Skip to main content
Log in

Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Despite the first report on the bacterial display of a recombinant peptide appeared almost 30 years ago, industrial application of cells with surface-displayed enzymes is still limited. To display an enzyme on the surface of a living cell bears several advantages. First of all, neither the substrate nor the product of the enzymatic reaction needs to cross a membrane barrier. Second, the enzyme being linked to the cell can be separated from the reaction mixture and hence the product by simple centrifugation. Transfer to a new substrate preparation results in multiple cycles of enzymatic conversion. Finally, the anchoring in a matrix, in this case, the cell envelope stabilizes the enzyme and makes it less accessible to proteolytic degradation and material adsorption resulting in continuous higher activities. These advantages in common need to balance some disadvantages before this application can be taken into account for industrial processes, e.g., the exclusion of the enzyme from the cellular metabolome and hence from redox factors or other co-factors that need to be supplied. Therefore, this digest describes the different systems in Gram-positive and Gram-negative bacteria that have been used for the surface display of enzymes so far and focuses on examples among these which are suitable for industrial purposes or for the production of valuable resources, not least in order to encourage a broader application of whole-cell biocatalysts with surface-displayed enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adachi N, Takahashi C, Ono-Murota N, Yamaguchi R, Tanaka T, Kondo A (2013) Direct l-lysine production from cellobiose by Corynebacterium glutamicum displaying beta-glucosidase on its cell surface. Appl Microbiol Biotechnol 97(16):7165–7172. doi:10.1007/s00253-013-5009-4

    PubMed  CAS  Google Scholar 

  • Anderson TD, Sa R, Jiang XW, Malmirchegini GR, Fierobe HP, Ba L, Clubb RT (2011) Assembly of minicellulosomes on the surface of Bacillus subtilis. Appl Environ Microbiol 77(14):4849–4858. doi:10.1128/aem.02599-10

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ashiuchi M, Misono H (2002) Biochemistry and molecular genetics of poly-γ-glutamate synthesis. Appl Microbiol Biotechnol 59(1):9–14. doi:10.1007/s00253-002-0984-x

    PubMed  CAS  Google Scholar 

  • Ashiuchi M, Nawa C, Kamei T, Song JJ, Hong SP, Sung MH, Soda K, Misono H (2001) Physiological and biochemical characteristics of poly gamma-glutamate synthetase complex of Bacillus subtilis. Eur J Biochem 268(20):5321–5328. doi:10.1046/j.0014-2956.2001.02475.x

    PubMed  CAS  Google Scholar 

  • Bae J, Choi EH, Pan J-G (2011) Efficient synthesis of octyl-beta-d-galactopyranoside by Bacillus spore-displayed beta-galactosidase using an amphiphilic 1, 2-dimethoxyethane co-solvent. Enzyme Microb Technol 48(3):232–238. doi:10.1016/j.enzmictec.2010.11.002

    PubMed  CAS  Google Scholar 

  • Baek JH, Han M-J, Lee SH, Lee SY (2010) Enhanced display of lipase on the Escherichia coli cell surface, based on transcriptome analysis. Appl Environ Microbiol 76(3):971–973. doi:10.1128/aem.02463-09

    PubMed  CAS  PubMed Central  Google Scholar 

  • Becker J, Wittmann C (2012) Bio-based production of chemicals, materials and fuels—Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 23(4):631–640. doi:10.1016/j.copbio.2011.11.012

    PubMed  CAS  Google Scholar 

  • Becker S, Schmoldt H-U, Adams TM, Wilhelm S, Kolmar H (2004) Ultra-high-throughput screening based on cell-surface display and fluorescence-activated cell sorting for the identification of novel biocatalysts. Curr Opin Biotechnol 15(4):323–329. doi:10.1016/j.copbio.2004.06.001

    PubMed  CAS  Google Scholar 

  • Celik N, Webb CT, Leyton DL, Holt KE, Heinz E, Gorrell R, Kwok T, Naderer T, Ra S, Speed TP, Teasdale RD, Va L, Lithgow T (2012) A bioinformatic strategy for the detection, classification and analysis of bacterial autotransporters. PLoS One 7(8):e43245. doi:10.1371/journal.pone.0043245

    PubMed  CAS  PubMed Central  Google Scholar 

  • Charbit A, Boulain JC, Ryter A, Hofnung M (1986) Probing the topology of a bacterial membrane protein by genetic insertion of a foreign epitope; expression at the cell surface. EMBO (Eur Mol Biol Organ) J 5(11):3029–3037

    CAS  Google Scholar 

  • Chen YP, Hwang IE, Lin CJ, Wang HJ, Tseng CP (2012) Enhancing the stability of xylanase from Cellulomonas fimi by cell-surface display on Escherichia coli. J Appl Microbiol 112(3):455–463. doi:10.1111/j.1365-2672.2012.05232.x

