Skip to main content

Advertisement

Log in

Molecular Chaperones, Alpha-Synuclein, and Neurodegeneration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a devastating neurological condition that affects about 1 % of people older than 65 years of age. In PD, dopaminergic neurons in the mid-brain slowly accumulate cytoplasmic inclusions (Lewy bodies, LBs) of the protein alpha-synuclein (α-syn) and then gradually lose function and die off. Cell death is thought to be causally linked to the aggregation/fibrillization of α-syn. This review focuses on new findings about the structure of α-syn, about how α-syn cooperates with Hsp70 and Hsp40 chaperones to promote neurotransmitter release, and about cell-to-cell transfer of pathogenic forms of α-syn and how Hsp70 might protect against this disease process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28:57–87

    Article  PubMed  CAS  Google Scholar 

  2. Lee VM, Trojanowski JQ (2006) Mechanisms of Parkinson’s disease linked to pathological alpha-synuclein: new targets for drug discovery. Neuron 52:33–38

    Article  PubMed  CAS  Google Scholar 

  3. Breydo L, Wu JW, Uversky VN (2011) alpha-Synuclein misfolding and Parkinson’s disease. Biochim Biophys Acta 1822:261–285

    PubMed  Google Scholar 

  4. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  PubMed  CAS  Google Scholar 

  5. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18:106–108

    Article  PubMed  CAS  Google Scholar 

  6. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173

    Article  PubMed  CAS  Google Scholar 

  7. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S et al (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302:841

    Article  PubMed  CAS  Google Scholar 

  8. Zhu M, Li J, Fink AL (2003) The association of alpha-synuclein with membranes affects bilayer structure, stability, and fibril formation. J Biol Chem 278:40186–40197

    Article  PubMed  CAS  Google Scholar 

  9. Ueda K, Fukushima H, Masliah E, Xia Y, Iwai A et al (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA 90:11282–11286

    Article  PubMed  CAS  Google Scholar 

  10. Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM et al (2011) Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72:57–71

    Article  PubMed  CAS  Google Scholar 

  11. Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR et al (2010) Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329:1663–1667

    Article  PubMed  CAS  Google Scholar 

  12. Ostrerova N, Petrucelli L, Farrer M, Mehta N, Choi P et al (1999) alpha-Synuclein shares physical and functional homology with 14-3-3 proteins. J Neurosci 19:5782–5791

    PubMed  CAS  Google Scholar 

  13. Sharon R, Goldberg MS, Bar-Josef I, Betensky RA, Shen J et al (2001) alpha-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. Proc Natl Acad Sci USA 98:9110–9115

    Article  PubMed  CAS  Google Scholar 

  14. Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35:13709–13715

    Article  PubMed  CAS  Google Scholar 

  15. Chandra S, Chen X, Rizo J, Jahn R, Sudhof TC (2003) A broken alpha-helix in folded alpha-Synuclein. J Biol Chem 278:15313–15318

    Article  PubMed  CAS  Google Scholar 

  16. Uversky VN, Li J, Fink AL (2001) Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 276:10737–10744

    Article  PubMed  CAS  Google Scholar 

  17. Volles MJ, Lansbury PT Jr (2002) Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson’s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41:4595–4602

    Article  PubMed  CAS  Google Scholar 

  18. Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298

    Article  PubMed  CAS  Google Scholar 

  19. Bartels T, Choi JG, Selkoe DJ (2011) alpha-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477:107–110

    Article  PubMed  CAS  Google Scholar 

  20. Wang W, Perovic I, Chittuluru J, Kaganovich A, Nguyen LT et al (2011) A soluble alpha-synuclein construct forms a dynamic tetramer. Proc Natl Acad Sci USA 108:17797–17802

    Article  PubMed  CAS  Google Scholar 

  21. Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8:2804–2815

    PubMed  CAS  Google Scholar 

  22. Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ et al (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324–328

    Article  PubMed  CAS  Google Scholar 

  23. Snyder H, Mensah K, Theisler C, Lee J, Matouschek A et al (2003) Aggregated and monomeric alpha-synuclein bind to the S6' proteasomal protein and inhibit proteasomal function. J Biol Chem 278:11753–11759

    Article  PubMed  CAS  Google Scholar 

  24. Anguiano M, Nowak RJ, Lansbury PT Jr (2002) Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes. Biochemistry 41:11338–11343

    Article  PubMed  CAS  Google Scholar 

  25. Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH et al (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25:239–252

