Skip to main content
Log in

Modulation of ROS/MAPK signaling pathways by okadaic acid leads to cell death via, mitochondrial mediated caspase-dependent mechanism

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Okadaic acid (OA) is a specific and potent protein phosphatase inhibitor and tumor promoter. The present study establishes the role of reactive oxygen species (ROS) and mitogen activated protein kinases in cell death induced by okadaic acid. The study showed that okadaic acid is cytotoxic at 10 nM with an IC50 of 100 nM in U-937 cells. The CVDE assay and mitochondrial dehydrogenase assay showed a time dependent cytotoxicity. The phase contrast visualization of the OA treated cells showed the apoptotic morphology and was confirmed with esterase staining for plasma membrane integrity. OA activated caspases-7, 9 and 3, PARP cleavage and induced nuclear damage in a time and dose dependent manner. Compromised mitochondrial membrane potential, release of cytochrome-c and apoptosis inducing factor confirms the involvement of mitochondria. A time dependent decrease in glutathione levels and a dose dependent increase in ROS with maximum at 30 min were observed. ROS scavenger-N-acetyl cysteine, mitochondrial stabilizer-cyclosporin-A, and broad spectrum caspase inhibitor Z-VAD-FMK inhibited the OA induced caspase-3 activation, DNA damage and cell death but caspase-8 inhibitor had no effect. OA activated p38 MAPK and JNK in a time dependent manner, but not ERK½. MAP kinase inhibitors SB203580, SP600125 and PD98059 confirm the role of p38 MAPK and JNK in OA induced caspase-3 activation and cell death. Over all, our results indicate that OA induces cell death by generation of ROS, and activation of p38 MAPK and JNK, and executed through mitochondrial mediated caspase pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

OA:

Okadaic acid

GSH:

Glutathione

PARP:

Poly(ADP-ribose) polymerase

PMSF:

Phenylmethylsulfonyl fluoride

DTT:

Dithiothreitol

OPT:

Ortho-phthaldialdehyde

PBS:

Phosphate buffered saline

DCF-DA:

2,7-Dichlorofluorescein diacetate

CHAPS:

(3[(3-Cholamidopropyl) dimethlylammonio]-1-propanesulfate)

NAC:

N-acetylcysteine

CsA:

Cyclosporin-A

MAPK:

Mitogen-activated protein kinase

LDH:

Lactate dehydrogenase

References

  1. Haystead TA, Sim AT, Carling D et al (1989) Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism. Nature 337:78–81

    Article  CAS  PubMed  Google Scholar 

  2. Fujiki H, Suganuma M (1993) Tumor promotion by inhibitors of protein phosphatases 1 and 2A: the okadaic acid class of compounds. Adv Cancer Res 61:143–194

    Article  CAS  PubMed  Google Scholar 

  3. Lago J, Santaclara F, Vieites JM, Cabado AG (2005) Collapse of mitochondrial membrane potential and caspases activation are early events in okadaic acid-treated Caco-2 cells. Toxicon 46:579–586

    Article  CAS  PubMed  Google Scholar 

  4. Kinnally KW, Antonsson B (2007) A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis 12:857–868

    Article  CAS  PubMed  Google Scholar 

  5. von Zezschwitz C, Vorwerk H, Tergau F, Steinfelder HJ (1997) Apoptosis induction by inhibitors of Ser/Thr phosphatases 1 and 2A is associated with transglutaminase activation in two different human epithelial tumour lines. FEBS Lett 413:147–151

    Article  Google Scholar 

  6. Hancock JT, Desikan R, Neill SJ (2001) Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans 29:345–350

    Article  CAS  PubMed  Google Scholar 

  7. Zhuang ZY, Kawasaki Y, Tan PH, Wen YR, Huang J, Ji RR (2007) Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine. Brain Behav Immun 21:642–651

    Article  CAS  PubMed  Google Scholar 

  8. Van Hoof C, Goris J (2003) Phosphatases in apoptosis: to be or not to be, PP2A is in the heart of the question. Biochim Biophys Acta 1640:97–104

