Skip to main content
Log in

Regulated cell death and its role in Alzheimer’s disease and amyotrophic lateral sclerosis

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Despite considerable research efforts, it is still not clear which mechanisms underlie neuronal cell death in neurodegenerative diseases. During the last 20 years, multiple pathways have been identified that can execute regulated cell death (RCD). Among these RCD pathways, apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy-related cell death, and lysosome-dependent cell death have been intensively investigated. Although RCD consists of numerous individual pathways, multiple common proteins have been identified that allow shifting from one cell death pathway to another. Another layer of complexity is added by mechanisms such as the endosomal machinery, able to regulate the activation of some RCD pathways, preventing cell death. In addition, restricted axonal degeneration and synaptic pruning can occur as a result of RCD activation without loss of the cell body. RCD plays a complex role in neurodegenerative processes, varying across different disorders. It has been shown that RCD is differentially involved in Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS), among the most common neurodegenerative diseases. In AD, neuronal loss is associated with the activation of not only necroptosis, but also pyroptosis. In ALS, on the other hand, motor neuron death is not linked to canonical necroptosis, whereas pyroptosis pathway activation is seen in white matter microglia. Despite these differences in the activation of RCD pathways in AD and ALS, the accumulation of protein aggregates immunoreactive for p62/SQSTM1 (sequestosome 1) is a common event in both diseases and many other neurodegenerative disorders. In this review, we describe the major RCD pathways with clear activation in AD and ALS, the main interactions between these pathways, as well as their differential and similar involvement in these disorders. Finally, we will discuss targeting RCD as an innovative therapeutic concept for neurodegenerative diseases, such as AD and ALS. Considering that the execution of RCD or “cellular suicide” represents the final stage in neurodegeneration, it seems crucial to prevent neuronal death in patients by targeting RCD. This would offer valuable time to address upstream events in the pathological cascade by keeping the neurons alive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data

All relevant novel data not covered by the reviewed studies of this review article are available in this manuscript, online supplementary information or upon reasonable request.

Abbreviations

4HB:

Four-helix bundle

ACSL4:

Acyl-CoA synthetase long-chain family member 4

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

Apaf-1:

Apoptotic activating factor 1

ASC:

Apoptosis-associated speck-like protein containing a caspase recruitment domain

ATG14L:

Yeast autophagy-related protein 14-like

ATG4/5/7/8/12/16:

Yeast autophagy-related protein4/5/7/8/12/16

Aβ:

Amyloid β peptide

Bcl-2:

B-cell lymphoma 2

CAA:

Cerebral amyloid angiopathy

cFLIP:

Cellular FLICE-like inhibitory protein

CHMP2B:

Charged multivesicular body protein 2B

cIAP1/2:

Cellular inhibitor of apoptosis protein 1/2

cleaved GSDMD:

GSDMD cleaved at Asp275 leading to the formation of GSDMD-NT, indicative of pyroptosis activation

Cyt c:

Cytochrome c

DAMP:

Damage-associated molecular pattern

DISC:

Death-inducing signaling complex

DPR:

Dipeptide repeat protein

ER:

Endoplasmic reticulum

ESCRT:

Endosomal sorting complexes required for transport

EV:

Extracellular vesicle

FADD:

FAS-associated death domain

FAS:

Fas cell surface death receptor

FPN:

Ferroportin

FTLD-TDP:

Frontotemporal lobar degeneration with TPD-43-immunoreactive pathology

FUS:

Fused in sarcoma

GA:

DPR poly-glycine–alanine

GP:

DPR poly-glycine–proline

GPX4:

Glutathione peroxidase 4

GR:

DPR poly-glycine–arginine

GSDMD:

Gasdermin D

GSDMD-NT:

N-terminal fragment of GSDMD

GSH:

Glutathione

GVD:

Granulovacuolar degeneration

HAMP:

Homeostasis-altering molecular process

IL-18:

Interleukin 18

IL-1β:

Interleukin-1β

LATE-NC:

Limbic-predominant age-related TDP-43 encephalopathy neuropathological changes

LCD:

Lysosome-dependent cell death

LPS:

Lipopolysaccharide

LUBAC:

Linear ubiquitin chain assembly complex

MAP1LC3 or LC3:

Microtubule-associated protein 1 light chain 3

MAPK:

Mitogen-activated protein kinase

MLKL:

Mixed lineage kinase domain-like protein

MOMP:

Mitochondrial outer membrane permeabilization

MTL:

Medial temporal lobe

NF-κB:

Nuclear factor-κB

NFT:

Neurofibrillary tangle

NLR:

NOD-like receptor

NLRP3:

Nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3

NOS:

Not otherwise specified

OPTN:

Optineurin

p62/SQSTM1:

Sequestosome 1

PA:

DPR poly-proline–alanine

PAMP:

Pathogen-associated molecular pattern

PE:

Phosphatidylethanolamine

PR:

DPR poly-proline–arginine

PRR:

Pattern recognition receptor

p-τ:

Phosphorylated tau protein

RCD:

Regulated cell death

RHIM:

RIP homotypic interaction motif

RIPK1:

Receptor-interacting serine/threonine protein kinase 1

RIPK3:

Receptor-interacting serine/threonine protein kinase 3

ROS:

Reactive oxygen species

SOD1:

Superoxide dismutase 1

TBK1:

TANK-binding kinase 1

TDP-43:

TAR DNA-binding protein 43

TLR:

Toll-like receptors

TNF:

Tumor necrosis factor

TNFR1:

TNF receptor superfamily member 1A

TRADD:

TNFR1‑associated death domain

TRAF2:

TNFR-associated factor 2

TRAILR1:

TNF receptor superfamily member 10a

TRAILR2:

TNF receptor superfamily member 10b

ULK:

UNC-51-like kinase complex

Vps15:

Class III PI-3 kinase vacuolar protein sorting 15

Vps34:

Class III PI-3 kinase vacuolar protein sorting 34

References

  1. Aglietti RA, Dueber EC (2017) Recent insights into the molecular mechanisms underlying pyroptosis and gasdermin family functions. Trends Immunol 38:261–271. https://doi.org/10.1016/j.it.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  2. Aglietti RA, Estevez A, Gupta A, Ramirez MG, Liu PS, Kayagaki N et al (2016) GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci U S A 113:7858–7863. https://doi.org/10.1073/pnas.1607769113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Agmon E, Solon J, Bassereau P, Stockwell BR (2018) Modeling the effects of lipid peroxidation during ferroptosis on membrane properties. Sci Rep 8:5155. https://doi.org/10.1038/s41598-018-23408-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aits S, Jaattela M (2013) Lysosomal cell death at a glance. J Cell Sci 126:1905–1912. https://doi.org/10.1242/jcs.091181

    Article  CAS  PubMed  Google Scholar 

  5. Aladesuyi Arogundade O, Nguyen S, Leung R, Wainio D, Rodriguez M, Ravits J (2021) Nucleolar stress in C9orf72 and sporadic ALS spinal motor neurons precedes TDP-43 mislocalization. Acta Neuropathol Commun 9:26. https://doi.org/10.1186/s40478-021-01125-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alqabandi M, de Franceschi N, Maity S, Miguet N, Bally M, Roos WH et al (2021) The ESCRT-III isoforms CHMP2A and CHMP2B display different effects on membranes upon polymerization. BMC Biol 19:66. https://doi.org/10.1186/s12915-021-00983-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alzheimer A (1907) Ueber eine eigenartige erkrankung der hirnrinde. Allg Zschr Psych 64:146–148