    Article  PubMed  CAS  Google Scholar 

  26. Specht CG, Schoepfer R (2001) Deletion of the alpha-synuclein locus in a subpopulation of C57BL/6J inbred mice. BMC Neurosci 2:11

    Article  PubMed  CAS  Google Scholar 

  27. Cabin DE, Shimazu K, Murphy D, Cole NB, Gottschalk W et al (2002) Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J Neurosci 22:8797–8807

    PubMed  CAS  Google Scholar 

  28. Dauer W, Kholodilov N, Vila M, Trillat AC, Goodchild R et al (2002) Resistance of alpha -synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci USA 99:14524–14529

    Article  PubMed  CAS  Google Scholar 

  29. Al-Wandi A, Ninkina N, Millership S, Williamson SJ, Jones PA et al (2010) Absence of alpha-synuclein affects dopamine metabolism and synaptic markers in the striatum of aging mice. Neurobiol Aging 31:796–804

    Article  PubMed  CAS  Google Scholar 

  30. Gorbatyuk OS, Li S, Nash K, Gorbatyuk M, Lewin AS et al (2010) In vivo RNAi-mediated alpha-synuclein silencing induces nigrostriatal degeneration. Mol Ther 18:1450–1457

    Article  PubMed  CAS  Google Scholar 

  31. Barbour R, Kling K, Anderson JP, Banducci K, Cole T et al (2008) Red blood cells are the major source of alpha-synuclein in blood. Neurodegener Dis 5:55–59

    Article  PubMed  CAS  Google Scholar 

  32. Ulmer TS, Bax A, Cole NB, Nussbaum RL (2005) Structure and dynamics of micelle-bound human alpha-synuclein. J Biol Chem 280:9595–9603

    Article  PubMed  CAS  Google Scholar 

  33. Mtwisha L, Brandt W, McCready S, Lindsey GG (1998) HSP 12 is a LEA-like protein in Saccharomyces cerevisiae. Plant Mol Biol 37:513–521

    Article  PubMed  CAS  Google Scholar 

  34. Motshwene P, Karreman R, Kgari G, Brandt W, Lindsey G (2004) LEA (late embryonic abundant)-like protein Hsp 12 (heat-shock protein 12) is present in the cell wall and enhances the barotolerance of the yeast Saccharomyces cerevisiae. Biochem J 377:769–774

    Article  PubMed  CAS  Google Scholar 

  35. Welker S, Rudolph B, Frenzel E, Hagn F, Liebisch G et al (2010) Hsp12 is an intrinsically unstructured stress protein that folds upon membrane association and modulates membrane function. Mol Cell 39:507–520

    Article  PubMed  CAS  Google Scholar 

  36. Scherzer CR, Grass JA, Liao Z, Pepivani I, Zheng B et al (2008) GATA transcription factors directly regulate the Parkinson’s disease-linked gene alpha-synuclein. Proc Natl Acad Sci USA 105:10907–10912

    Article  PubMed  CAS  Google Scholar 

  37. Manning-Bog AB, McCormack AL, Purisai MG, Bolin LM, Di Monte DA (2003) Alpha-synuclein overexpression protects against paraquat-induced neurodegeneration. J Neurosci 23:3095–3099

    PubMed  CAS  Google Scholar 

  38. Zhu M, Qin ZJ, Hu D, Munishkina LA, Fink AL (2006) Alpha-synuclein can function as an antioxidant preventing oxidation of unsaturated lipid in vesicles. Biochemistry 45:8135–8142

    Article  PubMed  CAS  Google Scholar 

  39. Bayir H, Kapralov AA, Jiang J, Huang Z, Tyurina YY et al (2009) Peroxidase mechanism of lipid-dependent cross-linking of synuclein with cytochrome C: protection against apoptosis versus delayed oxidative stress in Parkinson disease. J Biol Chem 284:15951–15969

    Article  PubMed  CAS  Google Scholar 

  40. Perez-Sanchez F, Milan M, Buendia P, Cano-Jaimez M, Ambrosio S et al (2010) Prosurvival effect of human wild-type alpha-synuclein on MPTP-induced toxicity to central but not peripheral catecholaminergic neurons isolated from transgenic mice. Neuroscience 167:261–276

    Article  PubMed  CAS  Google Scholar 

  41. Cano-Jaimez M, Perez-Sanchez F, Milan M, Buendia P, Ambrosio S et al (2010) Vulnerability of peripheral catecholaminergic neurons to MPTP is not regulated by alpha-synuclein. Neurobiol Dis 38:92–103

