Skip to main content
Log in

Surface Display of Bacterial Laccase CotA on Escherichia coli Cells and its Application in Industrial Dye Decolorization

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Laccase CotA from Bacillus subtilis 168 was successfully displayed on the membrane of Escherichia coli cells using poly-γ-glutamate synthetase A protein (PgsA) from B. subtilis as an anchoring matrix. Further analyses demonstrated that the fusion protein PgsA/CotA efficiently translocates to the cell surface of E. coli with an enzymatic activity of 65 U/108 cells. Surface-displayed CotA was shown to possess improved enzymatic properties compared with those of the wild-type CotA, including higher thermal stability (above 90% activity at 70 °C and nearly 40% activity at 90 °C after 5-h incubation) and stronger inhibitor tolerance (approximately 80 and 65% activity when incubated with 200 and 400 mM NaCl, respectively). Furthermore, the whole-cell system was demonstrated to have high enzymatic activity against anthraquinone dye, Acid Blue 62, triphenylmethane dye, Malachite Green, and azo dye, Methyl Orange with the decolorization percentages of 91, 45, and 75%, after 5-h incubation, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang, W., Zhang, Z., Ni, H., Yang, X. M., Li, Q. Q., & Li, L. (2012) Decolorization of industrial synthetic dyes using engineered Pseudomonas putida cells with surface-immobilized bacterial laccase. Microbial Cell Factories, 11, 75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Forgacs, E., Cserhati, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: A review. Environment International, 30, 953–971.

    Article  CAS  PubMed  Google Scholar 

  3. Mishra, G., & Tripathy, M. (1993). A critical review of the treatments for decolourization of textile effluent. Colourage, 40, 35–35.

    CAS  Google Scholar 

  4. Dos Santos, A. B., Cervantes, F. J., & van Lier, J. B. (2007). Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresource Technology, 98, 2369–2385.

    Article  CAS  PubMed  Google Scholar 

  5. Fang, Z. M., Li, T. L., Chang, F., Zhou, P., Fang, W., Hong, Y. Z., Zhang, X. C., Peng, H., & Xiao, Y. Z. (2012). A new marine bacterial laccase with chloride-enhancing, alkaline-dependent activity and dye decolorization ability. Bioresource Technology, 111, 36–41.

    Article  CAS  PubMed  Google Scholar 

  6. Santos, A., Mendes, S., Brissos, V., & Martins, L. O. (2014). New dye-decolorizing peroxidases from Bacillus subtilis and Pseudomonas putida MET94: Towards biotechnological applications. Applied Microbiology and Biotechnology, 98, 2053–2065.

    Article  CAS  PubMed  Google Scholar 

  7. Pan, K., Zhao, N., Yin, Q., Zhang, T., Xu, X., Fang, W., Hong, Y., Fang, Z., & Xiao, Y. (2014). Induction of a laccase Lcc9 from Coprinopsis cinerea by fungal coculture and its application on indigo dye decolorization. Bioresource Technology, 162, 45–52.

    Article  CAS  PubMed  Google Scholar 

  8. Si, J., Peng, F., & Cui, B. (2013). Purification, biochemical characterization and dye decolorization capacity of an alkali-resistant and metal-tolerant laccase from Trametes pubescens. Bioresource Technology, 128, 49–57.

    Article  CAS  PubMed  Google Scholar 

  9. Baldrian, P. (2006). Fungal laccases—occurrence and properties. FEMS Microbiology Reviews, 30, 215–242.

    Article  CAS  PubMed  Google Scholar 

  10. Giardina, P., Faraco, V., Pezzella, C., Piscitelli, A., Vanhulle, S., & Sannia, G. (2010). Laccases: A never-ending story. Cellular and Molecular Life Sciences: CMLS, 67, 369–385.

    Article  CAS  PubMed  Google Scholar 

  11. Singh, G., Bhalla, A., Kaur, P., Capalash, N., & Sharma, P. (2011). Laccase from prokaryotes: A new source for an old enzyme. Reviews in Environmental Science and Bio/Technology, 10, 309–326.