    Google Scholar 

  8. Amador-Ortiz C, Lin WL, Ahmed Z, Personett D, Davies P, Duara R et al (2007) TDP-43 immunoreactivity in hippocampal sclerosis and alzheimer’s disease. Ann Neurol 61:435–445. https://doi.org/10.1002/ana.21154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Anderson AJ, Stoltzner S, Lai F, Su J, Nixon RA (2000) Morphological and biochemical assessment of DNA damage and apoptosis in down syndrome and alzheimer disease, and effect of postmortem tissue archival on TUNEL. Neurobiol Aging 21:511–524. https://doi.org/10.1016/s0197-4580(00)00126-3

    Article  CAS  PubMed  Google Scholar 

  10. Arai T, Nonaka T, Hasegawa M, Akiyama H, Yoshida M, Hashizume Y et al (2003) Neuronal and glial inclusions in frontotemporal dementia with or without motor neuron disease are immunopositive for p62. Neurosci Lett 342:41–44. https://doi.org/10.1016/s0304-3940(03)00216-7

    Article  CAS  PubMed  Google Scholar 

  11. Arrazola MS, Lira M, Veliz-Valverde F, Quiroz G, Iqbal S, Eaton SL et al (2023) Necroptosis inhibition counteracts neurodegeneration, memory decline, and key hallmarks of aging, promoting brain rejuvenation. Aging Cell 22:e13814. https://doi.org/10.1111/acel.13814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arrazola MS, Saquel C, Catalan RJ, Barrientos SA, Hernandez DE, Martinez NW et al (2019) Axonal degeneration is mediated by necroptosis activation. J Neurosci 39:3832–3844. https://doi.org/10.1523/JNEUROSCI.0881-18.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ayton S, Wang Y, Diouf I, Schneider JA, Brockman J, Morris MC et al (2020) Brain iron is associated with accelerated cognitive decline in people with alzheimer pathology. Mol Psychiatry 25:2932–2941. https://doi.org/10.1038/s41380-019-0375-7

    Article  CAS  PubMed  Google Scholar 

  14. Balendra R, Isaacs AM (2018) C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat Rev Neurol 14:544–558. https://doi.org/10.1038/s41582-018-0047-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ball MJ, Lo P (1977) Granulovacuolar degeneration in the ageing brain and in dementia. J Neuropathol Exp Neurol 36:474–487

    Article  CAS  PubMed  Google Scholar 

  16. Balusu S, Horre K, Thrupp N, Craessaerts K, Snellinx A, Serneels L et al (2023) MEG3 activates necroptosis in human neuron xenografts modeling alzheimer’s disease. Science 381:1176–1182. https://doi.org/10.1126/science.abp9556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bao WD, Pang P, Zhou XT, Hu F, Xiong W, Chen K et al (2021) Loss of ferroportin induces memory impairment by promoting ferroptosis in alzheimer’s disease. Cell Death Differ 28:1548–1562. https://doi.org/10.1038/s41418-020-00685-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Beckers J, Tharkeshwar AK, Fumagalli L, Contardo M, Van Schoor E, Fazal R et al (2023) A toxic gain-of-function mechanism in C9orf72 ALS impairs the autophagy-lysosome pathway in neurons. Acta Neuropathol Commun 11:151. https://doi.org/10.1186/s40478-023-01648-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beckers J, Tharkeshwar AK, Van Damme P (2021) C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels. Autophagy 17:3306–3322. https://doi.org/10.1080/15548627.2021.1872189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Benito-Cuesta I, Diez H, Ordonez L, Wandosell F (2017) Assessment of autophagy in neurons and brain tissue. Cells. https://doi.org/10.3390/cells6030025

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bergsbaken T, Cookson BT (2007) Macrophage activation redirects yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog 3:e161. https://doi.org/10.1371/journal.ppat.0030161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7:99–109. https://doi.org/10.1038/nrmicro2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bialik S, Dasari SK, Kimchi A (2018) Autophagy-dependent cell death – where, how and why a cell eats itself to death. J Cell Sci. https://doi.org/10.1242/jcs.215152

    Article  PubMed  Google Scholar 

  24. Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH et al (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci 28:6926–6937. https://doi.org/10.1523/JNEUROSCI.0800-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Borroni B, Bonvicini C, Alberici A, Buratti E, Agosti C, Archetti S et al (2009) Mutation within TARDBP leads to frontotemporal dementia without motor neuron disease. Hum Mutat 30:E974-983. https://doi.org/10.1002/humu.21100

    Article  CAS  PubMed  Google Scholar 

  26. Borst JW, Visser NV, Kouptsova O, Visser AJ (2000) Oxidation of unsaturated phospholipids in membrane bilayer mixtures is accompanied by membrane fluidity changes. Biochim Biophys Acta 1487:61–73. https://doi.org/10.1016/s1388-1981(00)00084-6

    Article  CAS  PubMed  Google Scholar 

  27. Braak H, Braak E (1998) Evolution of neuronal changes in the course of Alzheimer’s disease. J Neural Transm Suppl 53:127–140. https://doi.org/10.1007/978-3-7091-6467-9_11

    Article  CAS  PubMed  Google Scholar 

  28. Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  29. Bradshaw NJ, Korth C (2019) Protein misassembly and aggregation as potential convergence points for non-genetic causes of chronic mental illness. Mol Psychiatry 24:936–951. https://doi.org/10.1038/s41380-018-0133-2

    Article  CAS  PubMed  Google Scholar 

  30. Brettschneider J, Del Tredici K, Toledo JB, Robinson JL, Irwin DJ, Grossman M et al (2013) Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 74:20–38. https://doi.org/10.1002/ana.23937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bridges RJ, Natale NR, Patel SA (2012) System xc(-) cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br J Pharmacol 165:20–34. https://doi.org/10.1111/j.1476-5381.2011.01480.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16:407–420. https://doi.org/10.1038/nri.2016.58

    Article  CAS  PubMed  Google Scholar 

  33. Caccamo A, Branca C, Piras IS, Ferreira E, Huentelman MJ, Liang WS et al (2017) Necroptosis activation in alzheimer’s disease. Nat Neurosci 20:1236–1246. https://doi.org/10.1038/nn.4608

    Article  CAS  PubMed  Google Scholar 

  34. Cai Z, Jitkaew S, Zhao J, Chiang HC, Choksi S, Liu J et al (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16:55–65. https://doi.org/10.1038/ncb2883

    Article  CAS  PubMed  Google Scholar 

  35. Catala A, Diaz M (2016) Editorial: impact of lipid peroxidation on the physiology and pathophysiology of cell membranes. Front Physiol 7:423. https://doi.org/10.3389/fphys.2016.00423

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cataldo AM, Barnett JL, Berman SA, Li J, Quarless S, Bursztajn S et al (1995) Gene expression and cellular content of cathepsin D in alzheimer’s disease brain: evidence for early up-regulation of the endosomal-lysosomal system. Neuron 14:671–680. https://doi.org/10.1016/0896-6273(95)90324-0

    Article  CAS  PubMed  Google Scholar 

  37. Cavalcante GC, Schaan AP, Cabral GF, Santana-da-Silva MN, Pinto P, Vidal AF et al (2019) A cell’s fate: an overview of the molecular biology and genetics of apoptosis. Int J Mol Sci. https://doi.org/10.3390/ijms20174133

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chen G, Goeddel DV (2002) TNF-R1 signaling: a beautiful pathway. Science 296:1634–1635. https://doi.org/10.1126/science.1071924

    Article  CAS  PubMed  Google Scholar 

  39. Chen K, Jiang X, Wu M, Cao X, Bao W, Zhu LQ (2021) Ferroptosis, a potential therapeutic target in alzheimer’s disease. Front Cell Dev Biol 9:704298. https://doi.org/10.3389/fcell.2021.704298

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chen Q, Kang J, Fu C (2018) The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduct Target Ther 3:18. https://doi.org/10.1038/s41392-018-0018-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen S, Zhang X, Song L, Le W (2012) Autophagy dysregulation in amyotrophic lateral sclerosis. Brain Pathol 22:110–116. https://doi.org/10.1111/j.1750-3639.2011.00546.x