    Article  PubMed  CAS  Google Scholar 

  42. Davies P, Moualla D, Brown DR (2011) Alpha-synuclein is a cellular ferrireductase. PLoS One 6:e15814

    Article  PubMed  CAS  Google Scholar 

  43. Liu X, Lee YJ, Liou LC, Ren Q, Zhang Z et al (2011) Alpha-synuclein functions in the nucleus to protect against hydroxyurea-induced replication stress in yeast. Hum Mol Genet 20:3401–3414

    Article  PubMed  CAS  Google Scholar 

  44. Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  PubMed  CAS  Google Scholar 

  45. Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5:781–791

    Article  PubMed  CAS  Google Scholar 

  46. Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451

    Article  PubMed  CAS  Google Scholar 

  47. Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621

    Article  PubMed  CAS  Google Scholar 

  48. Selkoe DJ (2011) Alzheimer's disease. Cold Spring Harb. Perspect Biol 3. doi:10.1101

  49. Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ (2011) Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 7:616–630

    Article  PubMed  CAS  Google Scholar 

  50. Colby DW, Prusiner SB (2011) Prions. Cold Spring Harb Perspect Biol 3:1–22

    Article  CAS  Google Scholar 

  51. McClellan AJ, Tam S, Kaganovich D, Frydman J (2005) Protein quality control: chaperones culling corrupt conformations. Nat Cell Biol 7:736–741

    Article  PubMed  CAS  Google Scholar 

  52. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    Article  PubMed  CAS  Google Scholar 

  53. Erecinska M, Silver IA (1989) ATP and brain function. J Cereb Blood Flow Metab 9:2–19

    Article  PubMed  CAS  Google Scholar 

  54. Squier TC (2001) Oxidative stress and protein aggregation during biological aging. Exp Gerontol 36:1539–1550

    Article  PubMed  CAS  Google Scholar 

  55. Olzscha H, Schermann SM, Woerner AC, Pinkert S, Hecht MH et al (2011) Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144:67–78

    Article  PubMed  CAS  Google Scholar 

  56. Martens S, McMahon HT (2008) Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 9:543–556

    Article  PubMed  CAS  Google Scholar 

  57. Sudhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–477

    Article  PubMed  CAS  Google Scholar 

  58. Witt SN (2010) Hsp70 molecular chaperones and Parkinson’s disease. Biopolymers 93:218–228

    Article  PubMed  CAS  Google Scholar 

  59. Witt SN (ed) (2011) Protein chaperones and protection from neurodegenerative diseases. Wiley, Hoboken, pp 1–427

    Google Scholar 

  60. Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398

    Article  PubMed  CAS  Google Scholar 

  61. Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295:865–868

    Article  PubMed  CAS  Google Scholar 

  62. Auluck PK, Bonini NM (2002) Pharmacological prevention of Parkinson disease in Drosophila. Nat Med 8:1185–1186

    Article  PubMed  CAS  Google Scholar 

  63. Bronk P, Wenniger JJ, Dawson-Scully K, Guo X, Hong S et al (2001) Drosophila Hsc70-4 is critical for neurotransmitter exocytosis in vivo. Neuron 30:475–488

    Article  PubMed  CAS  Google Scholar 

  64. Zhou Y, Gu G, Goodlett DR, Zhang T, Pan C et al (2004) Analysis of alpha-synuclein-associated proteins by quantitative proteomics. J Biol Chem 279:39155–39164

    Article  PubMed  CAS  Google Scholar 

  65. Klucken J, Shin Y, Masliah E, Hyman BT, McLean PJ (2004) Hsp70 reduces alpha-Synuclein aggregation and toxicity. J Biol Chem 279:25497–25502

    Article  PubMed  CAS  Google Scholar 

  66. Flower TR, Chesnokova LS, Froelich CA, Dixon C, Witt SN (2005) Heat shock prevents alpha-synuclein-induced apoptosis in a yeast model of Parkinson’s disease. J Mol Biol 351:1081–1100

    Article  PubMed  CAS  Google Scholar 

  67. Auluck PK, Meulener MC, Bonini NM (2005) Mechanisms of suppression of {alpha}-synuclein neurotoxicity by geldanamycin in Drosophila. J Biol Chem 280:2873–2878

    Article  PubMed  CAS  Google Scholar 

  68. Dong Z, Wolfer DP, Lipp HP, Bueler H (2005) Hsp70 gene transfer by adeno-associated virus inhibits MPTP-induced nigrostriatal degeneration in the mouse model of Parkinson disease. Mol Ther 11:80–88