    Article  PubMed  Google Scholar 

  9. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279

    Article  CAS  PubMed  Google Scholar 

  10. Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1:1458–1461

    Article  CAS  PubMed  Google Scholar 

  11. Zamzami N, Marchetti P, Castedo M et al (1996) Inhibitors of permeability transition interfere with the disruption of the mitochondrial transmembrane potential during apoptosis. FEBS Lett 384:53–57

    Article  CAS  PubMed  Google Scholar 

  12. Liu Q, Chen T, Chen H et al (2004) Triptolide (PG-490) induces apoptosis of dendritic cells through sequential p38 MAP kinase phosphorylation and caspase 3 activation. Biochem Biophys Res Commun 319:980–986

    Article  CAS  PubMed  Google Scholar 

  13. Gjertsen BT, Doskeland SO (1995) Protein phosphorylation in apoptosis. Biochim Biophys Acta 1269:187–199

    Article  PubMed  Google Scholar 

  14. Morana SJ, Wolf CM, Li J, Reynolds JE, Brown MK, Eastman A (1996) The involvement of protein phosphatases in the activation of ICE/CED-3 protease, intracellular acidification, DNA digestion, and apoptosis. J Biol Chem 271:18263–18271

    Article  CAS  PubMed  Google Scholar 

  15. Korhonen P, Tapiola T, Suuronen T, Salminen A (1998) Expression of transcriptional repressor protein mSin3A but not mSin3B is induced during neuronal apoptosis. Biochem Biophys Res Commun 252:274–277

    Article  CAS  PubMed  Google Scholar 

  16. Harmala-Brasken AS, Mikhailov A, Soderstrom TS et al (2003) Type-2A protein phosphatase activity is required to maintain death receptor responsiveness. Oncogene 22:7677–7686

    Article  PubMed  Google Scholar 

  17. Chatfield K, Eastman A (2004) Inhibitors of protein phosphatases 1 and 2A differentially prevent intrinsic and extrinsic apoptosis pathways. Biochem Biophys Res Commun 323:1313–1320

    Article  CAS  PubMed  Google Scholar 

  18. Benito A, Lerga A, Silva M, Leon J, Fernandez-Luna JL (1997) Apoptosis of human myeloid leukemia cells induced by an inhibitor of protein phosphatases (okadaic acid) is prevented by Bcl-2 and Bcl-X(L). Leukemia 11:940–944

    Article  CAS  PubMed  Google Scholar 

  19. Lerga A, Richard C, Delgado MD et al (1999) Apoptosis and mitotic arrest are two independent effects of the protein phosphatases inhibitor okadaic acid in K562 leukemia cells. Biochem Biophys Res Commun 260:256–264

    Article  CAS  PubMed  Google Scholar 

  20. Fujita M, Seta C, Fukuda J, Kobayashi S, Haneji T (1999) Induction of apoptosis in human oral squamous carcinoma cell lines by protein phosphatase inhibitors. Oral Oncol 35:401–408

    Article  CAS  PubMed  Google Scholar 

  21. McCluskey A, Sim AT, Sakoff JA (2002) Serine-threonine protein phosphatase inhibitors: development of potential therapeutic strategies. J Med Chem 45:1151–1175

    Article  CAS  PubMed  Google Scholar 

  22. Grub S, Persohn E, Trommer WE, Wolf A (2000) Mechanisms of cyclosporine A-induced apoptosis in rat hepatocyte primary cultures. Toxicol Appl Pharmacol 163:209–220

    Article  CAS  PubMed  Google Scholar 

  23. Newhouse K, Hsuan SL, Chang SH, Cai B, Wang Y, Xia Z (2004) Rotenone-induced apoptosis is mediated by p38 and JNK MAP kinases in human dopaminergic SH-SY5Y cells. Toxicol Sci 79:137–146