    Article  CAS  PubMed  Google Scholar 

  42. Chen X, He WT, Hu L, Li J, Fang Y, Wang X et al (2016) Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res 26:1007–1020. https://doi.org/10.1038/cr.2016.100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen X, Li W, Ren J, Huang D, He WT, Song Y et al (2014) Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res 24:105–121. https://doi.org/10.1038/cr.2013.171

    Article  CAS  PubMed  Google Scholar 

  44. Coleman MP (2022) Axon biology in als: mechanisms of axon degeneration and prospects for therapy. Neurotherapeutics 19:1133–1144. https://doi.org/10.1007/s13311-022-01297-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Conrad M, Angeli JP, Vandenabeele P, Stockwell BR (2016) Regulated necrosis: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 15:348–366. https://doi.org/10.1038/nrd.2015.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656. https://doi.org/10.1038/nrc883

    Article  CAS  PubMed  Google Scholar 

  47. Costa I, Barbosa DJ, Benfeito S, Silva V, Chavarria D, Borges F et al (2023) Molecular mechanisms of ferroptosis and their involvement in brain diseases. Pharmacol Ther 244:108373. https://doi.org/10.1016/j.pharmthera.2023.108373

    Article  CAS  PubMed  Google Scholar 

  48. Cykowski MD, Dickson DW, Powell SZ, Arumanayagam AS, Rivera AL, Appel SH (2019) Dipeptide repeat (DPR) pathology in the skeletal muscle of ALS patients with C9ORF72 repeat expansion. Acta Neuropathol 138:667–670. https://doi.org/10.1007/s00401-019-02050-8

    Article  PubMed  PubMed Central  Google Scholar 

  49. Damme M, Suntio T, Saftig P, Eskelinen EL (2015) Autophagy in neuronal cells: general principles and physiological and pathological functions. Acta Neuropathol 129:337–362. https://doi.org/10.1007/s00401-014-1361-4

    Article  CAS  PubMed  Google Scholar 

  50. Davies P, Maloney AJ (1976) Selective loss of central cholinergic neurons in alzheimer’s disease. Lancet 2:1403

    Article  CAS  PubMed  Google Scholar 

  51. de Duve C (1983) Lysosomes revisited. Eur J Biochem 137:391–397. https://doi.org/10.1111/j.1432-1033.1983.tb07841.x

    Article  PubMed  Google Scholar 

  52. Dedeene L, Van Schoor E, Ospitalieri S, Ronisz A, Weishaupt JH, Otto M et al (2020) Dipeptide repeat protein and TDP-43 pathology along the hypothalamic-pituitary axis in C9orf72 and non-C9orf72 ALS and FTLD-TDP cases. Acta Neuropathol 140:777–781. https://doi.org/10.1007/s00401-020-02216-9

    Article  CAS  PubMed  Google Scholar 

  53. Dedeene L, Van Schoor E, Race V, Moisse M, Vandenberghe R, Poesen K et al (2019) An ALS case with 38 (G4C2)-repeats in the C9orf72 gene shows TDP-43 and sparse dipeptide repeat protein pathology. Acta Neuropathol 137:855–858. https://doi.org/10.1007/s00401-019-01996-z

    Article  CAS  PubMed  Google Scholar 

  54. Dedeene L, Van Schoor E, Vandenberghe R, Van Damme P, Poesen K, Thal DR (2019) Circadian sleep/wake-associated cells show dipeptide repeat protein aggregates in C9orf72-related ALS and FTLD cases. Acta Neuropathol Commun 7:189. https://doi.org/10.1186/s40478-019-0845-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. DeJesus-Hernandez M, Finch NA, Wang X, Gendron TF, Bieniek KF, Heckman MG et al (2017) In-depth clinico-pathological examination of RNA foci in a large cohort of C9ORF72 expansion carriers. Acta Neuropathol 134:255–269. https://doi.org/10.1007/s00401-017-1725-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256. https://doi.org/10.1016/j.neuron.2011.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27:457–464. https://doi.org/10.1002/ana.410270502

    Article  CAS  PubMed  Google Scholar 

  58. Denton D, Kumar S (2019) Autophagy-dependent cell death. Cell Death Differ 26:605–616. https://doi.org/10.1038/s41418-018-0252-y

    Article  CAS  PubMed  Google Scholar 

  59. Ding J, Wang K, Liu W, She Y, Sun Q, Shi J et al (2016) Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535:111–116. https://doi.org/10.1038/nature18590

    Article  CAS  PubMed  Google Scholar 

  60. Dmitrieva NI, Burg MB (2007) Osmotic stress and DNA damage. Methods Enzymol 428:241–252. https://doi.org/10.1016/S0076-6879(07)28013-9

    Article  CAS  PubMed  Google Scholar 

  61. Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I et al (2014) MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep 7:971–981. https://doi.org/10.1016/j.celrep.2014.04.026

    Article  CAS  PubMed  Google Scholar 

  62. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Embacher N, Kaufmann WA, Beer R, Maier H, Jellinger KA, Poewe W et al (2001) Apoptosis signals in sporadic amyotrophic lateral sclerosis: an immunocytochemical study. Acta Neuropathol 102:426–434. https://doi.org/10.1007/s004010100438

    Article  CAS  PubMed  Google Scholar 

  64. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50. https://doi.org/10.1038/34112

    Article  CAS  PubMed  Google Scholar 

  65. Espinosa-Oliva AM, Garcia-Revilla J, Alonso-Bellido IM, Burguillos MA (2019) Brainiac caspases: beyond the wall of apoptosis. Front Cell Neurosci 13:500. https://doi.org/10.3389/fncel.2019.00500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Feng H, Stockwell BR (2018) Unsolved mysteries: how does lipid peroxidation cause ferroptosis? PLoS Biol 16:e2006203. https://doi.org/10.1371/journal.pbio.2006203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fillit H, Ding WH, Buee L, Kalman J, Altstiel L, Lawlor B et al (1991) Elevated circulating tumor necrosis factor levels in alzheimer’s disease. Neurosci Lett 129:318–320. https://doi.org/10.1016/0304-3940(91)90490-k

    Article  CAS  PubMed  Google Scholar 

  68. Fink SL, Cookson BT (2019) Pillars ARTICLE: CAspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages cell microbiol. J Immunol 202:1913–1926

    CAS  PubMed  Google Scholar 

  69. Forsberg K, Andersen PM, Marklund SL, Brannstrom T (2011) Glial nuclear aggregates of superoxide dismutase-1 are regularly present in patients with amyotrophic lateral sclerosis. Acta Neuropathol 121:623–634. https://doi.org/10.1007/s00401-011-0805-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Forsberg KM, Graffmo KS, Stenvall E, Tabikh N, Marklund SL, Brannstrom T et al (2023) Widespread CNS pathology in amyotrophic lateral sclerosis homozygous for the D90A SOD1 mutation. Acta Neuropathol 145:13–28. https://doi.org/10.1007/s00401-022-02519-z

    Article  CAS  PubMed  Google Scholar 

  71. Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V, Muller K et al (2015) Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci 18:631–636. https://doi.org/10.1038/nn.4000

    Article  CAS  PubMed  Google Scholar 

  72. Friker LL, Scheiblich H, Hochheiser IV, Brinkschulte R, Riedel D, Latz E et al (2020) Beta-amyloid clustering around ASC fibrils boosts its toxicity in microglia. Cell Rep 30:3743-3754 e3746. https://doi.org/10.1016/j.celrep.2020.02.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fritsch M, Gunther SD, Schwarzer R, Albert MC, Schorn F, Werthenbach JP et al (2019) Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature 575:683–687. https://doi.org/10.1038/s41586-019-1770-6