    PubMed  CAS  Google Scholar 

  • Cho E-A, Seo J, Lee D-W, Pan J-G (2011) Decolorization of indigo carmine by laccase displayed on Bacillus subtilis spores. Enzyme Microb Technol 49(1):100–104. doi:10.1016/j.enzmictec.2011.03.005

    PubMed  CAS  Google Scholar 

  • Dautin N, Bernstein HD (2007) Protein secretion in gram-negative bacteria via the autotransporter pathway. Annu Rev Microbiol 61:89–112. doi:10.1146/annurev.micro.61.080706.093233

    PubMed  CAS  Google Scholar 

  • Detzel C, Maas R, Jose J (2011) Autodisplay of nitrilase from Alcaligenes faecalis in E. coli yields a whole cell biocatalyst for the synthesis of enantiomerically pure (R)-mandelic acid. ChemCatChem 3(4):719–725. doi:10.1002/cctc.201000382

    CAS  Google Scholar 

  • Festel G (2010) Industrial biotechnology: market size, company types, business models, and growth strategies. Ind Biotechnol 6(2):88–94. doi:10.1089/ind.2010.0006

    Google Scholar 

  • Festel G, Detzel C, Maas R (2012) Industrial biotechnology—markets and industry structure. J Commun Biotechnol 18(1):11–21. doi:10.5912/jcb.478

    Google Scholar 

  • Francisco JA, Earhart CF, Georgiou G (1992) Transport and anchoring of beta-lactamase to the external surface of Escherichia coli. Proc Natl Acad Sci U S A 89(7):2713–2717. doi:10.1073/pnas.89.7.2713

    PubMed  CAS  PubMed Central  Google Scholar 

  • Freudl R, MacIntyre S, Degen M, Henning U (1986) Cell surface exposure of the outer membrane protein OmpA of Escherichia coli K-12. J Mol Biol 188(3):491–494. doi:10.1016/0022-2836(86)90171-3

    PubMed  CAS  Google Scholar 

  • Gao C, Xu X, Zhang X, Che B, Ma C, Qiu J, Tao F, Xu P (2011) Chemoenzymatic synthesis of N-acetyl-d-neuraminic acid from N-acetyl-d-glucosamine by using the spore surface-displayed N-acetyl-d-neuraminic acid aldolase. Appl Environ Microbiol 77(19):7080–7083. doi:10.1128/aem.05601-11

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gawarzewski I, Smits SHJ, Schmitt L, Jose J (2013a) Structural comparison of the transport units of type V secretion systems. Biol Chem 394(11):1385–1398. doi:10.1515/hsz-2013-0162

    PubMed  CAS  Google Scholar 

  • Gawarzewski I, Tschapek B, Hoeppner A, Jose J, Smits SHJ, Schmitt L (2013b) Purification, crystallization and preliminary X-ray crystallographic analysis of the transport unit of the monomeric autotransporter AIDA-I from Escherichia coli. Acta Crystallogr Sect F 69(10):1159–1162. doi:10.1107/S1744309113024366

    CAS  Google Scholar 

  • Gawarzewski I, DiMaio F, Winterer E, Tschapek B, Smits SHJ, Jose J, Schmitt L (2014) Crystal structure of the transport unit of the autotransporter adhesin involved in diffuse adherence from Escherichia coli. J Struct Biol 187(1):20–29. doi:10.1016/j.jsb.2014.05.003

    PubMed  CAS  Google Scholar 

  • Gurian-Sherman D, Lindow SE (1993) Bacterial ice nucleation: significance and molecular basis. FASEB J 7(14):1338–1343

    PubMed  CAS  Google Scholar 

  • Hanai T, Atsumi S, Liao JC (2007) Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl Environ Microbiol 73(24):7814–7818. doi:10.1128/aem.01140-07

    PubMed  CAS  PubMed Central  Google Scholar 

  • He M-X, Feng H, Zhang Y-Z (2008) Construction of a novel cell-surface display system for heterologous gene expression in Escherichia coli by using an outer membrane protein of Zymomonas mobilis as anchor motif. Biotechnol Lett 30(12):2111–2117. doi:10.1007/s10529-008-9813-3

    PubMed  CAS  Google Scholar 

  • Hiraishi T, Yamashita K, Sakono M, Nakanishi J, Tan L-T, Sudesh K, Abe H, Maeda M (2012) Display of functionally active PHB depolymerase on Escherichia coli cell surface. Macromol Biosci 12(2):218–224. doi:10.1002/mabi.201100273