    Article  CAS  PubMed  Google Scholar 

  24. Roth W, Reed JC (2004) FLIP protein and TRAIL-induced apoptosis. Vitam Horm 67:189–206

    Article  CAS  PubMed  Google Scholar 

  25. Subhashini J, Mahipal SV, Reddy MC, Mallikarjuna Reddy M, Rachamallu A, Reddanna P (2004) Molecular mechanisms in C-phycocyanin induced apoptosis in human chronic myeloid leukemia cell line-K562. Biochem Pharmacol 68:453–462

    Article  CAS  PubMed  Google Scholar 

  26. Roy MK, Thalang VN, Trakoontivakorn G, Nakahara K (2004) Mechanism of mahanine-induced apoptosis in human leukemia cells (HL-60). Biochem Pharmacol 67:41–51

    Article  CAS  PubMed  Google Scholar 

  27. Ghayur T, Hugunin M, Talanian RV et al (1996) Proteolytic activation of protein kinase C delta by an ICE/CED 3-like protease induces characteristics of apoptosis. J Exp Med 184:2399–2404

    Article  CAS  PubMed  Google Scholar 

  28. Boudreau RT, Conrad DM, Hoskin DW (2007) Differential involvement of reactive oxygen species in apoptosis caused by the inhibition of protein phosphatase 2A in Jurkat and CCRF-CEM human T-leukemia cells. Exp Mol Pathol 83:347–356

    CAS  PubMed  Google Scholar 

  29. Rossini GP, Sgarbi N, Malaguti C (2001) The toxic responses induced by okadaic acid involve processing of multiple caspase isoforms. Toxicon 39:763–770

    Article  CAS  PubMed  Google Scholar 

  30. Jayaraj R, Gupta N, Rao PV (2009) Multiple signal transduction pathways in okadaic acid induced apoptosis in HeLa cells. Toxicology 256:118–127

    Article  CAS  PubMed  Google Scholar 

  31. Rasola A, Bernardi P (2007) The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 12:815–833

    Article  CAS  PubMed  Google Scholar 

  32. Piret JP, Arnould T, Fuks B, Chatelain P, Remacle J, Michiels C (2004) Caspase activation precedes PTP opening in TNF-alpha-induced apoptosis in L929 cells. Mitochondrion 3:261–278

    Article  CAS  PubMed  Google Scholar 

  33. Cabado AG, Leira F, Vieytes MR, Vieites JM, Botana LM (2004) Cytoskeletal disruption is the key factor that triggers apoptosis in okadaic acid-treated neuroblastoma cells. Arch Toxicol 78:74–85

    Article  CAS  PubMed  Google Scholar 

  34. Walter DH, Haendeler J, Galle J, Zeiher AM, Dimmeler S (1998) Cyclosporin A inhibits apoptosis of human endothelial cells by preventing release of cytochrome C from mitochondria. Circulation 98:1153–1157

    CAS  PubMed  Google Scholar 

  35. Slater AF, Stefan C, Nobel I, van den Dobbelsteen DJ, Orrenius S (1995) Signalling mechanisms and oxidative stress in apoptosis. Toxicol Lett 82–83:149–153

    Article  PubMed  Google Scholar 

  36. Stohs SJ, Bagchi D, Hassoun E, Bagchi M (2000) Oxidative mechanisms in the toxicity of chromium and cadmium ions. J Environ Pathol Toxicol Oncol 19:201–213

    CAS  PubMed  Google Scholar 

  37. Oh SH, Lim SC (2006) A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation. Toxicol Appl Pharmacol 212:212–223

    Article  CAS  PubMed  Google Scholar 

  38. Shih CM, Ko WC, Wu JS et al (2004) Mediating of caspase-independent apoptosis by cadmium through the mitochondria-ROS pathway in MRC-5 fibroblasts. J Cell Biochem 91:384–397

    Article  CAS  PubMed  Google Scholar 

  39. Pourahmad J, O’Brien PJ (2000) A comparison of hepatocyte cytotoxic mechanisms for Cu2+ and Cd2+. Toxicology 143:263–273