    Article  CAS  PubMed  Google Scholar 

  74. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147:742–758. https://doi.org/10.1016/j.cell.2011.10.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Funk KE, Mrak RE, Kuret J (2011) Granulovacuolar degeneration bodies of alzheimer’s disease resemble late-stage autophagic organelles. Neuropathol Appl Neurobiol 37:295–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Galluzzi L, Bravo-San Pedro JM, Kepp O, Kroemer G (2016) Regulated cell death and adaptive stress responses. Cell Mol Life Sci 73:2405–2410. https://doi.org/10.1007/s00018-016-2209-y

    Article  CAS  PubMed  Google Scholar 

  77. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P et al (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25:486–541. https://doi.org/10.1038/s41418-017-0012-4

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gami P, Murray C, Schottlaender L, Bettencourt C, De Pablo FE, Mudanohwo E et al (2015) A 30-unit hexanucleotide repeat expansion in C9orf72 induces pathological lesions with dipeptide-repeat proteins and RNA foci, but not TDP-43 inclusions and clinical disease. Acta Neuropathol 130:599–601. https://doi.org/10.1007/s00401-015-1473-5

    Article  PubMed  Google Scholar 

  79. Gao H, Bai Y, Jia Y, Zhao Y, Kang R, Tang D et al (2018) Ferroptosis is a lysosomal cell death process. Biochem Biophys Res Commun 503:1550–1556. https://doi.org/10.1016/j.bbrc.2018.07.078

    Article  CAS  PubMed  Google Scholar 

  80. Giulian D, Baker TJ (1986) Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci 6:2163–2178. https://doi.org/10.1523/JNEUROSCI.06-08-02163.1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Giulian D, Baker TJ, Shih LC, Lachman LB (1986) Interleukin 1 of the central nervous system is produced by ameboid microglia. J Exp Med 164:594–604. https://doi.org/10.1084/jem.164.2.594

    Article  CAS  PubMed  Google Scholar 

  82. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    Article  CAS  PubMed  Google Scholar 

  83. Gomez-Sintes R, Ledesma MD, Boya P (2016) Lysosomal cell death mechanisms in aging. Ageing Res Rev 32:150–168. https://doi.org/10.1016/j.arr.2016.02.009

    Article  CAS  PubMed  Google Scholar 

  84. Gong YN, Guy C, Olauson H, Becker JU, Yang M, Fitzgerald P et al (2017) ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell 169:286-300 e216. https://doi.org/10.1016/j.cell.2017.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Goodall ML, Cramer SD, Thorburn A (2016) Autophagy complexes cell death by necroptosis. Oncotarget 7:50818–50819. https://doi.org/10.18632/oncotarget.10640

    Article  PubMed  PubMed Central  Google Scholar 

  86. Goodall ML, Fitzwalter BE, Zahedi S, Wu M, Rodriguez D, Mulcahy-Levy JM et al (2016) The autophagy machinery controls cell death switching between apoptosis and necroptosis. Dev Cell 37:337–349. https://doi.org/10.1016/j.devcel.2016.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein tau. a component of alzheimer paired helical filaments. J Biol Chem 261:6084–6089

    Article  CAS  PubMed  Google Scholar 

  88. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83:4913–4917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Guadagno J, Swan P, Shaikh R, Cregan SP (2015) Microglia-derived IL-1beta triggers p53-mediated cell cycle arrest and apoptosis in neural precursor cells. Cell Death Dis. https://doi.org/10.1038/cddis.2015.151

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ha JS, Choi HR, Kim IS, Kim EA, Cho SW, Yang SJ (2021) Hypoxia-induced s100a8 expression activates microglial inflammation and promotes neuronal apoptosis. Int J Mol Sci. https://doi.org/10.3390/ijms22031205

    Article  PubMed  PubMed Central  Google Scholar 

  91. Haeusler AR, Donnelly CJ, Periz G, Simko EA, Shaw PG, Kim MS et al (2014) C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507:195–200. https://doi.org/10.1038/nature13124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865. https://doi.org/10.1038/ni.1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W et al (2017) Amyotrophic lateral sclerosis. Nat Rev Dis Primers 3:17071. https://doi.org/10.1038/nrdp.2017.71

    Article  PubMed  Google Scholar 

  94. He BP, Strong MJ (2000) Motor neuronal death in sporadic amyotrophic lateral sclerosis (ALS) is not apoptotic. A comparative study of ALS and chronic aluminium chloride neurotoxicity in New Zealand white rabbits. Neuropathol Appl Neurobiol 26:150–160. https://doi.org/10.1046/j.1365-2990.2000.026002150.x

    Article  CAS  PubMed  Google Scholar 

  95. He WT, Wan H, Hu L, Chen P, Wang X, Huang Z et al (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res 25:1285–1298. https://doi.org/10.1038/cr.2015.139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Heffern CT, Pocivavsek L, Birukova AA, Moldobaeva N, Bochkov VN, Lee KY et al (2013) Thermodynamic and kinetic investigations of the release of oxidized phospholipids from lipid membranes and its effect on vascular integrity. Chem Phys Lipids. https://doi.org/10.1016/j.chemphyslip.2013.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  97. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A et al (2013) NLRP3 is activated in alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493:674–678. https://doi.org/10.1038/nature11729

    Article  CAS  PubMed  Google Scholar 

  98. Hildebrand JM, Tanzer MC, Lucet IS, Young SN, Spall SK, Sharma P et al (2014) Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc Natl Acad Sci U S A 111:15072–15077. https://doi.org/10.1073/pnas.1408987111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hirano A, Dembitzer HM, Kurland LT, Zimmerman HM (1968) The fine structure of some intraganglionic alterations. neurofibrillary tangles, granulovacuolar bodies and “rod-like” structures as seen in guam amyotrophic lateral sclerosis and parkinsonism-dementia complex. J Neuropathol Exp Neurol 27:167–182

    Article  CAS  PubMed  Google Scholar 

  100. Hof PR, Cox K, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in alzheimer’s disease: i superior frontal and inferior temporal cortex. J Comp Neurol 301:44–54

    Article  CAS  PubMed  Google Scholar 

  101. Hof PR, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in alzheimer’s disease: II. primary and secondary visual cortex. J Comp Neurol 301:55–64

    Article  CAS  PubMed  Google Scholar 

  102. Horiuchi T, Mitoma H, Harashima S, Tsukamoto H, Shimoda T (2010) Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology (Oxford) 49:1215–1228. https://doi.org/10.1093/rheumatology/keq031

    Article  CAS  PubMed  Google Scholar 

  103. Igney FH, Krammer PH (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2:277–288. https://doi.org/10.1038/nrc776

    Article  CAS  PubMed  Google Scholar 

  104. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt SV, Vieira-Saecker A et al (2019) NLRP3 inflammasome activation drives tau pathology. Nature 575:669–673. https://doi.org/10.1038/s41586-019-1769-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jayaraman A, Htike TT, James R, Picon C, Reynolds R (2021) TNF-mediated neuroinflammation is linked to neuronal necroptosis in alzheimer’s disease hippocampus. Acta Neuropathol Commun 9:159. https://doi.org/10.1186/s40478-021-01264-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Joachim CL, Morris JH, Selkoe DJ (1988) Clinically diagnosed Alzheimer’s disease: autopsy results in 150 cases. Ann Neurol 24:50–56

    Article  CAS  PubMed  Google Scholar 

  107. Johann S, Heitzer M, Kanagaratnam M, Goswami A, Rizo T, Weis J et al (2015) NLRP3 inflammasome is expressed by astrocytes in the SOD1 mouse model of ALS and in human sporadic ALS patients. Glia 63:2260–2273. https://doi.org/10.1002/glia.22891