    PubMed  CAS  Google Scholar 

  • Hiratake J, Inagaki M, Nishioka T, Oda J (1988) Irreversible and highly enantioselective acylation of 2-halo-1-arylethanols in organic solvents catalyzed by a lipase from Pseudomonas fluorescens. J Org Chem 53(26):6130–6133. doi:10.1021/jo00261a033

    CAS  Google Scholar 

  • Hsueh H-Y, Yu B, Liu C-T, Liu J-R (2014) Increase of the adhesion ability and display of a rumen fungal xylanase on the cell surface of Lactobacillus casei by using a listerial cell-wall-anchoring protein. J Sci Food Agric 94(3):576–584. doi:10.1002/jsfa.6298

    PubMed  CAS  Google Scholar 

  • Huang S-J, Chen M-J, Yueh P-Y, Yu B, Zhao X, Liu J-R (2011) Display of Fibrobacter succinogenes β-glucanase on the cell surface of Lactobacillus reuteri. J Agric Food Chem 59(5):1744–1751. doi:10.1021/jf104266x

    PubMed  CAS  Google Scholar 

  • Hwang B-Y, Kim B-G, Kim J-H (2011) Bacterial surface display of a co-factor containing enzyme, ω-transaminase from Vibrio fluvialis using the Bacillus subtilis spore display system. Biosci Biotechnol Biochem 75(9):1862–1865. doi:10.1271/bbb.110307

    PubMed  CAS  Google Scholar 

  • Ieva R, Tian P, Peterson JH, Bernstein HD (2011) Sequential and spatially restricted interactions of assembly factors with an autotransporter β domain. Proc Natl Acad Sci U S A 108(31):E383–E391. doi:10.1073/pnas.1103827108

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jiang M, Shao X, Ni H, Yu Z, Li L (2011) In vivo and in vitro surface display of heterologous proteins on Bacillus thuringiensis vegetative cells and spores. Process Biochem 46(9):1861–1866. doi:10.1016/j.procbio.2011.05.022

    CAS  Google Scholar 

  • Jimenez AM, Lagarda GG, Chavez GTH, Beristain GH, Martinez BT, Carreri JU (2013) Strains of Escherichia coli modified by metabolic engineering to produce chemical compounds from hydrolyzed lignocellulose, pentoses, hexoses and other carbon sources. U.S. Patent No. 8,563,283

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2009) Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production. Biotechnol Adv 27(2):145–152. doi:10.1016/j.biotechadv.2008.10.004

    PubMed  CAS  Google Scholar 

  • Jose J, Meyer TF (2007) The autodisplay story, from discovery to biotechnical and biomedical applications. Microbiol Mol Biol Rev 71(4):600–619. doi:10.1128/mmbr.00011-07

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jose J, von Schwichow S (2004) Autodisplay of active sorbitol dehydrogenase (SDH) yields a whole cell biocatalyst for the synthesis of rare sugars. Chembiochem 5(4):491–499. doi:10.1002/cbic.200300774

    PubMed  CAS  Google Scholar 

  • Jose J, Bernhardt R, Hannemann F (2001) Functional display of active bovine adrenodoxin on the surface of E. coli by chemical incorporation of the [2Fe-2S] cluster. Chembiochem 2(9):695–701. doi:10.1002/1439-7633(20010903)2:9<695::AID-CBIC695>3.0.CO;2-S

    PubMed  CAS  Google Scholar 

  • Jose J, Bernhardt R, Hannemann F (2002) Cellular surface display of dimeric Adx and whole cell P450-mediated steroid synthesis on E. coli. J Biotechnol 95(3):257–268. doi:10.1016/S0168-1656(02)00030-5

    PubMed  CAS  Google Scholar 

  • Jose J, Maas RM, Teese MG (2012) Autodisplay of enzymes-molecular basis and perspectives. J Biotechnol 161(2):92–103. doi:10.1016/j.jbiotec.2012.04.001

    PubMed  CAS  Google Scholar 

  • Julsing MK, Cornelissen S, Bühler B, Schmid A (2008) Heme-iron oxygenases: powerful industrial biocatalysts? Curr Opin Chem Biol 12(2):177–186. doi:10.1016/j.cbpa.2008.01.029

    PubMed  CAS  Google Scholar 

  • Jung H-C, Lebeault J-M, Pan J-G (1998a) Surface display of Zymomonas mobilis levansucrase by using the ice-nucleation protein of Pseudomonas syringae. Nat Biotechnol 16(6):576–580. doi:10.1038/nbt0698-576

    PubMed  CAS  Google Scholar 

  • Jung H-C, Park J-H, Park S-H, Lebeault J-M, Pan J-G (1998b) Expression of carboxymethylcellulase on the surface of Escherichia coli using Pseudomonas syringae ice nucleation protein. Enzyme Microb Technol 22(5):348–354. doi:10.1016/S0141-0229(97)00224-X