    Article  Google Scholar 

  12. Chandra, R., & Chowdhary, P. (2015). Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environmental Science. Processes & Impacts, 17, 326–342.

    Article  CAS  Google Scholar 

  13. Beneyton, T., Coldren, F., Baret, J. C., Griffiths, A. D., & Taly, V. (2014). CotA laccase: High-throughput manipulation and analysis of recombinant enzyme libraries expressed in E. coli using droplet-based microfluidics. The Analyst, 139, 3314–3323.

    Article  CAS  PubMed  Google Scholar 

  14. Hullo, M. F., Moszer, I., Danchin, A., & Martin-Verstraete, I. (2001). CotA of Bacillus subtilis is a copper-dependent laccase. Journal of Bacteriology, 183, 5426–5430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dawkar, V. V., Jadhav, U. U., Jadhav, S. U., & Govindwar, S. P. (2008). Biodegradation of disperse textile dye Brown 3REL by newly isolated Bacillus sp. VUS. Journal of Applied Microbiology, 105, 14–24.

    Article  CAS  PubMed  Google Scholar 

  16. Brissos, V., Pereira, L., Munteanu, F. D., Cavaco-Paulo, A., & Martins, L. O. (2009). Expression system of CotA-laccase for directed evolution and high-throughput screenings for the oxidation of high-redox potential dyes. Biotechnology Journal, 4, 558–563.

    Article  CAS  PubMed  Google Scholar 

  17. Pereira, L., Coelho, A. V., Viegas, C. A., Santos, M. M., Robalo, M. P., & Martins, L. O. (2009). Enzymatic biotransformation of the azo dye Sudan Orange G with bacterial CotA-laccase. Journal of Biotechnology, 139, 68–77.

    Article  CAS  PubMed  Google Scholar 

  18. Guan, Z. B., Shui, Y., Song, C. M., Zhang, N., Cai, Y. J., & Liao, X. R. (2015). Efficient secretory production of CotA-laccase and its application in the decolorization and detoxification of industrial textile wastewater. Environmental Science and Pollution Research International, 22, 9515–9523.

    Article  CAS  PubMed  Google Scholar 

  19. Van Bloois, E., Winter, R. T., Kolmar, H., & Fraaije, M. W. (2011). Decorating microbes: Surface display of proteins on Escherichia coli. Trends in Biotechnology, 29, 79–86.

    Article  CAS  PubMed  Google Scholar 

  20. Li, W., Shi, H., Ding, H., Wang, L., Zhang, Y., Li, X., & Wang, F. (2015). Cell surface display and characterization of Rhizopus oryzae lipase in Pichia pastoris using Sed1p as an anchor protein. Current Microbiology, 71(1), 150–155.

    Article  CAS  PubMed  Google Scholar 

  21. Yang, C., Cai, N., Dong, M., Jiang, H., Li, J., Qiao, C., & Chen, W. (2008). Surface display of MPH on Pseudomonas putida JS444 using ice nucleation protein and its application in detoxification of organophosphates. Biotechnology and Bioengineering, 99(1), 30–37.

    Article  CAS  PubMed  Google Scholar 

  22. Bertrand, B., Trejo-Hernández, M. R., Morales-Guzmán, D., Caspeta, L., Suárez, R. R., & Martínez-Morales, F. (2016). Functional expression, production, and biochemical characterization of a laccase using yeast surface display technology. Fungal Biology, 120(12), 1609.

    Article  CAS  PubMed  Google Scholar 

  23. Bleve, G., Lezzi, C., Spagnolo, S., Rampino, P., Perrotta, C., & Mita, G., et al. (2014). Construction of a laccase chimerical gene: Recombinant protein characterization and gene expression via yeast surface display. Applied Biochemistry & Biotechnology, 172(6), 2916–2931.

    Article  CAS  Google Scholar 

  24. Nakanishi, A., Bae, J. G., Fukai, K., Tokumoto, N., Kuroda, K., & Ogawa, J., et al. (2012). Effect of pretreatment of hydrothermally processed rice straw with laccase-displaying yeast on ethanol fermentation. Applied Microbiology & Biotechnology, 94(4), 939–948.