    Article  PubMed  Google Scholar 

  108. Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ et al (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68:857–864. https://doi.org/10.1016/j.neuron.2010.11.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jonsson PA, Ernhill K, Andersen PM, Bergemalm D, Brannstrom T, Gredal O et al (2004) Minute quantities of misfolded mutant superoxide dismutase-1 cause amyotrophic lateral sclerosis. Brain 127:73–88. https://doi.org/10.1093/brain/awh005

    Article  PubMed  Google Scholar 

  110. Jorgensen I, Miao EA (2015) Pyroptotic cell death defends against intracellular pathogens. Immunol Rev 265:130–142. https://doi.org/10.1111/imr.12287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ et al (2013) Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem 288:31268–31279. https://doi.org/10.1074/jbc.M113.462341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kanoh M, Takemura G, Misao J, Hayakawa Y, Aoyama T, Nishigaki K et al (1999) Significance of myocytes with positive DNA in situ nick end-labeling (TUNEL) in hearts with dilated cardiomyopathy: not apoptosis but DNA repair. Circulation 99:2757–2764. https://doi.org/10.1161/01.cir.99.21.2757

    Article  CAS  PubMed  Google Scholar 

  113. Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S et al (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:666–671. https://doi.org/10.1038/nature15541

    Article  CAS  PubMed  Google Scholar 

  114. Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121. https://doi.org/10.1038/nature10558

    Article  CAS  PubMed  Google Scholar 

  115. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257. https://doi.org/10.1038/bjc.1972.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222. https://doi.org/10.1080/15548627.2015.1100356

    Article  PubMed  PubMed Central  Google Scholar 

  117. Ko KW, Milbrandt J, DiAntonio A (2020) SARM1 acts downstream of neuroinflammatory and necroptotic signaling to induce axon degeneration. J Cell Biol. https://doi.org/10.1083/jcb.201912047

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kohler C (2016) Granulovacuolar degeneration: a neurodegenerative change that accompanies tau pathology. Acta Neuropathol 132:339–359. https://doi.org/10.1007/s00401-016-1562-0

    Article  CAS  PubMed  Google Scholar 

  119. Kole AJ, Annis RP, Deshmukh M (2013) Mature neurons: equipped for survival. Cell Death Dis 4:e689. https://doi.org/10.1038/cddis.2013.220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Koper MJ, Tome SO, Gawor K, Belet A, Van Schoor E, Schaeverbeke J et al (2022) LATE-NC aggravates GVD-mediated necroptosis in alzheimer’s disease. Acta Neuropathol Commun 10:128. https://doi.org/10.1186/s40478-022-01432-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Koper MJ, Van Schoor E, Ospitalieri S, Vandenberghe R, Vandenbulcke M, von Arnim CAF et al (2020) Necrosome complex detected in granulovacuolar degeneration is associated with neuronal loss in alzheimer’s disease. Acta Neuropathol 139:463–484. https://doi.org/10.1007/s00401-019-02103-y

    Article  CAS  PubMed  Google Scholar 

  122. Kriel J, Loos B (2019) The good, the bad and the autophagosome: exploring unanswered questions of autophagy-dependent cell death. Cell Death Differ 26:640–652. https://doi.org/10.1038/s41418-018-0267-4

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kroemer G, Jaattela M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5:886–897. https://doi.org/10.1038/nrc1738

    Article  CAS  PubMed  Google Scholar 

  124. Kuusisto E, Salminen A, Alafuzoff I (2002) Early accumulation of p62 in neurofibrillary tangles in Alzheimer’s disease: possible role in tangle formation. Neuropathol Appl Neurobiol 28:228–237. https://doi.org/10.1046/j.1365-2990.2002.00394.x

    Article  CAS  PubMed  Google Scholar 

  125. Laha D, Grant R, Mishra P, Nilubol N (2021) The role of tumor necrosis factor in manipulating the immunological response of tumor microenvironment. Front Immunol 12:656908. https://doi.org/10.3389/fimmu.2021.656908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Laster SM, Wood JG, Gooding LR (1988) Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J Immunol 141:2629–2634

    Article  CAS  PubMed  Google Scholar 

  127. Lawlor KE, Khan N, Mildenhall A, Gerlic M, Croker BA, D’Cruz AA et al (2015) RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat Commun 6:6282. https://doi.org/10.1038/ncomms7282

    Article  CAS  PubMed  Google Scholar 

  128. Lee JH, Yang DS, Goulbourne CN, Im E, Stavrides P, Pensalfini A et al (2022) Faulty autolysosome acidification in alzheimer’s disease mouse models induces autophagic build-up of Abeta in neurons, yielding senile plaques. Nat Neurosci 25:688–701. https://doi.org/10.1038/s41593-022-01084-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lee JK, Shin JH, Lee JE, Choi EJ (2015) Role of autophagy in the pathogenesis of amyotrophic lateral sclerosis. Biochim Biophys Acta 1852:2517–2524. https://doi.org/10.1016/j.bbadis.2015.08.005

    Article  CAS  PubMed  Google Scholar 

  130. Li M, Ona VO, Guegan C, Chen M, Jackson-Lewis V, Andrews LJ et al (2000) Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 288:335–339. https://doi.org/10.1126/science.288.5464.335

    Article  CAS  PubMed  Google Scholar 

  131. Liston A, Masters SL (2017) Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat Rev Immunol 17:208–214. https://doi.org/10.1038/nri.2016.151

    Article  CAS  PubMed  Google Scholar 

  132. Liu S, Liu H, Johnston A, Hanna-Addams S, Reynoso E, Xiang Y et al (2017) MLKL forms disulfide bond-dependent amyloid-like polymers to induce necroptosis. Proc Natl Acad Sci U S A 114:E7450–E7459. https://doi.org/10.1073/pnas.1707531114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H et al (2016) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535:153–158. https://doi.org/10.1038/nature18629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Liu Y, Levine B (2015) Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 22:367–376. https://doi.org/10.1038/cdd.2014.143

    Article  CAS  PubMed  Google Scholar 

  135. Mackenzie IR, Arzberger T, Kremmer E, Troost D, Lorenzl S, Mori K et al (2013) Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations. Acta Neuropathol 126:859–879. https://doi.org/10.1007/s00401-013-1181-y

    Article  CAS  PubMed  Google Scholar 

  136. Mackenzie IR, Bigio EH, Ince PG, Geser F, Neumann M, Cairns NJ et al (2007) Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 61:427–434. https://doi.org/10.1002/ana.21147

    Article  CAS  PubMed  Google Scholar 

  137. Mandal PK, Saharan S, Tripathi M, Murari G (2015) Brain glutathione levels–a novel biomarker for mild cognitive impairment and alzheimer’s disease. Biol Psychiatry 78:702–710. https://doi.org/10.1016/j.biopsych.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  138. Martens S, Hofmans S, Declercq W, Augustyns K, Vandenabeele P (2020) Inhibitors targeting RIPK1/RIPK3: old and new drugs. Trends Pharmacol Sci 41:209–224. https://doi.org/10.1016/j.tips.2020.01.002

    Article  CAS  PubMed  Google Scholar 

  139. Martin LJ (1999) Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J Neuropathol Exp Neurol 58:459–471. https://doi.org/10.1097/00005072-199905000-00005

    Article  CAS  PubMed  Google Scholar 

  140. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426. https://doi.org/10.1016/s1097-2765(02)00599-3

    Article  CAS  PubMed  Google Scholar 

  141. Masliah E, Mallory M, Hansen L, DeTeresa R, Terry RD (1993) Quantitative synaptic alterations in the human neocortex during normal aging. Neurology 43:192–197

    Article  CAS  PubMed  Google Scholar 

  142. Masliah E, Terry RD, DeTeresa RM, Hansen LA (1989) Immunohistochemical quantification of the synapse-related protein synaptophysin in alzheimer disease. Neurosci Lett 103:234–239