    PubMed  CAS  Google Scholar 

  • Jung H-C, Ko S, Ju S-J, Kim E-J, Kim M-K, Pan J-G (2003) Bacterial cell surface display of lipase and its randomly mutated library facilitates high-throughput screening of mutants showing higher specific activities. J Mol Catal B Enzym 26(3–6):177–184. doi:10.1016/j.molcatb.2003.05.007

    CAS  Google Scholar 

  • Jung H-C, Kwon S-J, Pan J-G (2006) Display of a thermostable lipase on the surface of a solvent-resistant bacterium, Pseudomonas putida GM730, and its applications in whole-cell biocatalysis. BMC Biotechnol 6(1):23. doi:10.1186/1472-6750-6-23

    PubMed  PubMed Central  Google Scholar 

  • Kaeßler A, Olgen S, Jose J (2011) Autodisplay of catalytically active human hyaluronidase hPH-20 and testing of enzyme inhibitors. Eur J Pharm Sci 42(1–2):138–147. doi:10.1016/j.ejps.2010.11.004

    PubMed  Google Scholar 

  • Khodi S, Latifi AM, Saadati M, Mirzaei M, Aghamollaei H (2012) Surface display of organophosphorus hydrolase on E. coli using N-terminal domain of ice nucleation protein InaV. J Microbiol Biotechnol 22(2):234–238. doi:10.4014/jmb.1104.04011

    PubMed  CAS  Google Scholar 

  • Kim J, Schumann W (2009) Display of proteins on Bacillus subtilis endospores. Cell Mol Life Sci 66(19):3127–3136. doi:10.1007/s00018-009-0067-6

    PubMed  CAS  Google Scholar 

  • Kim DSH, Chao Y, Saier MH (2006) Protein-translocating trimeric autotransporters of gram-negative bacteria. J Bacteriol 188(16):5655–5667. doi:10.1128/jb.01596-05

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kim S-J, Song JK, Kim HK (2013a) Cell surface display of Staphylococcus haemolyticus L62 lipase in Escherichia coli and its application as a whole cell biocatalyst for biodiesel production. J Mol Catal B Enzym 97:54–61. doi:10.1016/j.molcatb.2013.07.017

    CAS  Google Scholar 

  • Kim SH, S-j K, Park S, Kim HK (2013b) Biodiesel production using cross-linked Staphylococcus haemolyticus lipase immobilized on solid polymeric carriers. J Mol Catal B Enzym 85–86:10–16. doi:10.1016/j.molcatb.2012.08.012

    Google Scholar 

  • Knecht L, Pasini P, Daunert S (2011) Bacterial spores as platforms for bioanalytical and biomedical applications. Anal Bioanal Chem 400(4):977–989. doi:10.1007/s00216-011-4835-4

    PubMed  CAS  Google Scholar 

  • Ko H-J, Park E, Song J, Yang TH, Lee HJ, Kim KH, Choi I-G (2012) Functional cell surface display and controlled secretion of diverse agarolytic enzymes by Escherichia coli with a novel ligation-independent cloning vector based on the autotransporter YfaL. Appl Environ Microbiol 78(9):3051–3058. doi:10.1128/aem.07004-11

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kobayashi G, Toida J, Akamatsu T, Yamamoto H, Shida T, Sekiguchi J (2000a) Accumulation of a recombinant Aspergillus oryzae lipase artificially localized on the Bacillus subtilis cell surface. J Biosci Bioeng 90(4):422–425. doi:10.1016/S1389-1723(01)80012-8

    PubMed  CAS  Google Scholar 

  • Kobayashi G, Toida J, Akamatsu T, Yamamoto H, Shida T, Sekiguchi J (2000b) Accumulation of an artificial cell wall-binding lipase by Bacillus subtilis wprA and/or sigD mutants. FEMS Microbiol Lett 188(2):165–169. doi:10.1111/j.1574-6968.2000.tb09188.x

    PubMed  CAS  Google Scholar 

  • Kobayashi G, Fujii K, Serizawa M, Yamamoto H, Sekiguchi J (2002) Simultaneous display of bacterial and fungal lipases on the cell surface of Bacillus subtilis. J Biosci Bioeng 93(1):15–19. doi:10.1016/S1389-1723(02)80047-0

    PubMed  CAS  Google Scholar 

  • Kozloff LM, Ma T, Arellano F (1991) Formation of bacterial membrane ice-nucleating lipoglycoprotein complexes. J Bacteriol 173(20):6528–6536

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kranen E, Steffan N, Maas R, Li S-M, Jose J (2011) Development of a whole cell biocatalyst for the efficient prenylation of indole derivatives by autodisplay of the aromatic prenyltransferase FgaPT2. ChemCatChem 3(7):1200–1207. doi:10.1002/cctc.201000429