    Article  PubMed  CAS  Google Scholar 

  69. Dedmon MM, Christodoulou J, Wilson MR, Dobson CM (2005) Heat shock protein 70 inhibits alpha-synuclein fibril formation via preferential binding to prefibrillar species. J Biol Chem 280:14733–14740

    Article  PubMed  CAS  Google Scholar 

  70. Shin Y, Klucken J, Patterson C, Hyman BT, McLean PJ (2005) The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways. J Biol Chem 280:23727–23734

    Article  PubMed  CAS  Google Scholar 

  71. Huang C, Cheng H, Hao S, Zhou H, Zhang X et al (2006) Heat shock protein 70 inhibits alpha-synuclein fibril formation via interactions with diverse intermediates. J Mol Biol 364:323–336

    Article  PubMed  CAS  Google Scholar 

  72. Luk KC, Mills IP, Trojanowski JQ, Lee VM (2008) Interactions between Hsp70 and the hydrophobic core of alpha-synuclein inhibit fibril assembly. Biochemistry 47:12614–12625

    Article  PubMed  CAS  Google Scholar 

  73. Adachi H, Katsuno M, Minamiyama M, Sang C, Pagoulatos G et al (2003) Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein. J Neurosci 23:2203–2211

    PubMed  CAS  Google Scholar 

  74. Robinson MB, Tidwell JL, Gould T, Taylor AR, Newbern JM et al (2005) Extracellular heat shock protein 70: a critical component for motoneuron survival. J Neurosci 25:9735–9745

    Article  PubMed  CAS  Google Scholar 

  75. Gundersen CB, Mastrogiacomo A, Faull K, Umbach JA (1994) Extensive lipidation of a Torpedo cysteine string protein. J Biol Chem 269:19197–19199

    PubMed  CAS  Google Scholar 

  76. Qiu XB, Shao YM, Miao S, Wang L (2006) The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci 63:2560–2570

    Article  PubMed  CAS  Google Scholar 

  77. Craig EA, Huang P, Aron R, Andrew A (2006) The diverse roles of J-proteins, the obligate Hsp70 co-chaperone. Rev Physiol Biochem Pharmacol 156:1–21

    Article  PubMed  CAS  Google Scholar 

  78. Cyr DM, Langer T, Douglas MG (1994) DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70. Trends Biochem Sci 19:176–181

    Article  PubMed  CAS  Google Scholar 

  79. Cheetham ME, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28–36

    Article  PubMed  CAS  Google Scholar 

  80. Walsh P, Bursac D, Law YC, Cyr D, Lithgow T (2004) The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep 5:567–571

    Article  PubMed  CAS  Google Scholar 

  81. Chamberlain LH, Burgoyne RD (2000) Cysteine-string protein: the chaperone at the synapse. J Neurochem 74:1781–1789

    Article  PubMed  CAS  Google Scholar 

  82. Gibbs SJ, Braun JE (2008) Emerging roles of J proteins in neurodegenerative disorders. Neurobiol Dis 32:196–199

    Article  PubMed  CAS  Google Scholar 

  83. Zhao X, Braun AP, Braun JE (2008) Biological roles of neural J proteins. Cell Mol Life Sci 65:2385–2396

    Article  PubMed  CAS  Google Scholar 

  84. Zinsmaier KE, Eberle KK, Buchner E, Walter N, Benzer S (1994) Paralysis and early death in cysteine string protein mutants of Drosophila. Science 263:977–980

    Article  PubMed  CAS  Google Scholar 

  85. Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC (2005) Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 123:383–396

    Article  PubMed  CAS  Google Scholar 

  86. Sharma M, Burre J, Sudhof TC (2011) CSPalpha promotes SNARE-complex assembly by chaperoning SNAP-25 during synaptic activity. Nat Cell Biol 13:30–39

    Article  PubMed  CAS  Google Scholar 

  87. Wickner W, Schekman R (2008) Membrane fusion. Nat Struct Mol Biol 15:658–664

    Article  PubMed  CAS  Google Scholar 

  88. Outeiro TF, Lindquist S (2003) Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science 302:1772–1775

    Article  PubMed  CAS  Google Scholar 

  89. Tytell M, Greenberg SG, Lasek RJ (1986) Heat shock-like protein is transferred from glia to axon. Brain Res 363:161–164