    Article  CAS  PubMed  Google Scholar 

  143. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in alzheimer disease and down syndrome. Proc Natl Acad Sci U S A 82:4245–4249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mattson MP, Duan W (1999) “Apoptotic” biochemical cascades in synaptic compartments: roles in adaptive plasticity and neurodegenerative disorders. J Neurosci Res 58:152–166

    Article  CAS  PubMed  Google Scholar 

  145. McAleese KE, Walker L, Erskine D, Thomas AJ, McKeith IG, Attems J (2017) TDP-43 pathology in alzheimer’s disease, dementia with Lewy bodies and ageing. Brain Pathol 27:472–479. https://doi.org/10.1111/bpa.12424

    Article  CAS  PubMed  Google Scholar 

  146. McIlwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5:a008656. https://doi.org/10.1101/cshperspect.a008656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Melamed Z, Lopez-Erauskin J, Baughn MW, Zhang O, Drenner K, Sun Y et al (2019) Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat Neurosci 22:180–190. https://doi.org/10.1038/s41593-018-0293-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A et al (2010) Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 11:1136–1142. https://doi.org/10.1038/ni.1960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190. https://doi.org/10.1016/s0092-8674(03)00521-x

    Article  CAS  PubMed  Google Scholar 

  150. Miller TM, Cudkowicz ME, Genge A, Shaw PJ, Sobue G, Bucelli RC et al (2022) Trial of antisense oligonucleotide Tofersen for SOD1 ALS. N Engl J Med 387:1099–1110. https://doi.org/10.1056/NEJMoa2204705

    Article  CAS  PubMed  Google Scholar 

  151. Moonen S, Koper MJ, Van Schoor E, Schaeverbeke JM, Vandenberghe R, von Arnim CAF et al (2023) Pyroptosis in alzheimer’s disease: cell type-specific activation in microglia, astrocytes and neurons. Acta Neuropathol 145:175–195. https://doi.org/10.1007/s00401-022-02528-y

    Article  CAS  PubMed  Google Scholar 

  152. Mori K, Weng SM, Arzberger T, May S, Rentzsch K, Kremmer E et al (2013) The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339:1335–1338. https://doi.org/10.1126/science.1232927

    Article  CAS  PubMed  Google Scholar 

  153. Murphy JM (2020) The killer pseudokinase mixed lineage kinase domain-like protein (MLKL). Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a036376

    Article  PubMed  PubMed Central  Google Scholar 

  154. Nelson PT, Lee EB, Cykowski MD, Alafuzoff I, Arfanakis K, Attems J et al (2023) LATE-NC staging in routine neuropathologic diagnosis: an update. Acta Neuropathol 145:159–173. https://doi.org/10.1007/s00401-022-02524-2

    Article  PubMed  Google Scholar 

  155. Neumann M, Bentmann E, Dormann D, Jawaid A, DeJesus-Hernandez M, Ansorge O et al (2011) FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. Brain 134:2595–2609. https://doi.org/10.1093/brain/awr201

    Article  PubMed  PubMed Central  Google Scholar 

  156. Neumann M, Rademakers R, Roeber S, Baker M, Kretzschmar HA, Mackenzie IR (2009) A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 132:2922–2931. https://doi.org/10.1093/brain/awp214

    Article  PubMed  PubMed Central  Google Scholar 

  157. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    Article  CAS  PubMed  Google Scholar 

  158. Nixon RA (2007) Autophagy, amyloidogenesis and alzheimer disease. J Cell Sci 120:4081–4091. https://doi.org/10.1242/jcs.019265

    Article  CAS  PubMed  Google Scholar 

  159. Noda T, Yoshimori T (2009) Molecular basis of canonical and bactericidal autophagy. Int Immunol 21:1199–1204. https://doi.org/10.1093/intimm/dxp088

    Article  CAS  PubMed  Google Scholar 

  160. Peng C, Trojanowski JQ, Lee VM (2020) Protein transmission in neurodegenerative disease. Nat Rev Neurol 16:199–212. https://doi.org/10.1038/s41582-020-0333-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Platt FM, Boland B, van der Spoel AC (2012) The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J Cell Biol 199:723–734. https://doi.org/10.1083/jcb.201208152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Qiu Z, Zhang H, Xia M, Gu J, Guo K, Wang H et al (2023) Programmed death of microglia in alzheimer’s disease: autophagy, ferroptosis, and pyroptosis. J Prev Alzheimers Dis 10:95–103. https://doi.org/10.14283/jpad.2023.3

    Article  CAS  PubMed  Google Scholar 

  163. Re DB, Le Verche V, Yu C, Amoroso MW, Politi KA, Phani S et al (2014) Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron 81:1001–1008. https://doi.org/10.1016/j.neuron.2014.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Reichert CO, de Freitas FA, Sampaio-Silva J, Rokita-Rosa L, Barros PL, Levy D et al (2020) Ferroptosis mechanisms involved in neurodegenerative diseases. Int J Mol Sci. https://doi.org/10.3390/ijms21228765

    Article  PubMed  PubMed Central  Google Scholar 

  165. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268. https://doi.org/10.1016/j.neuron.2011.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Repnik U, Stoka V, Turk V, Turk B (2012) Lysosomes and lysosomal cathepsins in cell death. Biochim Biophys Acta 1824:22–33. https://doi.org/10.1016/j.bbapap.2011.08.016

    Article  CAS  PubMed  Google Scholar 

  167. Riku Y, Duyckaerts C, Boluda S, Plu I, Le Ber I, Millecamps S et al (2019) Increased prevalence of granulovacuolar degeneration in C9orf72 mutation. Acta Neuropathol 138:783–793. https://doi.org/10.1007/s00401-019-02028-6

    Article  CAS  PubMed  Google Scholar 

  168. Rohn TT, Head E, Nesse WH, Cotman CW, Cribbs DH (2001) Activation of caspase-8 in the alzheimer’s disease brain. Neurobiol Dis 8:1006–1016. https://doi.org/10.1006/nbdi.2001.0449

    Article  CAS  PubMed  Google Scholar 

  169. Ros U, Pena-Blanco A, Hanggi K, Kunzendorf U, Krautwald S, Wong WW et al (2017) Necroptosis execution is mediated by plasma membrane nanopores independent of calcium. Cell Rep 19:175–187. https://doi.org/10.1016/j.celrep.2017.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ruhl S, Shkarina K, Demarco B, Heilig R, Santos JC, Broz P (2018) ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362:956–960. https://doi.org/10.1126/science.aar7607

    Article  CAS  PubMed  Google Scholar 

  171. Ruiz A, Palacios Y, Garcia I, Chavez-Galan L (2021) Transmembrane TNF and its receptors TNFR1 and TNFR2 in mycobacterial infections. Int J Mol Sci. https://doi.org/10.3390/ijms22115461

    Article  PubMed  PubMed Central  Google Scholar 

  172. Salvadores N, Moreno-Gonzalez I, Gamez N, Quiroz G, Vegas-Gomez L, Escandon M et al (2022) Abeta oligomers trigger necroptosis-mediated neurodegeneration via microglia activation in alzheimer’s disease. Acta Neuropathol Commun 10:31. https://doi.org/10.1186/s40478-022-01332-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Salvadores N, Sanhueza M, Manque P, Court FA (2017) Axonal degeneration during aging and its functional role in neurodegenerative disorders. Front Neurosci 11:451. https://doi.org/10.3389/fnins.2017.00451

    Article  PubMed  PubMed Central  Google Scholar 

  174. Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R, Tang AY et al (2018) Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during yersinia infection. Proc Natl Acad Sci U S A 115:E10888–E10897. https://doi.org/10.1073/pnas.1809548115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sathasivam S, Ince PG, Shaw PJ (2001) Apoptosis in amyotrophic lateral sclerosis: a review of the evidence. Neuropathol Appl Neurobiol 27:257–274. https://doi.org/10.1046/j.0305-1846.2001.00332.x

    Article  CAS  PubMed  Google Scholar 

  176. Sborgi L, Ruhl S, Mulvihill E, Pipercevic J, Heilig R, Stahlberg H et al (2016) GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J 35:1766–1778. https://doi.org/10.15252/embj.201694696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Scheiblich H, Dansokho C, Mercan D, Schmidt SV, Bousset L, Wischhof L et al (2021) Microglia jointly degrade fibrillar alpha-synuclein cargo by distribution through tunneling nanotubes. Cell 184:5089-5106 e5021. https://doi.org/10.1016/j.cell.2021.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Schludi MH, May S, Grasser FA, Rentzsch K, Kremmer E, Kupper C et al (2015) Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing. Acta Neuropathol 130:537–555. https://doi.org/10.1007/s00401-015-1450-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Schröder R, Watts GD, Mehta SG, Evert BO, Broich P, Fliessbach K et al (2005) Mutant valosin-containing protein causes a novel type of frontotemporal dementia. Ann Neurol 57:457–461

    Article  PubMed  Google Scholar 

  180. Seppanen A, Pikkarainen M, Hartikainen P, Hofmann SC, Majamaa K, Alafuzoff I (2009) Expression of collagen XVII and ubiquitin-binding protein p62 in motor neuron disease. Brain Res 1247:171–177. https://doi.org/10.1016/j.brainres.2008.10.020

    Article  CAS  PubMed  Google Scholar 

  181. Shi J, Gao W, Shao F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42:245–254. https://doi.org/10.1016/j.tibs.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  182. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–665. https://doi.org/10.1038/nature15514

    Article  CAS  PubMed  Google Scholar 

  183. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P et al (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514:187–192. https://doi.org/10.1038/nature13683

    Article  CAS  PubMed  Google Scholar 

  184. Simchowicz T (1911) Histopathologische studien über die senile demenz in nissl f alzheimer a histologie und histopathologische arbeiten über die großhirnrinde. Fischer 4:267–444

    Google Scholar 

  185. Singh J, Habean ML, Panicker N (2023) Inflammasome assembly in neurodegenerative diseases. Trends Neurosci 46:814–831. https://doi.org/10.1016/j.tins.2023.07.009

    Article  CAS  PubMed  Google Scholar 

  186. Sondag CM, Dhawan G, Combs CK (2009) Beta amyloid oligomers and fibrils stimulate differential activation of primary microglia. J Neuroinflammation 6:1. https://doi.org/10.1186/1742-2094-6-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Song L, Pei L, Yao S, Wu Y, Shang Y (2017) NLRP3 Inflammasome in neurological diseases, from functions to therapies. Front Cell Neurosci 11:63. https://doi.org/10.3389/fncel.2017.00063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Stadelmann C, Bruck W, Bancher C, Jellinger K, Lassmann H (1998) Alzheimer disease: DNA fragmentation indicates increased neuronal vulnerability, but not apoptosis. J Neuropathol Exp Neurol 57:456–464. https://doi.org/10.1097/00005072-199805000-00009

    Article  CAS  PubMed  Google Scholar 

  190. Stadelmann C, Deckwerth TL, Srinivasan A, Bancher C, Bruck W, Jellinger K et al (1999) Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in alzheimer’s disease. evidence for apoptotic cell death. Am J Pathol 155:1459–1466. https://doi.org/10.1016/S0002-9440(10)65460-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481:278–286. https://doi.org/10.1038/nature10759

    Article  CAS  PubMed  Google Scholar 

  192. Suelves N, Saleki S, Ibrahim T, Palomares D, Moonen S, Koper MJ et al (2023) Senescence-related impairment of autophagy induces toxic intraneuronal amyloid-beta accumulation in a mouse model of amyloid pathology. Acta Neuropathol Commun 11:82. https://doi.org/10.1186/s40478-023-01578-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Sun L, Wang H, Wang Z, He S, Chen S, Liao D et al (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148:213–227. https://doi.org/10.1016/j.cell.2011.11.031

    Article  CAS  PubMed  Google Scholar 

  194. Swanson KV, Deng M, Ting JP (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19:477–489. https://doi.org/10.1038/s41577-019-0165-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G (2019) The molecular machinery of regulated cell death. Cell Res 29:347–364. https://doi.org/10.1038/s41422-019-0164-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Tarkowski E, Andreasen N, Tarkowski A, Blennow K (2003) Intrathecal inflammation precedes development of alzheimer’s disease. J Neurol Neurosurg Psychiatry 74:1200–1205. https://doi.org/10.1136/jnnp.74.9.1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Tejera D, Mercan D, Sanchez-Caro JM, Hanan M, Greenberg D, Soreq H et al (2019) Systemic inflammation impairs microglial Abeta clearance through NLRP3 inflammasome. EMBO J. https://doi.org/10.15252/embj.2018101064

    Article  PubMed  PubMed Central  Google Scholar 

  198. Terman A, Kurz T (2013) Lysosomal iron, iron chelation, and cell death. Antioxid Redox Signal 18:888–898. https://doi.org/10.1089/ars.2012.4885

    Article  CAS  PubMed  Google Scholar 

  199. Terry RD, Peck A, DeTeresa R, Schechter R, Horoupian DS (1981) Some morphometric aspects of the brain in senile dementia of the alzheimer type. Ann Neurol 10:184–192. https://doi.org/10.1002/ana.410100209

    Article  CAS  PubMed  Google Scholar 

  200. Thal DR, Del Tredici K, Ludolph AC, Hoozemans JJ, Rozemuller AJ, Braak H et al (2011) Stages of granulovacuolar degeneration: their relation to alzheimer’s disease and chronic stress response. Acta Neuropathol 122:577–589. https://doi.org/10.1007/s00401-011-0871-6

    Article  CAS  PubMed  Google Scholar 

  201. Thal DR, Griffin WS, Braak H (2008) Parenchymal and vascular abeta-deposition and its effects on the degeneration of neurons and cognition in alzheimer’s disease. J Cell Mol Med 12:1848–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Tome SO, Thal DR (2021) Co-pathologies in alzheimer’s disease: just multiple pathologies or partners in crime? Brain 144:706–708. https://doi.org/10.1093/brain/awab027

    Article  PubMed  Google Scholar 

  203. Tome SO, Tsaka G, Ronisz A, Ospitalieri S, Gawor K, Gomes LA et al (2023) TDP-43 pathology is associated with increased tau burdens and seeding. Mol Neurodegener 18:71. https://doi.org/10.1186/s13024-023-00653-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Torii S, Shintoku R, Kubota C, Yaegashi M, Torii R, Sasaki M et al (2016) An essential role for functional lysosomes in ferroptosis of cancer cells. Biochem J 473:769–777. https://doi.org/10.1042/BJ20150658

    Article  CAS  PubMed  Google Scholar 

  205. Troost D, Aten J, Morsink F, de Jong JM (1995) Apoptosis in amyotrophic lateral sclerosis is not restricted to motor neurons. Bcl-2 expression is increased in unaffected post-central gyrus. Neuropathol Appl Neurobiol 21:498–504. https://doi.org/10.1111/j.1365-2990.1995.tb01096.x

    Article  CAS  PubMed  Google Scholar 

  206. Tsuchiya K, Nakajima S, Hosojima S, Thi Nguyen D, Hattori T, Le Manh T et al (2019) Caspase-1 initiates apoptosis in the absence of gasdermin D. Nat Commun 10:2091. https://doi.org/10.1038/s41467-019-09753-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Tsuchiya Y, Nakabayashi O, Nakano H (2015) FLIP the switch: regulation of apoptosis and necroptosis by cFLIP. Int J Mol Sci 16:30321–30341. https://doi.org/10.3390/ijms161226232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. van Loo G, Bertrand MJM (2023) Death by TNF: a road to inflammation. Nat Rev Immunol 23:289–303. https://doi.org/10.1038/s41577-022-00792-3

    Article  CAS  PubMed  Google Scholar 

  209. Van Schoor E, Koper MJ, Ospitalieri S, Dedeene L, Tome SO, Vandenberghe R et al (2021) Necrosome-positive granulovacuolar degeneration is associated with TDP-43 pathological lesions in the hippocampus of ALS/FTLD cases. Neuropathol Appl Neurobiol 47:328–345. https://doi.org/10.1111/nan.12668

    Article  CAS  PubMed  Google Scholar 

  210. Van Schoor E, Ospitalieri S, Moonen S, Tome SO, Ronisz A, Ok O et al (2022) Increased pyroptosis activation in white matter microglia is associated with neuronal loss in ALS motor cortex. Acta Neuropathol 144:393–411. https://doi.org/10.1007/s00401-022-02466-9

    Article  CAS  PubMed  Google Scholar 

  211. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15:135–147. https://doi.org/10.1038/nrm3737

    Article  CAS  PubMed  Google Scholar 

  212. Vandenabeele P, Vanden Berghe T, Festjens N (2006) Caspase inhibitors promote alternative cell death pathways. Sci STKE. https://doi.org/10.1126/stke.3582006pe44

    Article  PubMed  Google Scholar 

  213. Venegas C, Kumar S, Franklin BS, Dierkes T, Brinkschulte R, Tejera D et al (2017) Microglia-derived ASC specks cross-seed amyloid-beta in alzheimer’s disease. Nature 552:355–361. https://doi.org/10.1038/nature25158

    Article  CAS  PubMed  Google Scholar 

  214. Voet S, Srinivasan S, Lamkanfi M, van Loo G (2019) Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol Med. https://doi.org/10.15252/emmm.201810248

    Article  PubMed  PubMed Central  Google Scholar 

  215. Wajant H (2002) The Fas signaling pathway: more than a paradigm. Science 296:1635–1636. https://doi.org/10.1126/science.1071553

    Article  CAS  PubMed  Google Scholar 

  216. Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF et al (2014) Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell 54:133–146. https://doi.org/10.1016/j.molcel.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  217. Weishaupt JH, Waibel S, Birve A, Volk AE, Mayer B, Meyer T et al (2013) A novel optineurin truncating mutation and three glaucoma-associated missense variants in patients with familial amyotrophic lateral sclerosis in Germany. Neurobiol Aging 34(1516):e1519–e1515. https://doi.org/10.1016/j.neurobiolaging.2012.09.007

    Article  CAS  Google Scholar 

  218. West MJ (1993) Regionally specific loss of neurons in the aging human hippocampus. Neurobiol Aging 14:287–293

    Article  CAS  PubMed  Google Scholar 

  219. West MJ, Coleman PD, Flood DG, Troncoso JC (1994) Differences in the pattern of hippocampal neuronal loss in normal ageing and alzheimer’s disease. Lancet 344:769–772

    Article  CAS  PubMed  Google Scholar 

  220. Wiersma VI, van Ziel AM, Vazquez-Sanchez S, Nolle A, Berenjeno-Correa E, Bonaterra-Pastra A et al (2019) Granulovacuolar degeneration bodies are neuron-selective lysosomal structures induced by intracellular tau pathology. Acta Neuropathol 138:943–970. https://doi.org/10.1007/s00401-019-02046-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Wong-Ekkabut J, Xu Z, Triampo W, Tang IM, Tieleman DP, Monticelli L (2007) Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys J 93:4225–4236. https://doi.org/10.1529/biophysj.107.112565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Wootz H, Weber E, Korhonen L, Lindholm D (2006) Altered distribution and levels of cathepsinD and cystatins in amyotrophic lateral sclerosis transgenic mice: possible roles in motor neuron survival. Neuroscience 143:419–430. https://doi.org/10.1016/j.neuroscience.2006.07.048

    Article  CAS  PubMed  Google Scholar 

  223. Xia B, Fang S, Chen X, Hu H, Chen P, Wang H et al (2016) MLKL forms cation channels. Cell Res 26:517–528. https://doi.org/10.1038/cr.2016.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Xie Z, Smith CJ, Van Eldik LJ (2004) Activated glia induce neuron death via MAP kinase signaling pathways involving JNK and p38. Glia 45:170–179. https://doi.org/10.1002/glia.10314

    Article  PubMed  Google Scholar 

  225. Yoon S, Kovalenko A, Bogdanov K, Wallach D (2017) MLKL, the protein that mediates necroptosis, also regulates endosomal trafficking and extracellular vesicle generation. Immunity 47:51–65. https://doi.org/10.1016/j.immuni.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  226. Yoshiyama Y, Yamada T, Asanuma K, Asahi T (1994) Apoptosis related antigen, Le(Y) and nick-end labeling are positive in spinal motor neurons in amyotrophic lateral sclerosis. Acta Neuropathol 88:207–211. https://doi.org/10.1007/BF00293395

    Article  CAS  PubMed  Google Scholar 

  227. Yuan H, Li X, Zhang X, Kang R, Tang D (2016) Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun 478:1338–1343. https://doi.org/10.1016/j.bbrc.2016.08.124

    Article  CAS  PubMed  Google Scholar 

  228. Yuan J, Amin P, Ofengeim D (2019) Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 20:19–33. https://doi.org/10.1038/s41583-018-0093-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Zhang R, Song Y, Su X (2023) Necroptosis and alzheimer’s disease: pathogenic mechanisms and therapeutic opportunities. J Alzheimers Dis 94:S367–S386. https://doi.org/10.3233/JAD-220809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Zhang Y, Liu J, Yu D, Zhu X, Liu X, Liao J et al (2021) The MLKL kinase-like domain dimerization is an indispensable step of mammalian MLKL activation in necroptosis signaling. Cell Death Dis 12:638. https://doi.org/10.1038/s41419-021-03859-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Zhao W, Beers DR, Bell S, Wang J, Wen S, Baloh RH et al (2015) TDP-43 activates microglia through NF-kappaB and NLRP3 inflammasome. Exp Neurol 273:24–35. https://doi.org/10.1016/j.expneurol.2015.07.019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Simona Ospitalieri and Mrs. Alicja Ronisz for technical help in producing the histopathological specimen for the neuropathological images depicted here.

Funding

This study was funded by Fonds Wetenschappelijk Onderzoek (FWO, Belgium): G0F8516N, G065721N (DRT); KU Leuven internal funds (Belgium): C14-17–107, C14/22/132 (DRT), DB/20/007/BM (SM); Stichting Alzheimer Onderzoek, Belgium: SAO/FRA 2023/0009 (DRT); and Alzheimer’s Association (USA): 22-AAIIA-963171 (DRT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Rudolf Thal.

Ethics declarations

Conflict of interest

DRT received consultant speaker honorary from Biogen (USA), travel reimbursement from GE-Healthcare (UK) and UCB (Belgium), and collaborated with Novartis Pharma AG (Switzerland), Probiodrug (Germany), GE-Healthcare (UK), and Janssen Pharmaceutical Companies (Belgium). DRT is a member of Acta Neuropathologica editorial board. He was not involved in the assessment or decision-making process for this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thal, D.R., Gawor, K. & Moonen, S. Regulated cell death and its role in Alzheimer’s disease and amyotrophic lateral sclerosis. Acta Neuropathol 147, 69 (2024). https://doi.org/10.1007/s00401-024-02722-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00401-024-02722-0

Navigation