Skip to main content

Advertisement

Log in

Molecular Targets in Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is known as a devastating neurodegenerative disorder in aged subjects, which is related to multiple heterogeneous genetic factors. The two basic pathological aspects of AD are related to amyloid beta (Aβ) peptides and tau proteins. Some researchers have demonstrated plaques and tangles as apparently primary lesions. Also, experimental data propose that these two lesions are intimately related. In the present review, we highlight some molecular mechanisms linking tau and Aβ toxicities involving oxidative stress, aging, Aβ turnover, the contribution of thiol groups, and the role mitochondrial activities in the AD pathogenesis. Understanding the interplay of these mechanisms as parts of common pathophysiological pathways could reveal molecular targets to control or even treat AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green KN, Johnston HM, Burnett ME, Brewer SM (2017) Hybrid antioxidant and metal sequestering small molecules targeting the molecular features of Alzheimer’s disease. Comment Inorg Chem 37(3):146–167

    Article  CAS  Google Scholar 

  2. Farhang M, Miranda-Castillo C, Rubio M, Furtado G (2019) Impact of mind-body interventions in older adults with mild cognitive impairment: a systematic review. Int Psychogeriatr:1–24

  3. Ansart M, Epelbaum S, Gagliardi G, Colliot O, Dormont D, Dubois B, Hampel H, Durrleman S et al (2019) Reduction of recruitment costs in preclinical AD trials: validation of automatic pre-screening algorithm for brain amyloidosis. Stat Methods Med Res 30:0962280218823036

  4. Prince M, Wimo A, Guerchet M, Ali G, Wu Y, Prina M (2015) World Alzheimer report 2015: the global impact of dementia: an analysis of prevalence, incidence, cost and trends. Alzheimer's Disease International, London. http://www.alz.co.uk/research/world-report-2015. Accessed 6 Apr 2019

  5. Editors PM (2016) Dementia across the lifespan and around the globe—pathophysiology, prevention, treatment, and societal impact: a call for papers. Public Library of Science,

  6. Brayne C, Miller B (2017) Dementia and aging populations—a global priority for contextualized research and health policy. PLoS Med 14(3):e1002275

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kozlov S, Afonin A, Evsyukov I, Bondarenko A (2017) Alzheimer’s disease: as it was in the beginning. Rev Neurosci 28(8):825–843

    Article  CAS  PubMed  Google Scholar 

  8. Piaceri I, Nacmias B, Sorbi S (2013) Genetics of familial and sporadic Alzheimer’s disease. Front Biosci (Elite Ed) 5:167–177

    Article  Google Scholar 

  9. Dorszewska J, Prendecki M, Oczkowska A, Dezor M, Kozubski W (2016) Molecular basis of familial and sporadic Alzheimer’s disease. Curr Alzheimer Res 13(9):952–963

    Article  CAS  PubMed  Google Scholar 

  10. Jayne T, Newman M, Verdile G, Sutherland G, Muench G, Musgrave I, Nik M, Hani S et al (2016) Evidence for and against a pathogenic role of reduced γ-secretase activity in familial Alzheimer’s disease. J Alzheimers Dis 52(3):781–799

  11. Swerdlow RH, Burns JM, Khan SM (2014) The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta 1842(8):1219–1231

    Article  CAS  PubMed  Google Scholar 

  12. Selkoe DJ (2005) Defining molecular targets to prevent Alzheimer disease. Arch Neurol 62(2):192–195

    Article  PubMed  Google Scholar 

  13. Lahiri DK, Farlow MR, Sambamurti K, Greig NH, Giacobini E, Schneider LS (2003) A critical analysis of new molecular targets and strategies for drug developments in Alzheimer’s disease. Curr Drug Targets 4(2):97–112

    Article  CAS  PubMed  Google Scholar 

  14. Meleleo D, Notarachille G, Mangini V, Arnesano F (2019) Concentration-dependent effects of mercury and lead on Aβ42: possible implications for Alzheimer’s disease. Eur Biophys J 48(2):173–187 1-15

    Article  CAS  PubMed  Google Scholar 

  15. Martikainen IK, Kemppainen N, Johansson J, Teuho J, Helin S, Liu Y, Helisalmi S, Soininen H, Parkkola R, Ngandu T, Kivipelto M, Rinne JO (2019) Brain β-amyloid and atrophy in individuals at increased risk of cognitive decline. AJNR Am J Neuroradiol 40(1):80–85

  16. Hampel H, Mesulam M-M, Cuello AC, Khachaturian AS, Vergallo A, Farlow M, Snyder P, Giacobini E et al (2019) Revisiting the cholinergic hypothesis in Alzheimer’s disease: emerging evidence from translational and clinical research. J Prev Alzheimers Dis 6(1):2–15