    CAS  Google Scholar 

  • Kranen E, Detzel C, Weber T, Jose J (2014) Autodisplay for the co-expression of lipase and foldase on the surface of E. coli: washing with designer bugs. Microb Cell Fact 13(1):19. doi:10.1186/1475-2859-13-19

    PubMed  PubMed Central  Google Scholar 

  • Kwak Y, Lee S-E, Shin J-H (2014) Expression of organophosphorus hydrolase in Escherichia coli for use as whole-cell biocatalyst. J Mol Catal B Enzym 99:169–175. doi:10.1016/j.molcatb.2013.09.023

    CAS  Google Scholar 

  • Kwon SJ, Jung H-C, Pan J-G (2007) Transgalactosylation in a water-solvent biphasic reaction system with β-galactosidase displayed on the surfaces of Bacillus subtilis spores. Appl Environ Microbiol 73(7):2251–2256. doi:10.1128/aem.01489-06

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee SH, Choi J-I, Han M-J, Choi JH, Lee SY (2005) Display of lipase on the cell surface of Escherichia coli using OprF as an anchor and its application to enantioselective resolution in organic solvent. Biotechnol Bioeng 90(2):223–230. doi:10.1002/bit.20399

    PubMed  CAS  Google Scholar 

  • Lee Y-C, Chien H-CR, Hsu W-H (2007) Production of N-acetyl-d-neuraminic acid by recombinant whole cells expressing Anabaena sp. CH1 N-acetyl-d-glucosamine 2-epimerase and Escherichia coli N-acetyl-d-neuraminic acid lyase. J Biotechnol 129(3):453–460. doi:10.1016/j.jbiotec.2007.01.027

    PubMed  CAS  Google Scholar 

  • Lee H, Park SJ, Han M-J, Eom GT, Choi M-J, Kim SH, Oh YH, Song BK, Lee SH (2013) Expression of a lipase on the cell-surface of Escherichia coli using the OmpW anchoring motif and its application to enantioselective reactions. Biotechnol Lett 35(10):1677–1683. doi:10.1007/s10529-013-1260-0

    PubMed  CAS  Google Scholar 

  • Leyton DL, Sevastsyanovich YR, Browning DF, Rossiter AE, Wells TJ, Fitzpatrick RE, Overduin M, Cunningham AF, Henderson IR (2011) Size and conformation limits to secretion of disulfide-bonded loops in autotransporter proteins. J Biol Chem 286(49):42283–42291. doi:10.1074/jbc.M111.306118

    PubMed  CAS  PubMed Central  Google Scholar 

  • Leyton DL, Rossiter AE, Henderson IR (2012) From self sufficiency to dependence: mechanisms and factors important for autotransporter biogenesis. Nat Rev Microbiol 10(3):213–225. doi:10.1038/nrmicro2733

    PubMed  CAS  Google Scholar 

  • Li Q, Yan Q, Chen J, He Y, Wang J, Zhang H, Yu Z, Li L (2012) Molecular characterization of an ice nucleation protein variant (inaQ) from Pseudomonas syringae and the analysis of its transmembrane transport activity in Escherichia coli. Int J Biol Sci 8(8):1097–1108. doi:10.7150/ijbs.4524

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liese A, Seelbach K, Wandrey C (2006) Industrial biotransformations. Wiley-VCH, Weinheim

    Google Scholar 

  • Liew PX, Wang CLC, Wong S-L (2011) Functional characterization of a Bacillus subtilis sortase and its substrate and use of this sortase system to covalently anchor a heterologous protein to the B. subtilis cell wall for surface display. J Bacteriol 194(1):161–175. doi:10.1128/jb.05711-11

    PubMed  Google Scholar 

  • Lin B-X, Zhang Z-J, Liu W-F, Dong Z-Y, Tao Y (2013) Enhanced production of N-acetyl-d-neuraminic acid by multi-approach whole-cell biocatalyst. Appl Microbiol Biotechnol 97(11):4775–4784. doi:10.1007/s00253-013-4754-8

    PubMed  CAS  Google Scholar 

  • Liu Z, Yang C, Jiang H, Mulchandani A, Chen W, Qiao C (2009) Simultaneous degradation of organophosphates and 4-substituted phenols by stenotrophomonas species LZ-1 with surface-displayed organophosphorus hydrolase. J Agric Food Chem 57(14):6171–6177. doi:10.1021/jf804008j

    PubMed  CAS  Google Scholar 

  • Liu W-S, Pan X-X, Jia B, Zhao H-Y, Xu L, Liu Y, Yan Y-J (2010a) Surface display of active lipases Lip7 and Lip8 from Yarrowia lipolytica on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 88(4):885–891. doi:10.1007/s00253-010-2782-1