    Article  CAS  Google Scholar 

  25. Schuurmann, J., Quehl, P., Festel, G., & Jose, J. (2014). Bacterial whole-cell biocatalysts by surface display of enzymes: Toward industrial application. Applied Microbiology and Biotechnology, 98, 8031–8046.

    Article  CAS  PubMed  Google Scholar 

  26. Lee, S. Y., Choi, J. H., & Xu, Z. (2003) Microbial cell surface display. Trends in Biotechnology, 21, 45–52

    Article  Google Scholar 

  27. Narita, J., Okano, K., Tateno, T., Tanino, T., Sewaki, T., Sung, M. H., Fukuda, H., & Kondo, A. (2006). Display of active enzymes on the cell surface of Escherichia coli using PgsA anchor protein and their application to bioconversion. Applied Microbiology and Biotechnology, 70, 564–572.

    Article  CAS  PubMed  Google Scholar 

  28. Liu, Y., Zhang, R., Lian, Z., Wang, S., & Wright, A. T. (2014). Yeast cell surface display for lipase whole cell catalyst and its applications. Journal of Molecular Catalysis B-Enzymatic, 106, 17–25.

    Article  CAS  Google Scholar 

  29. Gupta, N., & Farinas, E. T. (2010). Directed evolution of CotA laccase for increased substrate specificity using Bacillus subtilis spores. Protein Engineering, Design & Selection: PEDS, 23, 679–682.

    Article  CAS  Google Scholar 

  30. Saratale, R. G., Saratale, G. D., Chang, J. S., & Govindwar, S. P. (2011). Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 42, 138–157.

    Article  CAS  Google Scholar 

  31. Chen, H., Zhang, T., Jia, J., Vastermark, A., Tian, R., Ni, Z., Chen, Z., Chen, K., & Yang, S. (2015). Expression and display of a novel thermostable esterase from Clostridium thermocellum on the surface of Bacillus subtilis using the CotB anchor protein. Journal of Industrial Microbiology & Biotechnology, 42, 1439–1448.

    Article  CAS  Google Scholar 

  32. Brander, S., Mikkelsen, J. D., & Kepp, K. P. (2014). Characterization of an alkali- and halide-resistant laccase expressed in E. coli: CotA from Bacillus clausii. PLoS ONE, 9, e99402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chakroun, H., Mechichi, T., Martinez, M. J., Dhouib, A., & Sayadi, S. (2010). Purification and characterization of a novel laccase from the ascomycete Trichoderma atroviride: Application on bioremediation of phenolic compounds. Process Biochemistry, 45, 507–513.

    Article  CAS  Google Scholar 

  34. Huang, W.-T., Tai, R., Hseu, R.-S., & Huang, C.-T. (2011). Overexpression and characterization of a thermostable, pH-stable and organic solvent-tolerant Ganoderma fornicatum laccase in Pichia pastoris. Process Biochemistry, 46, 1469–1474.

    Article  CAS  Google Scholar 

  35. Ruijssenaars, H. J., & Hartmans, S. (2004). A cloned Bacillus halodurans multicopper oxidase exhibiting alkaline laccase activity. Applied Microbiology and Biotechnology, 65, 177–182.

    Article  CAS  PubMed  Google Scholar 

  36. Brissos, V., Chen, Z., & Martins, L. O. (2012). The kinetic role of carboxylate residues in the proximity of the trinuclear centre in the O2 reactivity of CotA-laccase. Dalton Transactions, 41, 6247–6255.

    Article  CAS  PubMed  Google Scholar 

  37. Enguita, F. J., Martins, L. O., Henriques, A. O., & Carrondo, M. A. (2003). Crystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties. The Journal of Biological Chemistry, 278, 19416–19425.

    Article  CAS  PubMed  Google Scholar 

  38. Ueda, M. (2016). Establishment of cell surface engineering and its development. Bioscience Biotechnology And Biochemistry, 80, 1243–1253.