  17. Basaure P, Guardia-Escote L, Cabré M, Peris-Sampedro F, Sánchez-Santed F, Domingo JL, Colomina MT (2019) Learning, memory and the expression of cholinergic components in mice are modulated by the pesticide chlorpyrifos depending upon age at exposure and apolipoprotein E (APOE) genotype. Arch Toxicol 1–15

  18. Goate A, Chartier-Harlin M-C, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349(6311):704–706

  19. Cho Y, Kwon O, Park M, Kim T, Chung S (2019) Elevated cellular cholesterol in familial Alzheimer’s presenilin 1 mutation is associated with lipid raft localization of β-amyloid precursor protein. PLoS One 14(1):e0210535–e0210535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Veugelen S, Saito T, Saido TC, Chávez-Gutiérrez L, De Strooper B (2016) Familial Alzheimer’s disease mutations in presenilin generate amyloidogenic Aβ peptide seeds. Neuron 90(2):410–416

    Article  CAS  PubMed  Google Scholar 

  21. Zhao B, Liu P, Wei M, Li Y, Liu J, Ma L, Shang S, Jiang Y, Huo K, Wang J, Qu Q3 (2019) Chronic sleep restriction induces Aβ accumulation by disrupting the balance of Aβ production and clearance in rats. Neurochem Res 44(4):859–873

  22. Devi KP, Shanmuganathan B, Manayi A, Nabavi SF, Nabavi SM (2017) Molecular and therapeutic targets of genistein in Alzheimer’s disease. Mol Neurobiol 54(9):7028–7041

    Article  CAS  PubMed  Google Scholar 

  23. Vezzani A (2005) Inflammation and epilepsy. Epilepsy Curr 5(1):1–6

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kamat P, Vacek J, Kalani A, Tyagi N (2015) Homocysteine induced cerebrovascular dysfunction: a link to Alzheimer’s disease etiology. Open Neurosci J 9:9–14

    CAS  Google Scholar 

  25. Humpel C (2011) Chronic mild cerebrovascular dysfunction as a cause for Alzheimer’s disease? Exp Gerontol 46(4):225–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ray B, Lahiri DK (2009) Neuroinflammation in Alzheimer’s disease: different molecular targets and potential therapeutic agents including curcumin. Curr Opin Pharmacol 9(4):434–444

    Article  CAS  PubMed  Google Scholar 

  27. Abolhassani N, Leon J, Sheng Z, Oka S, Hamasaki H, Iwaki T, Nakabeppu Y (2017) Molecular pathophysiology of impaired glucose metabolism, mitochondrial dysfunction, and oxidative DNA damage in Alzheimer’s disease brain. Mech Ageing Dev 161:95–104

    Article  CAS  PubMed  Google Scholar 

  28. Area-Gomez E, Schon EA (2017) On the pathogenesis of Alzheimer’s disease: the MAM hypothesis. FASEB J 31(3):864–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yoshida H, Meng P, Matsumiya T, Tanji K, Hayakari R, Xing F, Wang L, Tsuruga K et al (2014) Carnosic acid suppresses the production of amyloid-β 1-42 and 1-43 by inducing an α-secretase TACE/ADAM17 in U373MG human astrocytoma cells. Neurosci Res 79:83–93

  30. Moskovitz J (2007) Prolonged selenium deficient diet in MsrA knockout mice causes enhanced oxidative modification to proteins and affects the levels of antioxidant enzymes in a tissue-specific manner. Free Radic Res 41(2):162–171

    Article  CAS  PubMed  Google Scholar 

  31. Wang X, Su B, Perry G, Smith MA, Zhu X (2007) Insights into amyloid-β-induced mitochondrial dysfunction in Alzheimer disease. Free Radic Biol Med 43(12):1569–1573

    Article  CAS  PubMed  Google Scholar 

  32. Alikhani N, Guo L, Yan S, Du H, Pinho CM, Chen JX, Glaser E, Yan SS (2011) Decreased proteolytic activity of the mitochondrial amyloid-β degrading enzyme, PreP peptidasome, in Alzheimer’s disease brain mitochondria. J Alzheimers Dis 27(1):75–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alikhani N, Ankarcrona M, Glaser E (2009) Mitochondria and Alzheimer’s disease: amyloid-β peptide uptake and degradation by the presequence protease, hPreP. J Bioenerg Biomembr 41(5):447–451

    Article  CAS  PubMed  Google Scholar 

  34. Bückig A, Tikkanen R, Herzog V, Schmitz A (2002) Cytosolic and nuclear aggregation of the amyloid ß-peptide following its expression in the endoplasmic reticulum. Histochem Cell Biol 118(5):353–360