    Article  CAS  PubMed  Google Scholar 

  40. Denning TL, Takaishi H, Crowe SE, Boldogh I, Jevnikar A, Ernst PB (2002) Oxidative stress induces the expression of Fas and Fas ligand and apoptosis in murine intestinal epithelial cells. Free Radic Biol Med 33:1641–1650

    Article  CAS  PubMed  Google Scholar 

  41. Castaneda F, Kinne RK (2001) Apoptosis induced in HepG2 cells by short exposure to millimolar concentrations of ethanol involves the Fas-receptor pathway. J Cancer Res Clin Oncol 127:418–424

    Article  CAS  PubMed  Google Scholar 

  42. Mundy WR, Freudenrich TM (2006) Apoptosis of cerebellar granule cells induced by organotin compounds found in drinking water: involvement of MAP kinases. Neurotoxicology 27:71–81

    Article  CAS  PubMed  Google Scholar 

  43. Arbabi S, Maier RV (2002) Mitogen-activated protein kinases. Crit Care Med 30:S74–S79

    Article  CAS  Google Scholar 

  44. Garcia L, Garcia F, Llorens F, Unzeta M, Itarte E, Gomez N (2002) PP1/PP2A phosphatases inhibitors okadaic acid and calyculin A block ERK5 activation by growth factors and oxidative stress. FEBS Lett 523:90–94

    Article  CAS  PubMed  Google Scholar 

  45. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252

    Article  CAS  PubMed  Google Scholar 

  46. Chou CT, He S, Jan CR (2007) Paroxetine-induced apoptosis in human osteosarcoma cells: activation of p38 MAP kinase and caspase-3 pathways without involvement of [Ca2+]i elevation. Toxicol Appl Pharmacol 218:265–273

    Article  CAS  PubMed  Google Scholar 

  47. Choi JH, Ha J, Park JH et al (2002) Costunolide triggers apoptosis in human leukemia U937 cells by depleting intracellular thiols. Jpn J Cancer Res 93:1327–1333

    CAS  PubMed  Google Scholar 

  48. Lei K, Nimnual A, Zong WX et al (2002) The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH(2)-terminal kinase. Mol Cell Biol 22:4929–4942

    Article  CAS  PubMed  Google Scholar 

  49. Bamford M, Walkinshaw G, Brown R (2000) Therapeutic applications of apoptosis research. Exp Cell Res 256:1–11

    Article  CAS  PubMed  Google Scholar 

  50. Butterfield L, Storey B, Maas L, Heasley LE (1997) c-Jun NH2-terminal kinase regulation of the apoptotic response of small cell lung cancer cells to ultraviolet radiation. J Biol Chem 272:10110–10116

    Article  CAS  PubMed  Google Scholar 

  51. Tournier C, Hess P, Yang DD et al (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288:870–874

    Article  CAS  PubMed  Google Scholar 

  52. Holmes WF, Soprano DR, Soprano KJ (2003) Early events in the induction of apoptosis in ovarian carcinoma cells by CD437: activation of the p38 MAP kinase signal pathway. Oncogene 22:6377–6386

    Article  CAS  PubMed  Google Scholar 

  53. Sakurada K, Zheng B, Kuo JF (1992) Comparative effects of protein phosphatase inhibitors (okadaic acid and calyculin A) on human leukemia HL60, HL60/ADR and K562 cells. Biochem Biophys Res Commun 187:488–492

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. R. Vijayaraghavan, Director, and DRDE for providing the necessary facilities and encouragement. Mr. Nimesh Gupta is thankful to DRDO for Senior Research Fellowship. Ms. Mona Agrawal is thankful to CSIR for her Junior Research Fellowship. Conflict of interest: None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Lakshmana Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravindran, J., Gupta, N., Agrawal, M. et al. Modulation of ROS/MAPK signaling pathways by okadaic acid leads to cell death via, mitochondrial mediated caspase-dependent mechanism. Apoptosis 16, 145–161 (2011). https://doi.org/10.1007/s10495-010-0554-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0554-0

Keywords

Navigation