    PubMed  CAS  Google Scholar 

  • Liu W, Jia B, Zhao H, Xu L, Yan Y (2010b) Preparation of a whole-cell biocatalyst of Aspergillus niger lipase and its practical properties. J Agric Food Chem 58(19):10426–10430. doi:10.1021/jf1008555

    PubMed  CAS  Google Scholar 

  • Liu R, Yang C, Xu Y, Xu P, Jiang H, Qiao C (2013) Development of a whole-cell biocatalyst/biosensor by display of multiple heterologous proteins on the Escherichia coli cell surface for the detoxification and detection of organophosphates. J Agric Food Chem 61(32):7810–7816. doi:10.1021/jf402999b

    PubMed  CAS  Google Scholar 

  • Lum M, Morona R (2012) IcsA autotransporter passenger promotes increased fusion protein expression on the cell surface. Microb Cell Fact 11(1):20. doi:10.1186/1475-2859-11-20

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maurer J, Jose J, Meyer TF (1997) Autodisplay: one-component system for efficient surface display and release of soluble recombinant proteins from Escherichia coli. J Bacteriol 179(3):794–804

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mazzoli R, Lamberti C, Pessione E (2012) Engineering new metabolic capabilities in bacteria: lessons from recombinant cellulolytic strategies. Trends Biotechnol 30(2):111–119. doi:10.1016/j.tibtech.2011.08.003

    PubMed  CAS  Google Scholar 

  • McKenney PT, Driks A, Eichenberger P (2013) The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat Rev Microbiol 11(1):33–44. doi:10.1038/nrmicro2921

    PubMed  CAS  Google Scholar 

  • Muñoz-Gutiérrez I, Oropeza R, Gosset G, Martinez A (2012) Cell surface display of a β-glucosidase employing the type V secretion system on ethanologenic Escherichia coli for the fermentation of cellobiose to ethanol. J Ind Microbiol Biotechnol 39(8):1141–1152. doi:10.1007/s10295-012-1122-0

    PubMed  Google Scholar 

  • Narita J, Okano K, Kitao T, Ishida S, Sewaki T, Sung M-H, Fukuda H, Kondo A (2006a) Display of α-Amylase on the surface of Lactobacillus casei cells by use of the PgsA anchor protein, and production of lactic acid from starch. Appl Environ Microbiol 72(1):269–275. doi:10.1128/aem.72.1.269-275.2006

    PubMed  CAS  PubMed Central  Google Scholar 

  • Narita J, Okano K, Tateno T, Tanino T, Sewaki T, Sung M-H, Fukuda H, Kondo A (2006b) Display of active enzymes on the cell surface of Escherichia coli using PgsA anchor protein and their application to bioconversion. Appl Microbiol Biotechnol 70(5):564–572. doi:10.1007/s00253-005-0111-x

    PubMed  CAS  Google Scholar 

  • Nicolay T, Lemoine L, Lievens E, Balzarini S, Vanderleyden J, Spaepen S (2012) Probing the applicability of autotransporter based surface display with the EstA autotransporter of Pseudomonas stutzeri A15. Microb Cell Fact 11(1):158. doi:10.1186/1475-2859-11-158

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nicolay T, Vanderleyden J, Spaepen S (2013) Autotransporter-based cell surface display in Gram-negative bacteria. Crit Rev Microbiol 1–15 doi:10.3109/1040841x.2013.804032

  • Olson DG, McBride JE, Shaw AJ, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23(3):396–405. doi:10.1016/j.copbio.2011.11.026

    PubMed  CAS  Google Scholar 

  • O’Reilly E, Köhler V, Flitsch SL, Turner NJ (2011) Cytochromes P450 as useful biocatalysts: addressing the limitations. Chem Commun 47(9):2490–2501. doi:10.1039/c0cc03165h

    Google Scholar 

  • Park TJ, Heo NS, Yim SS, Park JH, Jeong KJ, Lee SY (2013) Surface display of recombinant proteins on Escherichia coli by BclA exosporium of Bacillus anthracis. Microb Cell Fact 12(1):81. doi:10.1186/1475-2859-12-81

    PubMed  PubMed Central  Google Scholar 

  • Pavlova O, Peterson JH, Ieva R, Bernstein HD (2013) Mechanistic link between β barrel assembly and the initiation of autotransporter secretion. Proc Natl Acad Sci U S A 110(10):E938–E947. doi:10.1073/pnas.1219076110

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pompeyo C, Gómez M, Gasparian S, Morlon-Guyot J (1993) Comparison of amylolytic properties of Lactobacillus amylovorus and of Lactobacillus amylophilus. Appl Microbiol Biotechnol 40(2–3):266–269. doi:10.1007/bf00170378

