ, Xiang GQ, Li N, Ji H (2014) Involvement of cysteinyl leukotriene receptor 1 in Abeta1-42-induced neurotoxicity in vitro and in vivo. Neurobiol Aging 35(3):590–599. doi:10.1016/j.neurobiolaging.2013.09.036

    Article  CAS  PubMed  Google Scholar 

  126. Ye CY, Lei Y, Tang XC, Zhang HY (2015) Donepezil attenuates Abeta-associated mitochondrial dysfunction and reduces mitochondrial Abeta accumulation in vivo and in vitro. Neuropharmacology 95:29–36. doi:10.1016/j.neuropharm.2015.02.020

    Article  CAS  PubMed  Google Scholar 

  127. Folch J, Petrov D, Ettcheto M, Abad S, Sanchez-Lopez E, Garcia ML, Olloquequi J, Beas-Zarate C et al (2016) Current research therapeutic strategies for Alzheimer’s disease treatment. Neural Plast 2016:8501693. doi:10.1155/2016/8501693

    Article  PubMed  PubMed Central  Google Scholar 

  128. Xie N, Wang C, Lian Y, Zhang H, Wu C, Zhang Q (2013) A selective inhibitor of Drp1, mdivi-1, protects against cell death of hippocampal neurons in pilocarpine-induced seizures in rats. Neurosci Lett 545:64–68. doi:10.1016/j.neulet.2013.04.026

    Article  CAS  PubMed  Google Scholar 

  129. Zhang N, Wang S, Li Y, Che L, Zhao Q (2013) A selective inhibitor of Drp1, mdivi-1, acts against cerebral ischemia/reperfusion injury via an anti-apoptotic pathway in rats. Neurosci Lett 535:104–109. doi:10.1016/j.neulet.2012.12.049

    Article  CAS  PubMed  Google Scholar 

  130. Guo X, Disatnik MH, Monbureau M, Shamloo M, Mochly-Rosen D, Qi X (2013) Inhibition of mitochondrial fragmentation diminishes Huntington’s disease-associated neurodegeneration. J Clin Invest 123(12):5371–5388. doi:10.1172/JCI70911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kim C, Choi H, Jung ES, Lee W, Oh S, Jeon NL, Mook-Jung I (2012) HDAC6 inhibitor blocks amyloid beta-induced impairment of mitochondrial transport in hippocampal neurons. PLoS One 7(8):e42983. doi:10.1371/journal.pone.0042983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Govindarajan N, Rao P, Burkhardt S, Sananbenesi F, Schluter OM, Bradke F, Lu J, Fischer A (2013) Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer’s disease. EMBO Mol Med 5(1):52–63. doi:10.1002/emmm.201201923

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81000544, 81171209, 81571245, and 81501103), the Shandong Provincial Outstanding Medical Academic Professional Program, Qingdao Key Health Discipline Development Fund, Qingdao Outstanding Health Professional Development Fund, and Shan dong Provincial Collaborative Innovation Center for Neurodegenerative Disorders.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Tan or Jin-Tai Yu.

Additional information

Hao Hu and Chen-Chen Tan are Equal contributors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Tan, CC., Tan, L. et al. A Mitocentric View of Alzheimer’s Disease. Mol Neurobiol 54, 6046–6060 (2017). https://doi.org/10.1007/s12035-016-0117-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0117-7

Keywords

Navigation