    Article  CAS  PubMed  Google Scholar 

  35. Schmitz A, Schneider A, Kummer MP, Herzog V (2004) Endoplasmic reticulum-localized amyloid β-peptide is degraded in the cytosol by two distinct degradation pathways. Traffic 5(2):89–101

    Article  CAS  PubMed  Google Scholar 

  36. Lai W-B, Wang B-J, Hu M-K, Hsu W-M, Her GM, Liao Y-F (2014) Ligand-dependent activation of EphA4 signaling regulates the proteolysis of amyloid precursor protein through a Lyn-mediated pathway. Mol Neurobiol 49(2):1055–1068

    Article  CAS  PubMed  Google Scholar 

  37. Ghosal K, Vogt DL, Liang M, Shen Y, Lamb BT, Pimplikar SW (2009) Alzheimer’s disease-like pathological features in transgenic mice expressing the APP intracellular domain. Proc Natl Acad Sci 106(43):18367–18372

    Article  PubMed  Google Scholar 

  38. Kharbanda S, Yuan Z-M, Rubin E, Weichselbaum R, Kufe D (1994) Activation of Src-like p56/p53lyn tyrosine kinase by ionizing radiation. J Biol Chem 269(32):20739–20743

    CAS  PubMed  Google Scholar 

  39. Rozsnyay Z, Sarmay G, Gergely J (1995) Rapid desensitization of B-cell receptor by a dithiol-reactive protein tyrosine phosphatase inhibitor: uncoupling of membrane IgM from syk inhibits signals leading to Ca2+ mobilization. Immunol Lett 44(2–3):149–156

    Article  CAS  PubMed  Google Scholar 

  40. Mallozzi C, Di Stasi AMM, Minetti M (2001) Nitrotyrosine mimics phosphotyrosine binding to the SH2 domain of the src family tyrosine kinase lyn. FEBS Lett 503(2–3):189–195

    Article  CAS  PubMed  Google Scholar 

  41. Mòdol T, Natal C, De Obanos MPP, De Miguel ED, Iraburu MJ, López-Zabalza MJ (2011) Apoptosis of hepatic stellate cells mediated by specific protein nitration. Biochem Pharmacol 81(3):451–458

    Article  CAS  PubMed  Google Scholar 

  42. Combs CK, Karlo JC, Kao S-C, Landreth GE (2001) β-Amyloid stimulation of microglia and monocytes results in TNFα-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 21(4):1179–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Denu JM, Tanner KG (1998) Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37(16):5633–5642

    Article  CAS  PubMed  Google Scholar 

  44. Lee S-R, Kwon K-S, Kim S-R, Rhee SG (1998) Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 273(25):15366–15372

    Article  CAS  PubMed  Google Scholar 

  45. Lane AE, Tan JT, Hawkins CL, Heather AK, Davies MJ (2010) The myeloperoxidase-derived oxidant HOSCN inhibits protein tyrosine phosphatases and modulates cell signalling via the mitogen-activated protein kinase (MAPK) pathway in macrophages. Biochem J 430(1):161–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Su T, Li X, Liu N, Pan S, Lu J, Yang J, Zhang Z (2012) Real-time imaging elucidates the role of H2O2 in regulating kinetics of epidermal growth factor-induced and Src-mediated tyrosine phosphorylation signaling. J Biomed Opt 17(7):0760151–07601511

    Article  CAS  Google Scholar 

  47. Stasi A, Mallozzi C, Macchia G, Petrucci TC, Minetti M (1999) Peroxynitrite induces tyrosine nitration and modulates tyrosine phosphorylation of synaptic proteins. J Neurochem 73(2):727–735

    Article  PubMed  Google Scholar 

  48. Gracanin M, Davies MJ (2007) Inhibition of protein tyrosine phosphatases by amino acid, peptide, and protein hydroperoxides: potential modulation of cell signaling by protein oxidation products. Free Radic Biol Med 42(10):1543–1551

    Article  CAS  PubMed  Google Scholar 

  49. Sunkaria A, Yadav A, Bhardwaj S, Sandhir R (2017) Postnatal proteasome inhibition promotes amyloid-β aggregation in hippocampus and impairs spatial learning in adult mice. Neuroscience 367:47–59

    Article  CAS  PubMed  Google Scholar 

  50. Shang F, Taylor A (2011) Ubiquitin–proteasome pathway and cellular responses to oxidative stress. Free Radic Biol Med 51(1):5–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shringarpure R, Davies KJ (2002) Protein turnover by the proteasome in aging and disease 1, 2. Free Radic Biol Med 32(11):1084–1089

    Article  CAS  PubMed  Google Scholar 

  52. Louie JL, Kapphahn RJ, Ferrington DA (2002) Proteasome function and protein oxidation in the aged retina. Exp Eye Res 75(3):271–284