    Google Scholar 

  • Potot S, Serra CR, Henriques AO, Schyns G (2010) Display of recombinant proteins on Bacillus subtilis spores, using a coat-associated enzyme as the carrier. Appl Environ Microbiol 76(17):5926–5933. doi:10.1128/aem.01103-10

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rawling EG, Martin NL, Hancock RE (1995) Epitope mapping of the Pseudomonas aeruginosa major outer membrane porin protein OprF. Infect Immun 63(1):38–42

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reetz MT (2013) Biocatalysis in organic chemistry and biotechnology: past, present, and future. J Am Chem Soc 135(34):12480–12496. doi:10.1021/ja405051f

    PubMed  CAS  Google Scholar 

  • Rhee S-K, Song K-B, Kim C-H, Park B-S, Jang E-K, Jang K-H (2005) Levan. Biopolymers online. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim

    Google Scholar 

  • Riesenberg D (1991) High-cell-density cultivation of Escherichia coli. Curr Opin Biotechnol 2(3):380–384. doi:10.1016/S0958-1669(05)80142-9

    PubMed  CAS  Google Scholar 

  • Robert V, Volokhina EB, Senf F, Bos MP, Van Gelder P, Tommassen J (2006) Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. PLoS Biol 4(11):e377. doi:10.1371/journal.pbio.0040377

    PubMed  PubMed Central  Google Scholar 

  • Rupp S (2013) Next-generation bioproduction systems: cell-free conversion concepts for industrial biotechnology. Eng Life Sci 13(1):19–25. doi:10.1002/elsc.201100237

    CAS  Google Scholar 

  • Ryu S, Karim M (2011) A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates. Appl Microbiol Biotechnol 91(3):529–542. doi:10.1007/s00253-011-3261-z

    PubMed  CAS  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409(6817):258–268. doi:10.1038/35051736

    PubMed  CAS  Google Scholar 

  • Schumacher SD, Jose J (2012) Expression of active human P450 3A4 on the cell surface of Escherichia coli by Autodisplay. J Biotechnol 161(2):113–120. doi:10.1016/j.jbiotec.2012.01.031

    PubMed  CAS  Google Scholar 

  • Schumacher SD, Hannemann F, Teese MG, Bernhardt R, Jose J (2012) Autodisplay of functional CYP106A2 in Escherichia coli. J Biotechnol 161(2):104–112. doi:10.1016/j.jbiotec.2012.02.018

    PubMed  CAS  Google Scholar 

  • Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ (2006) Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production. J Biotechnol 124(2):381–391. doi:10.1016/j.jbiotec.2005.12.027

    PubMed  CAS  Google Scholar 

  • Setlow P (2006) Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101(3):514–525. doi:10.1111/j.1365-2672.2005.02736.x

    PubMed  CAS  Google Scholar 

  • Shao X, Jiang M, Yu Z, Cai H, Li L (2009) Surface display of heterologous proteins in Bacillus thuringiensis using a peptidoglycan hydrolase anchor. Microb Cell Factories 8(1):48. doi:10.1186/1475-2859-8-48

    Google Scholar 

  • Shimazu M, Mulchandani A, Chen W (2001) Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by a genetically engineered Moraxella sp. with surface-expressed organophosphorus hydrolase. Biotechnol Bioeng 76(4):318–324. doi:10.1002/bit.10095

    PubMed  CAS  Google Scholar 

  • Shiraga S, Kawakami M, Ishiguro M, Ueda M (2005) Enhanced reactivity of Rhizopus oryzae lipase displayed on yeast cell surfaces in organic solvents: potential as a whole-cell biocatalyst in organic solvents. Appl Environ Microbiol 71(8):4335–4338. doi:10.1128/aem.71.8.4335-4338.2005

    PubMed  CAS  PubMed Central  Google Scholar 

  • Smith G (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(4705):1315–1317. doi:10.1126/science.4001944

    PubMed  CAS  Google Scholar 

  • Soma Y, Inokuma K, Tanaka T, Ogino C, Kondo A, Okamoto M, Hanai T (2012) Direct isopropanol production from cellobiose by engineered Escherichia coli using a synthetic pathway and a cell surface display system. J Biosci Bioeng 114(1):80–85. doi:10.1016/j.jbiosc.2012.02.019

    PubMed  CAS  Google Scholar 

  • Song Y, Matsumoto K, Tanaka T, Kondo A, Taguchi S (2013) Single-step production of polyhydroxybutyrate from starch by using α-amylase cell-surface displaying system of Corynebacterium glutamicum. J Biosci Bioeng 115(1):12–14. doi:10.1016/j.jbiosc.2012.08.004