    Article  CAS  Google Scholar 

  39. Li, W., Shi, H., Ding, H., Wang, L., Zhang, Y., Li, X., & Wang, F. (2015). Cell surface display and characterization of Rhizopus oryzae Lipase in Pichia pastoris using Sed1p as an anchor protein. Current Microbiology, 71, 150–155.

    Article  CAS  PubMed  Google Scholar 

  40. Luke, K. A., Higgins, C. L., & Wittung-Stafshede, P. (2007). Thermodynamic stability and folding of proteins from hyperthermophilic organisms. The FEBS Journal, 274, 4023–4033.

    Article  CAS  PubMed  Google Scholar 

  41. Hsueh, C.-C., Chen, B.-Y., & Yen, C.-Y. (2009). Understanding effects of chemical structure on azo dye decolorization characteristics by Aeromonas hydrophila. Journal of Hazardous Materials, 167, 995–1001.

    Article  CAS  PubMed  Google Scholar 

  42. Pearce, C. (2003). The removal of colour from textile wastewater using whole bacterial cells: A review. Dyes and Pigments, 58, 179–196.

    Article  CAS  Google Scholar 

  43. Soares, G. M., de Amorim, M. P., & Costa-Ferreira, M. (2001). Use of laccase together with redox mediators to decolourize Remazol Brilliant Blue R. Journal of Biotechnology, 89, 123–129.

    Article  CAS  PubMed  Google Scholar 

  44. Hou, H., Zhou, J., Wang, J., Du, C., & Yan, B. (2004). Enhancement of laccase production by Pleurotus ostreatus and its use for the decolorization of anthraquinone dye. Process Biochemistry, 39, 1415–1419.

    Article  CAS  Google Scholar 

  45. Lu, L., Zhao, M., Zhang, B. B., Yu, S. Y., Bian, X. J., Wang, W., & Wang, Y. (2007). Purification and characterization of laccase from Pycnoporus sanguineus and decolorization of an anthraquinone dye by the enzyme. Applied Microbiology and Biotechnology, 74, 1232–1239.

    Article  CAS  PubMed  Google Scholar 

  46. Santhanam, N., Vivanco, J. M., Decker, S. R., & Reardon, K. F. (2011). Expression of industrially relevant laccases: Prokaryotic style. Trends in Biotechnology, 29, 480–489.

    Article  CAS  PubMed  Google Scholar 

  47. Zhuo, R., Ma, L., Fan, F., Gong, Y., Wan, X., Jiang, M., Zhang, X., & Yang, Y. (2011). Decolorization of different dyes by a newly isolated white-rot fungi strain Ganoderma sp.En3 and cloning and functional analysis of its laccase gene. Journal of Hazardous Materials, 192, 855–873.

    Article  CAS  PubMed  Google Scholar 

  48. Dos Santos, L., Climent, V., Blanford, C. F., & Armstrong, F. A. (2010). Mechanistic studies of the ‘blue’ Cu enzyme, bilirubin oxidase, as a highly efficient electrocatalyst for the oxygen reduction reaction. Physical Chemistry Chemical Physics: PCCP, 12, 13962–13974.

    Article  CAS  PubMed  Google Scholar 

  49. Johannes, C., & Majcherczyk, A. (2000). Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Applied and Environmental Microbiology, 66, 524–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31700092, No. 21727818, No. 21390200, No. 21706125, No. 21706124), the Jiangsu Province Natural Science Foundation for Youths (No. BK20170997, No. BK20170993), the Project of State Key Laboratory of Materials Oriented Chemical Engineering (KL17-09) and the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (XTE1834), the open foundation of Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, (BEETKB1801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Dong, W., Lv, Z. et al. Surface Display of Bacterial Laccase CotA on Escherichia coli Cells and its Application in Industrial Dye Decolorization. Mol Biotechnol 60, 681–689 (2018). https://doi.org/10.1007/s12033-018-0103-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-0103-6

Keywords

Navigation