    Article  CAS  PubMed  Google Scholar 

  53. Kapphahn RJ, Bigelow EJ, Ferrington DA (2007) Age-dependent inhibition of proteasome chymotrypsin-like activity in the retina. Exp Eye Res 84(4):646–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Davies JM, Cillard J, Friguet B, Cadenas E, Cadet J, Cayce R, Fishmann A, Liao D et al (2017) The Oxygen Paradox, the French Paradox, and age-related diseases. GeroScience 39(5-6):499–550 1–52

  55. Taruno A, Sun H, Nakajo K, Murakami T, Ohsaki Y, Kido MA, Ono F, Marunaka Y (2017) Post-translational palmitoylation controls the voltage gating and lipid raft association of CALHM1 channel. J Physiol 595(18):6121–6145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Burnouf S, Grönke S, Augustin H, Dols J, Gorsky MK, Werner J, Kerr F, Alic N et al (2016) Deletion of endogenous tau proteins is not detrimental in Drosophila. Sci Rep 6:23102

  57. Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev 33(1):95–130

    Article  PubMed  Google Scholar 

  58. Šimić G, Babić Leko M, Wray S, Harrington C, Delalle I, Jovanov-Milošević N, Bažadona D, Buée L et al (2016) Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules 6(1):6

  59. Liu Z, Li T, Li P, Wei N, Zhao Z, Liang H, Ji X, Chen W et al (2015) Wei J (2015) The ambiguous relationship of oxidative stress, tau hyperphosphorylation, and autophagy dysfunction in Alzheimer’s disease. Oxidative Med Cell Longev 2015:352723

  60. Iijima-Ando K, Zhao L, Gatt A, Shenton C, Iijima K (2010) A DNA damage-activated checkpoint kinase phosphorylates tau and enhances tau-induced neurodegeneration. Hum Mol Genet 19(10):1930–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mendoza J, Sekiya M, Taniguchi T, Iijima KM, Wang R, Ando K (2013) Global analysis of phosphorylation of tau by the checkpoint kinases Chk1 and Chk2 in vitro. J Proteome Res 12(6):2654–2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu Z, Li P, Wu J, Wang Y, Li P, Hou X, Zhang Q, Wei N, Zhao Z, Liang H, Wei J (2015) The cascade of oxidative stress and tau protein autophagic dysfunction in Alzheimer’s disease. In: Zerr I (ed) Alzheimer’s Disease - Challenges for the Future. Intech, Rijeka, pp 27–45. https://doi.org/10.5772/59980

  63. Hernandez F, Lucas JJ, Avila J (2013) GSK3 and tau: two convergence points in Alzheimer’s disease. J Alzheimers Dis 33(s1):S141–S144

    Article  CAS  PubMed  Google Scholar 

  64. Li G, Yin H, Kuret J (2004) Casein kinase 1 delta phosphorylates tau and disrupts its binding to microtubules. J Biol Chem 279(16):15938–15945

    Article  CAS  PubMed  Google Scholar 

  65. Papasozomenos SC, Binder LI (1987) Phosphorylation determines two distinct species of tau in the central nervous system. Cytoskeleton 8(3):210–226

    Article  CAS  Google Scholar 

  66. Migheli A, Butler M, Brown K, Shelanski M (1988) Light and electron microscope localization of the microtubule-associated tau protein in rat brain. J Neurosci 8(6):1846–1851

    Article  CAS  PubMed  Google Scholar 

  67. Couchie D, Charrière-Bertrand C, Nunez J (1988) Expression of the mRNA for τ proteins during brain development and in cultured neurons and astroglial cells. J Neurochem 50(6):1894–1899

    Article  CAS  PubMed  Google Scholar 

  68. Terry RD (1996) The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis. J Neuropathol Exp Neurol 55(10):1023–1025

    Article  CAS  PubMed  Google Scholar 

  69. Simic G, Gnjidic M, Kostovic I (1998) Cytoskeletal changes as an alternative view on pathogenesis of Alzheimer'’s disease. Period Biol 100(2):165–173

    Google Scholar 

  70. Giraldo E, Lloret A, Fuchsberger T, Viña J (2014) Aβ and tau toxicities in Alzheimer’s are linked via oxidative stress-induced p38 activation: protective role of vitamin E. Redox Biol 2:873–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lloret A, Fuchsberger T, Giraldo E, Viña J (2015) Molecular mechanisms linking amyloid β toxicity and tau hyperphosphorylation in Alzheimer’s disease. Free Radic Biol Med 83:186–191

    Article  CAS  PubMed  Google Scholar 

  72. Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266(7):4244–4250

    CAS  PubMed  Google Scholar 

  73. Mohr S, Stamler JS, Brüne B (1994) Mechanism of covalent modification of glyceraldehyde-3-phosphate dehydrogenase at its active site thiol by nitric oxide, peroxynitrite and related nitrosating agents. FEBS Lett 348(3):223–227

    Article  CAS  PubMed  Google Scholar 

  74. Poole LB (2005) Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Arch Biochem Biophys 433(1):240–254

    Article  CAS  PubMed  Google Scholar 

  75. Aaseth J, Alexander J, Bjørklund G, Hestad K, Dusek P, Roos PM, Alehagen U (2016) Treatment strategies in Alzheimer’s disease: a review with focus on selenium supplementation. Biometals 29(5):827–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Solovyev N, Drobyshev E, Bjørklund G, Dubrovskii Y, Lysiuk R, Rayman MP (2018) Selenium, selenoprotein P, and Alzheimer’s disease: is there a link? Free Radic Biol Med 127:124–133

    Article  CAS  PubMed  Google Scholar 

  77. Barja G (2017) The cell aging regulation system (CARS). Reactive Oxygen Species 3(9):148–183

    Google Scholar 

  78. Husom AD, Peters EA, Kolling EA, Fugere NA, Thompson LV, Ferrington DA (2004) Altered proteasome function and subunit composition in aged muscle. Arch Biochem Biophys 421(1):67–76

    Article  CAS  PubMed  Google Scholar 

  79. Ferrington DA, Husom AD, Thompson LV (2005) Altered proteasome structure, function, and oxidation in aged muscle. The FASEB J 19(6):644–646

    Article  CAS  PubMed  Google Scholar 

  80. Shibatani T, Nazir M, Ward WF (1996) Alteration of rat liver 20S proteasome activities by age and food restriction. J Gerontol A Biol Sci Med Sci 51(5):B316–B322

    Article  CAS  PubMed  Google Scholar 

  81. Chen C-Y, Willard D, Rudolph J (2009) Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines. Biochemistry 48(6):1399–1409

    Article  CAS  PubMed  Google Scholar 

  82. Hayashi T, Goto S (1998) Age-related changes in the 20S and 26S proteasome activities in the liver of male F344 rats. Mech Ageing Dev 102(1):55–66

    Article  CAS  PubMed  Google Scholar 

  83. Bulteau A-L, Petropoulos I, Friguet B (2000) Age-related alterations of proteasome structure and function in aging epidermis. Exp Gerontol 35(6):767–777

    Article  CAS  PubMed  Google Scholar 

  84. Petropoulos I, Conconi M, Wang X, Hoenel B, Brégégère F, Milner Y, Friguet B (2000) Increase of oxidatively modified protein is associated with a decrease of proteasome activity and content in aging epidermal cells. J Gerontol A Biol Sci Med Sci 55(05):B220–B227

    Article  CAS  PubMed  Google Scholar 

  85. Bulteau A-L, Szweda LI, Friguet B (2002) Age-dependent declines in proteasome activity in the heart. Arch Biochem Biophys 397(2):298–304

    Article  CAS  PubMed  Google Scholar 

  86. Carrard G, Dieu M, Raes M, Toussaint O, Friguet B (2003) Impact of ageing on proteasome structure and function in human lymphocytes. Int J Biochem Cell Biol 35(5):728–739

    Article  CAS  PubMed  Google Scholar 

  87. Kretz-Remy C, Arrigo A-P (2003) Modulation of the chymotrypsin-like activity of the 20S proteasome by intracellular redox status: effects of glutathione peroxidase-1 overexpression and antioxidant drugs. Biol Chem 384(4):589–595

    Article  CAS  PubMed  Google Scholar 

  88. Caro P, Gómez J, López-Torres M, Sánchez I, Naudí A, Jove M, Pamplona R, Barja G (2008) Forty percent and eighty percent methionine restriction decrease mitochondrial ROS generation and oxidative stress in rat liver. Biogerontology 9(3):183–196

    Article  CAS  PubMed  Google Scholar 

  89. López-Torres M, Barja G (2008) Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction: possible implications for humans. Biochim Biophys Acta Gen 1780(11):1337–1347

    Article  CAS  Google Scholar 

  90. Sanchez-Roman I, Barja G (2013) Regulation of longevity and oxidative stress by nutritional interventions: role of methionine restriction. Exp Gerontol 48(10):1030–1042

    Article  CAS  PubMed  Google Scholar 

  91. Pomatto LC, Wong S, Carney C, Shen B, Tower J, Davies KJ (2017) The age-and sex-specific decline of the 20s proteasome and the Nrf2/CncC signal transduction pathway in adaption and resistance to oxidative stress in Drosophila melanogaster. Aging (Albany NY) 9(4):1153–1185

    Article  CAS  Google Scholar 

  92. Glaser E, Alikhani N (2010) The organellar peptidasome, PreP: a journey from Arabidopsis to Alzheimer’s disease. Biochim Biophys Acta Gen 1797(6):1076–1080

    Article  CAS  Google Scholar 

  93. Kmiec B, Glaser E (2012) A novel mitochondrial and chloroplast peptidasome, PreP. Physiol Plant 145(1):180–186

    Article  CAS  PubMed  Google Scholar 

  94. Falkevall A, Alikhani N, Bhushan S, Pavlov PF, Busch K, Johnson KA, Eneqvist T, Tjernberg L et al (2006) Degradation of the amyloid β-protein by the novel mitochondrial peptidasome, PreP. J Biol Chem 281(39):29096–29104

  95. Teixeira PF, Pinho CM, Branca RM, Lehtiö J, Levine RL, Glaser E (2012) In vitro oxidative inactivation of human presequence protease (hPreP). Free Radic Biol Med 53(11):2188–2195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ieva R, Heißwolf AK, Gebert M, Vögtle F-N, Wollweber F, Mehnert CS, Oeljeklaus S, Warscheid B et al (2013) Mitochondrial inner membrane protease promotes assembly of presequence translocase by removing a carboxy-terminal targeting sequence. Nat Commun 4:2853

  97. Chen J, Teixeira PF, Glaser E, Levine RL (2014) Mechanism of oxidative inactivation of human presequence protease by hydrogen peroxide. Free Radic Biol Med 77:57–63

    Article  CAS  PubMed  Google Scholar 

  98. Fang D, Wang Y, Zhang Z, Du H, Yan S, Sun Q, Zhong C, Wu L et al (2015) Increased neuronal PreP activity reduces Aβ accumulation, attenuates neuroinflammation and improves mitochondrial and synaptic function in Alzheimer disease’s mouse model. Hum Mol Genet 24(18):5198–5210

  99. Meng L-S, Li B, Li D-N, Wang Y-h, Lin Y, Meng X-J, Sun X-Y, Liu N (2017) Cyanidin-3-O-glucoside attenuates amyloid-beta (1–40)-induced oxidative stress and apoptosis in SH-SY5Y cells through a Nrf2 mechanism. J Funct Foods 38:474–485

    Article  CAS  Google Scholar 

  100. Ill-Raga G, Ramos-Fernández E, Guix FX, Tajes M, Bosch-Morató M, Palomer E, Godoy J, Belmar S et al (2010) Amyloid-β peptide fibrils induce nitro-oxidative stress in neuronal cells. J Alzheimers Dis 22(2):641–652

  101. Zhang X, Wu M, Lu F, Luo N, He Z-P, Yang H (2014) Involvement of α7 nAChR signaling cascade in epigallocatechin gallate suppression of β-amyloid-induced apoptotic cortical neuronal insults. Mol Neurobiol 49(1):66–77

    Article  CAS  PubMed  Google Scholar 

  102. Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F (2017) Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 14:450–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Smith DG, Cappai R, Barnham KJ (2007) The redox chemistry of the Alzheimer’s disease amyloid β peptide. Biochimica et Biophysica Acta (BBA)-Biomembranes 1768(8):1976–1990

    Article  CAS  Google Scholar 

  104. Ghafourifar P, Asbury ML, Joshi SS, Kincaid ED (2005) Determination of mitochondrial nitric oxide synthase activity. Methods Enzymol 396:424–444

    Article  CAS  PubMed  Google Scholar 

  105. Vinas J, Sola A, Hotter G (2006) Mitochondrial NOS upregulation during renal I/R causes apoptosis in a peroxynitrite-dependent manner. Kidney Int 69(8):1403–1409

    Article  CAS  PubMed  Google Scholar 

  106. Chtourou Y, Aouey B, Aroui S, Kebieche M, Fetoui H (2016) Anti-apoptotic and anti-inflammatory effects of naringin on cisplatin-induced renal injury in the rat. Chem Biol Interact 243:1–9

    Article  CAS  PubMed  Google Scholar 

  107. Zuo L, Hemmelgarn BT, Chuang C-C, Best TM (2015) The role of oxidative stress-induced epigenetic alterations in amyloid-β production in Alzheimer’s disease. Oxidative Med Cell Longev 2015:604658

    Article  CAS  Google Scholar 

  108. Rodrigues C, Solá S, Silva R, Brites D (2000) Bilirubin and amyloid-beta peptide induce cytochrome c release through mitochondrial membrane permeabilization. Mol Med 6(11):936–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cardoso SM, Swerdlow RH, Oliveira CR (2002) Induction of cytochrome c-mediated apoptosis by amyloid β 25-35 requires functional mitochondria. Brain Res 931(2):117–125

    Article  Google Scholar 

  110. Shevtzova E, Kireeva E, Bachurin S (2001) Effect of beta-amyloid peptide fragment 25-35 on nonselective permeability of mitochondria. Bull Exp Biol Med 132(6):1173–1176

    Article  CAS  PubMed  Google Scholar 

  111. Godoy JA, Lindsay CB, Quintanilla RA, Carvajal FJ, Cerpa W, Inestrosa NC (2017) Quercetin exerts differential neuroprotective effects against H2O2 and Aβ aggregates in hippocampal neurons: the role of mitochondria. Mol Neurobiol 54(9):7116–7128

    Article  CAS  PubMed  Google Scholar 

  112. Pérez MJ, Vergara-Pulgar K, Jara C, Cabezas-Opazo F, Quintanilla RA (2018) Caspase-cleaved tau impairs mitochondrial dynamics in Alzheimer’s disease. Mol Neurobiol 55(2):1004–1018

  113. Rajasekhar K, Mehta K, Govindaraju T (2018) Hybrid multifunctional modulators inhibit multifaceted Aβ toxicity and prevent mitochondrial damage. ACS Chem Neurosci 9(6):1432–1440

    Article  CAS  PubMed  Google Scholar 

  114. Takahashi RH, Nagao T, Gouras GK (2017) Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer’s disease. Pathol Int 67(4):185–193

    Article  CAS  PubMed  Google Scholar 

  115. Sakono M, Kidani T (2017) ATP-independent inhibition of amyloid beta fibrillation by the endoplasmic reticulum resident molecular chaperone GRP78. Biochem Biophys Res Commun 493(1):500–503

    Article  CAS  PubMed  Google Scholar 

  116. Sun C, Liu L, Yu Y, Liu W, Lu L, Jin C, Lin X (2015) Nitric oxide alleviates aluminum-induced oxidative damage through regulating the ascorbate-glutathione cycle in roots of wheat. J Integr Plant Biol 57(6):550–561

    Article  CAS  PubMed  Google Scholar 

  117. Lee HY, Back K (2017) Melatonin is required for H2O2- and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana. J Pineal Res 62(2):e12379

    Article  CAS  Google Scholar 

  118. Ruszkiewicz J, Albrecht J (2015) Changes in the mitochondrial antioxidant systems in neurodegenerative diseases and acute brain disorders. Neurochem Int 88:66–72

    Article  CAS  PubMed  Google Scholar 

  119. Lynn S, Huang EJ, Elchuri S, Naeemuddin M, Nishinaka Y, Yodoi J, Ferriero DM, Epstein CJ et al (2005) Selective neuronal vulnerability and inadequate stress response in superoxide dismutase mutant mice. Free Radic Biol Med 38(6):817–828

  120. Kairisalo M, Bonomo A, Hyrskyluoto A, Mudò G, Belluardo N, Korhonen L, Lindholm D (2011) Resveratrol reduces oxidative stress and cell death and increases mitochondrial antioxidants and XIAP in PC6. 3-cells. Neurosci Lett 488(3):263–266

    Article  CAS  PubMed  Google Scholar 

  121. Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94(3):909–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Vitorica J, Machado A, Satrústegui J (1984) Age-dependent variations in peroxide-utilizing enzymes from rat brain mitochondria and cytoplasm. J Neurochem 42(2):351–356

    Article  CAS  PubMed  Google Scholar 

  123. Ansari MA, Scheff SW (2010) Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J Neuropathol Exp Neurol 69(2):155–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kudin AP, Augustynek B, Lehmann AK, Kovács R, Kunz WS (2012) The contribution of thioredoxin-2 reductase and glutathione peroxidase to H2O2 detoxification of rat brain mitochondria. Biochim Biophys Acta 1817(10):1901–1906

    Article  CAS  PubMed  Google Scholar 

  125. Hattori F, Murayama N, Noshita T, Oikawa S (2003) Mitochondrial peroxiredoxin-3 protects hippocampal neurons from excitotoxic injury in vivo. J Neurochem 86(4):860–868

    Article  CAS  PubMed  Google Scholar 

  126. Hwang IK, Yoo K-Y, Kim DW, Lee CH, Choi JH, Kwon Y-G, Kim Y-M, Choi SY et al (2010) Changes in the expression of mitochondrial peroxiredoxin and thioredoxin in neurons and glia and their protective effects in experimental cerebral ischemic damage. Free Radic Biol Med 48(9):1242–1251