    PubMed  CAS  Google Scholar 

  • Stathopoulos C, Georgiou G, Earhart CF (1996) Characterization of Escherichia coli expressing an Lpp’OmpA(46–159)-PhoA fusion protein localized in the outer membrane. Appl Microbiol Biotechnol 45(1–2):112–119. doi:10.1007/s002530050657

    PubMed  CAS  Google Scholar 

  • Tanaka T, Kawabata H, Ogino C, Kondo A (2011) Creation of a cellooligosaccharide-assimilating Escherichia coli strain by displaying active beta-glucosidase on the cell surface via a novel anchor protein. Appl Environ Microbiol 77(17):6265–6270. doi:10.1128/aem.00459-11

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tanaka T, Yamada R, Ogino C, Kondo A (2012) Recent developments in yeast cell surface display toward extended applications in biotechnology. Appl Microbiol Biotechnol 95(3):577–591. doi:10.1007/s00253-012-4175-0

    PubMed  CAS  Google Scholar 

  • Tateno T, Fukuda H, Kondo A (2007) Production of l-Lysine from starch by Corynebacterium glutamicum displaying α-amylase on its cell surface. Appl Microbiol Biotechnol 74(6):1213–1220. doi:10.1007/s00253-006-0766-y

    PubMed  CAS  Google Scholar 

  • Tatsumi R, Wachi M (2008) TolC-dependent exclusion of porphyrins in Escherichia coli. J Bacteriol 190(18):6228–6233. doi:10.1128/jb.00595-08

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tsuchiya A, Kobayashi G, Yamamoto H, Sekiguchi J (1999) Production of a recombinant lipase artificially localized on the Bacillus subtilis cell surface. FEMS Microbiol Lett 176(2):373–378. doi:10.1111/j.1574-6968.1999.tb13686.x

    CAS  Google Scholar 

  • Tsuge Y, Tateno T, Sasaki K, Hasunuma T, Tanaka T, Kondo A (2013) Direct production of organic acids from starch by cell surface-engineered Corynebacterium glutamicum in anaerobic conditions. AMB Express 3(1):72. doi:10.1186/2191-0855-3-72

    PubMed  PubMed Central  Google Scholar 

  • Turner MA, Arellano F, Kozloff LM (1991) Components of ice nucleation structures of bacteria. J Bacteriol 173(20):6515–6527

    PubMed  CAS  PubMed Central  Google Scholar 

  • van Bloois E, Winter RT, Kolmar H, Fraaije MW (2011) Decorating microbes: surface display of proteins on Escherichia coli. Trends Biotechnol 29(2):79–86. doi:10.1016/j.tibtech.2010.11.003

    PubMed  Google Scholar 

  • van den Berg B (2010) Crystal structure of a full-length autotransporter. J Mol Biol 396(3):627–633. doi:10.1016/j.jmb.2009.12.061

    PubMed  Google Scholar 

  • van Ulsen P, Rahman SU, Jong WSP, Daleke-Schermerhorn MH, Luirink J (2013) Type V secretion: from biogenesis to biotechnology. Biochim Biophys Acta. doi:10.1016/j.bbamcr.2013.11.006

    PubMed  Google Scholar 

  • Wang AA, Mulchandani A, Chen W (2002) Specific adhesion to cellulose and hydrolysis of organophosphate nerve agents by a genetically engineered Escherichia coli strain with a surface-expressed cellulose-binding domain and organophosphorus hydrolase. Appl Environ Microbiol 68(4):1684–1689. doi:10.1128/aem.68.4.1684-1689.2002

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang N, Chang C, Yao Q, Li G, Qin L, Chen L, Chen K (2011) Display of Bombyx mori alcohol dehydrogenases on the Bacillus subtilis spore surface to enhance enzymatic activity under adverse conditions. PLoS ONE 6(6):e21454. doi:10.1371/journal.pone.0021454

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang W, Zhang Z, Ni H, Yang X, Li Q, Li L (2012) Decolorization of industrial synthetic dyes using engineered Pseudomonas putida cells with surface-immobilized bacterial laccase. Microb Cell Fact 11(1):75. doi:10.1186/1475-2859-11-75

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wentzel A, Christmann A, Adams T, Kolmar H (2001) Display of passenger proteins on the surface of Escherichia coli K-12 by the enterohemorrhagic E. coli intimin EaeA. J Bacteriol 183(24):7273–7284. doi:10.1128/jb.183.24.7273-7284.2001

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wilhelm S, Rosenau F, Kolmar H, Jaeger K-E (2011) Autotransporters with GDSL passenger domains: molecular physiology and biotechnological applications. Chembiochem 12(10):1476–1485. doi:10.1002/cbic.201100013

    PubMed  CAS  Google Scholar 

  • Wu P-H, Giridhar R, Wu W-T (2006) