Skip to main content

Advertisement

Log in

Involvement of Mitogen-Activated Protein Kinase Pathway in T-2 Toxin-Induced Cell Cycle Alteration and Apoptosis in Human Neuroblastoma Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

T-2 toxin is the most toxic trichothecene and a frequent contaminant in many agriculture products. Dietary ingestion represents the most common route of T-2 toxin exposure in humans. T-2 toxin exposure leads to many pathological conditions like nervous disorders, cardiovascular alterations, immune depression and dermal inflammation. However, the neuronal toxicity of T-2 toxin in vitro remains unclear. In the present study, we investigated the mechanism of T-2 toxin-induced apoptosis in human neuroblastoma cells (IMR-32). T-2 toxin was cytotoxic at a low concentration of 10 ng/ml. The 50 % inhibitory concentration (IC50) of T-2 toxin was found to be 40 ng/ml as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, crystal violet dye exclusion test and lactate dehydrogenase (LDH) leakage. T-2 toxin increased intracellular reactive oxygen species generation as early as 15 min and peaked at 60 min as analyzed by flow cytometry. Annexin V + propidium iodide staining showed time-dependent increase in percent apoptotic cells. DNA gel electrophoresis showed oligonucleosomal DNA fragmentation typical of apoptotic cells. Additionally, casapse-3 activation and PARP cleavage indicated involvement of mitochondrial mediated caspase-dependent pathway of apoptosis. Cell cycle analysis revealed time-dependent increase in sub-G1 population of cells and significant up-regulation of CDK2, CDK6, cyclin A and p21 messenger RNA (mRNA) levels. Exposure to T-2 toxin induced the phosphorylation of extracellular signal-regulated kinase (ERK), p38-mitogen-activated protein kinase and c-jun N-terminal kinases (JNK). Analysis of human phospho-mitogen-activated protein kinase (MAPK) antibody array revealed time-dependent increase in phosphorylation. Upstream of ERK pathway Grb2, Ras and Raf and downstream transcription factors c-fos and c-jun were significantly up-regulated. Z-VAD-FMK and MAPK inhibitors (PD 98059, SB 203580 and ZM 336372) exposure prior to T-2 toxin treatment significantly decreased percent of apoptotic cells compared to only T-2 toxin-exposed cells. Results of the present study show that T-2 toxin at nanogram concentrations can induce apoptosis in human neuronal cells through multiple signal transduction pathways. The study provides possible leads for developing therapeutic approaches to prevent T-2 toxin-induced neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1

Similar content being viewed by others

Abbreviations

CVDE:

Crystal violet dye exclusion

CHAPS:

3[(3-Cholamidopropyl) dimethlylammonio]-1-propanesulfate

PARP:

Poly(ADP-ribose) polymerase

PMSF:

Phenylmethylsulfonyl fluoride

DTT:

Dithiothreitol

PBS:

Phosphate-buffered saline

DCF-DA:

2,7-dichlorofluorescein diacetate

LDH:

Lactate dehydrogenase

MAPK:

Mitogen-activated protein kinase

ROS:

Reactive oxygen species

PI:

Propidium iodide

References

  1. Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Li M, Harkema JR, Islam Z, Cuff CF, Pestka J (2006) T-2 toxin impairs murine immune response to respiratory reovirus ans exacerbates viral broncholitis. Toxicol Appl Pharmacol 217:76–85

    Article  CAS  PubMed  Google Scholar 

  3. Bunner DL, Morris ER (1988) Alteration of multiple cell membrane functions in L-6 myoblasts by T-2 toxin: an important mechanism of action. Toxicol Appl Pharmacol 92:113–121

    Article  CAS  PubMed  Google Scholar 

  4. Doi K, Ishigama N, Sehata S (2008) T-2 toxin induced toxicity in pregnanat mice and rats. Int J Mol Sci 9:2146-2158.

  5. Schothorst RC, van Egmond (2004) Report from SCOOP task 3.2.10 “Collection of occurrence data of Fusarium toxins in food and assessment of dietary intake by the population ofEU member states” Toxicol Lett 153:133-143.

  6. EFSA (2011) Scientific opinion on the risks for animal and public helath related presence of T-2 and HT-2 toxin in food and feed. EFSA Journal 12

  7. Sehata S, Kiyosawa N, Atsumi F et al (2005) Microarray analysis of T-2 toxin-induced liver, placenta and fetal liver lesions in pregnant rats. Exp Toxicol Pathol 57:15–28

    Article  CAS  PubMed  Google Scholar 

  8. Watson SA, Mirocha CJ, Hayes AW (1984) Analysis for trichothecenes in samples from Southeast Asia associated with “Yellow Rainˮ. Fundam Appl Toxicol 4:700–717

    Article  CAS  PubMed  Google Scholar 

  9. Chaudhary M, Lakshmana Rao PV (2010) Brain oxidative stress after dermal and subcutaneous exposure of T-2 toxin in mice. Food Chem Toxicol 48:3436–3442

    Article  CAS  PubMed  Google Scholar 

  10. Jayaraj R, Agrawal M, Gupta N, Lakshmana Rao PV (2011) Alteration of blood brain barrier permeability by T-2 toxin: role of MMP-9 and inflammatory cytokines. Toxicology 280:44–52

    Article  Google Scholar 

  11. Weidner M, Lenczyk M, Schwerdt G, Gekle M, Humpf H-U (2013) Neurotoxic potential and cellular uptake of T-2 toxin in human astrocytes in primary culture. Chemical Res Toxicol 26:347–355

    Article  CAS  Google Scholar 

  12. Weidner M, Huwel S, Ebert F, Schwerdtle T, Galla H-J (2013) Influence of T-2 and HT-2 toxin on the blood brain barrier in vitro: new experimental hints for neurotoxic effects. Plos One 8(3):e60484. doi:10.1371/journal.pone.0060484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Chaudhari M, Jayaraj R, Bhaskar AS, Lakshmana Rao PV (2009) Oxidative stress induction by T-2 toxin causes DNA damage and triggers apoptosis via caspase pathway in human cervical cancer cells. Toxicology 262:153–161

    Article  CAS  PubMed  Google Scholar 

  14. LePage KT, Dickey RW, Gerwick WH, Jester EL, Murray TF (2005) On the use of neuro-2a neuroblastoma cells versus intact neuron in primary culture for neurotoxicity studies. Critical Rev Neurobiol 17:27–50

    Article  CAS  Google Scholar 

  15. Erlejman AG, Otezia PI (2002) The oxidant defence system in human neuroblastoma IMR-32 cells pre differentiation and post-differentiation to neuronal phenotypes. Neurochem Res 27:1499–506

    Article  CAS  PubMed  Google Scholar 

  16. Gong J, Traganos F, Darzynkiewicz Z (1994) A selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry. Anal Biochem 218:314–319

    Article  CAS  PubMed  Google Scholar 

  17. Tellman G, Olivier G (2006) Light cycler 480 real Time PCR System: innovative solutions for relative quantification. Biogeosciences 4:16–18

    Google Scholar 

  18. Li Y, Wang Z, Beier RC, Shen J, Smet DD, De Saeger S, Zhang S (2011) T-2 toxin, a trichothecene mycotoxin: review of toxicity, metabolism, and analytical methods. J Agri Food Chem 59:3441–3453

    Article  CAS  Google Scholar 

  19. Gutleb AC, Morrison E, Murk AJ (2002) Cytotoxicity assays for mycotoxins produced by Fusarium strains: a review. Environ Toxicol Pharmacol 11:309–320

    Article  CAS  PubMed  Google Scholar 

  20. Doi K, Ishigami N, Sehata S (2008) T-2 toxin induced toxicity in pregnant mice and rats. Int J Mol Sci 9:2146-2158.

  21. Bouaziz C, Sharaf El Dein O, El Golli E, Abid-Essefi S, Brenner C, Lemaire C, Bacha H (2008) Different apoptotic pathways induced by zearalenone, T-2 toxin and ochratoxin A in human hepatoma cells. Toxicology 254:19–28

    Article  CAS  PubMed  Google Scholar 

  22. Daugas E, Susin SA, Zamzami N, Ferri KF, Irinipoulou T, Larochite N, Prevost M-C, Lebr B, Andrews D, Penninger J, Kroemer G (2000) Mitochondria-nuclear translocation of AIF in apoptosis and necrosis. FASEB J 14:729–739

    CAS  PubMed  Google Scholar 

  23. Liu B, Chen Y, St Clair DK (2008) ROS and p53: a versatile partnership. Free Radical Biol Med 44:1529–1535

    Article  CAS  Google Scholar 

  24. Jayaraj R, Gupta N, Agrawal M, Bhaskar ASB, Lakshmana Rao PV (2011) Modulation of ROS/MAPK signaling pathway by okadaic acid leads to cell death via, mitochondrial mediated caspase-dependent mechanism. Apoptosis 16:145–161

    Article  Google Scholar 

  25. Deguin-Chambon V, Vacher M, Jullien M, May E, Bourdon J-C (2000) Direct transactivation of c-Ha-ras gene by p53: evidence for its involvement in p53 transactivation activity and p53-mediated apoptosis. Oncogene 19:5831–5841

    Article  CAS  PubMed  Google Scholar 

  26. Satyanarayana A, Hilton MB, Kadis P (2008) p21 inhibits CDK1 in the absence of CDK2 to maintain G1/S phase DNA damage checkpoint. Mol Biol Cell 19:65–77

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Meikrantz W, Schlegel R (1995) Apoptosis and the cell cycle. J Cell Biochem 58:160–174

    Article  CAS  PubMed  Google Scholar 

  28. Mundy WR, Freudenrich TM (2006) Apoptosis of cerebellar granule cells induced by organotin compounds found in drinking water: involvement of MAP kinases. Neurotoxicology 27:71–81

    Article  CAS  PubMed  Google Scholar 

  29. Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802:396–405

    Article  CAS  PubMed  Google Scholar 

  30. Tsai CW, Lin CY, Lin HH, Chen JH (2011) Carnosic acid, a rosemary phenolic compound induces apoptosis through reactive oxygen species-mediated p38 activation in human neuroblastoma IMR-32 cells. Neurochem Res 36:2442–2451

    Article  CAS  PubMed  Google Scholar 

  31. Zago MP, Mackenzie GG, Adamo AM, Keen CL, Oteiza PI (2005) Differential modulation of Map kinases by zinc deficiency in IMR-32 cells : role of H2O2. Antioxid Redox Signal 7:1773–1782

    Article  CAS  PubMed  Google Scholar 

  32. Lo YYC, Cruz TF (1995) Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J Biol Chem 270:11727–11730

    Article  CAS  PubMed  Google Scholar 

  33. Paula Monje, Hernandez-Losa, Lyons RJ, Castellone, Gutkind JS (2005) Regulation of the transcriptional activity of c-fos by ERK a novel role for the prolyl isomerase Pin1 280: 35801-35804

  34. Shinozuka J, Suzuki H, Tsutsui S, Nakayama H, Doi K (2001) T-2 toxin-induced apoptosis and c-fos mRNA expression in ConA-stimulated mouse thymocyte primary culture. J Toxicol Pathol 14:247–251

    Article  CAS  Google Scholar 

  35. Marchetti A, Cecchinelli B, Angelo MD, Orazi GD, Crescenzi M, Sacchi A, Soddu S (2004) p53 can inhibit cell proliferation through caspase-mediated cleavage of ERK2/MAPK. Cell Death Diff 11:596–607

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. M. P. Kaushik, Director, DRDE, for providing the necessary facilities and encouragement, and Ms. Mona Agrawal is thankful to CSIR for the award of Senior Research Fellowship.

Conflict of Interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Lakshmana Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, M., Bhaskar, A.S.B. & Rao, P.V.L. Involvement of Mitogen-Activated Protein Kinase Pathway in T-2 Toxin-Induced Cell Cycle Alteration and Apoptosis in Human Neuroblastoma Cells. Mol Neurobiol 51, 1379–1394 (2015). https://doi.org/10.1007/s12035-014-8816-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8816-4

Keywords

Navigation