  127. Angeles DC, Gan BH, Onstead L, Zhao Y, Lim KL, Dachsel J, Melrose H, Farrer M et al (2011) Mutations in LRRK2 increase phosphorylation of peroxiredoxin 3 exacerbating oxidative stress-induced neuronal death. Hum Mutat 32(12):1390–1397

  128. Yang H-Y, Kwon J, Cho E-J, Choi H-I, Park C, Park H-R, Park S-H, Chung K-J et al (2010) Proteomic analysis of protein expression affected by peroxiredoxin V knock-down in hypoxic kidney. J Proteome Res 9(8):4003–4015

  129. Chen L, Yoo S-E, Na R, Liu Y, Ran Q (2012) Cognitive impairment and increased Aβ levels induced by paraquat exposure are attenuated by enhanced removal of mitochondrial H2O2. Neurobiol Aging 33(2):432. e415–432. e426

    Article  CAS  Google Scholar 

  130. Simoni S, Linard D, Hermans E, Knoops B, Goemaere J (2013) Mitochondrial peroxiredoxin-5 as potential modulator of mitochondria-ER crosstalk in MPP+-induced cell death. J Neurochem 125(3):473–485

    Article  CAS  PubMed  Google Scholar 

  131. Zhu C, Xu F, Fukuda A, Wang X, Fukuda H, Korhonen L, Hagberg H, Lannering B et al (2007) X chromosome-linked inhibitor of apoptosis protein reduces oxidative stress after cerebral irradiation or hypoxia-ischemia through up-regulation of mitochondrial antioxidants. Eur J Neurosci 26(12):3402–3410

  132. Williams W, Chung Y (2006) Evidence for an age-related attenuation of cerebral microvascular antioxidant response to oxidative stress. Life Sci 79(17):1638–1644

    Article  CAS  PubMed  Google Scholar 

  133. Lopert P, Day BJ, Patel M (2012) Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells. PLoS One 7(11):e50683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ahn J-C, Kang J-W, Shin J-I, Chung P-S (2012) Combination treatment with photodynamic therapy and curcumin induces mitochondria-dependent apoptosis in AMC-HN3 cells. Int J Oncol 41(6):2184–2190

    Article  CAS  PubMed  Google Scholar 

  135. Drechsel DA, Patel M (2010) Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system. J Biol Chem 285(36):27850–27858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Satrustegui J, Richter C (1984) The role of hydroperoxides as calcium release agents in rat brain mitochondria. Arch Biochem Biophys 233(2):736–740

    Article  CAS  PubMed  Google Scholar 

  137. Andreyev A, Kushnareva YE, Murphy A, Starkov A (2015) Mitochondrial ROS metabolism: 10 years later. Biochem Mosc 80(5):517–531

    Article  CAS  Google Scholar 

  138. Jong CJ, Ito T, Mozaffari M, Azuma J, Schaffer S (2010) Effect of β-alanine treatment on mitochondrial taurine level and 5-taurinomethyluridine content. J Biomed Sci 17(1):S25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tsutomu S, Asuteka N, Takeo S (2011) Human mitochondrial diseases caused by lack of taurine modification in mitochondrial tRNAs. Wiley Interdiscip Rev: RNA 2(3):376–386

    Article  CAS  Google Scholar 

  140. Suzuki T, Suzuki T, Wada T, Saigo K, Watanabe K (2002) Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J 21(23):6581–6589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Umeda N, Suzuki T, Yukawa M, Ohya Y, Shindo H, Watanabe K, Suzuki T (2005) Mitochondria-specific RNA-modifying enzymes responsible for the biosynthesis of the wobble base in mitochondrial tRNAs implications for the molecular pathogenesis of human mitochondrial diseases. J Biol Chem 280(2):1613–1624

    Article  CAS  PubMed  Google Scholar 

  142. Jong CJ, Azuma J, Schaffer S (2012) Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42(6):2223–2232

    Article  CAS  PubMed  Google Scholar 

  143. Akram M (2014) Citric acid cycle and role of its intermediates in metabolism. Cell Biochem Biophys 68(3):475–478

    Article  CAS  PubMed  Google Scholar 

  144. Du X, Li H, Wang Z, Qiu S, Liu Q, Ni J (2013) Selenoprotein P and selenoprotein M block Zn 2+−mediated Aβ42 aggregation and toxicity. Metallomics 5(7):861–870

  145. Florentz C, Sohm B, Tryoen-Toth P, Pütz J, Sissler M (2003) Human mitochondrial tRNAs in health and disease. Cell Mol Life Sci CMLS 60(7):1356–1375

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geir Bjørklund.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bjørklund, G., Aaseth, J., Dadar, M. et al. Molecular Targets in Alzheimer’s Disease. Mol Neurobiol 56, 7032–7044 (2019). https://doi.org/10.1007/s12035-019-1563-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1563-9

Keywords

Navigation