    Article  PubMed  CAS  Google Scholar 

  90. Hightower LE, Guidon PT Jr (1989) Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138:257–266

    Article  PubMed  CAS  Google Scholar 

  91. Alder GM, Austen BM, Bashford CL, Mehlert A, Pasternak CA (1990) Heat shock proteins induce pores in membranes. Biosci Rep 10:509–518

    Article  PubMed  CAS  Google Scholar 

  92. Arispe N, De Maio A (2000) ATP and ADP modulate a cation channel formed by Hsc70 in acidic phospholipid membranes. J Biol Chem 275:30839–30843

    Article  PubMed  CAS  Google Scholar 

  93. Multhoff G, Hightower LE (1996) Cell surface expression of heat shock proteins and the immune response. Cell Stress Chaperones 1:167–176

    Article  PubMed  CAS  Google Scholar 

  94. De Maio A (2011) Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: a form of communication during injury, infection, and cell damage. Cell Stress Chaperones 16:235–249

    Article  PubMed  CAS  Google Scholar 

  95. Lancaster GI, Febbraio MA (2005) Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem 280:23349–23355

    Article  PubMed  CAS  Google Scholar 

  96. Srivastava PK (1994) Heat shock proteins in immune response to cancer: the Fourth Paradigm. Experientia 50:1054–1060

    Article  PubMed  CAS  Google Scholar 

  97. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB et al (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442

    Article  PubMed  CAS  Google Scholar 

  98. Schilling D, Gehrmann M, Steinem C, De Maio A, Pockley AG et al (2009) Binding of heat shock protein 70 to extracellular phosphatidylserine promotes killing of normoxic and hypoxic tumor cells. FASEB J 23:2467–2477

    Article  PubMed  CAS  Google Scholar 

  99. Danzer KM, Ruf WP, Putcha P, Joyner D, Hashimoto T et al (2011) Heat-shock protein 70 modulates toxic extracellular alpha-synuclein oligomers and rescues trans-synaptic toxicity. FASEB J 25:326–336

    Article  PubMed  CAS  Google Scholar 

  100. Furukawa K, Matsuzaki-Kobayashi M, Hasegawa T, Kikuchi A, Sugeno N et al (2006) Plasma membrane ion permeability induced by mutant alpha-synuclein contributes to the degeneration of neural cells. J Neurochem 97:1071–1077

    Article  PubMed  CAS  Google Scholar 

  101. van Rooijen BD, Claessens MM, Subramaniam V (2010) Membrane permeabilization by oligomeric alpha-synuclein: in search of the mechanism. PLoS One 5:e14292

    Article  PubMed  CAS  Google Scholar 

  102. Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M et al (2010) Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci 30:6838–6851

    Article  PubMed  CAS  Google Scholar 

  103. Alvarez-Erviti L, Seow Y, Schapira AH, Gardiner C, Sargent IL et al (2011) Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol Dis 42:360–367

    Article  PubMed  CAS  Google Scholar 

  104. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  105. Brundin P, Li JY, Holton JL, Lindvall O, Revesz T (2008) Research in motion: the enigma of Parkinson’s disease pathology spread. Nat Rev Neurosci 9:741–745

    Article  PubMed  CAS  Google Scholar 

  106. Del Tredici K, Braak H (2008) A not entirely benign procedure: progression of Parkinson’s disease. Acta Neuropathol 115:379–384

    Article  PubMed  Google Scholar 

  107. Goedert M, Clavaguera F, Tolnay M (2010) The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci 33:317–325

    Article  PubMed  CAS  Google Scholar 

  108. Steiner JA, Angot E, Brundin P (2011) A deadly spread: cellular mechanisms of alpha-synuclein transfer. Cell Death Differ 18:1425–1433

    Article  PubMed  CAS  Google Scholar 

  109. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506

    Article  PubMed  CAS  Google Scholar 

  110. Li JY, Englund E, Holton JL, Soulet D, Hagell P et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503

    Article  PubMed  CAS  Google Scholar 

  111. Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E et al (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA 106:13010–13015

    Article  PubMed  CAS  Google Scholar 

  112. Luk KC, Song C, O’Brien P, Stieber A, Branch JR et al (2009) Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci USA 106:20051–20056

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH grant NS057656.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan N. Witt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witt, S.N. Molecular Chaperones, Alpha-Synuclein, and Neurodegeneration. Mol Neurobiol 47, 552–560 (2013). https://doi.org/10.1007/s12035-012-8325-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8325-2

Keywords

Navigation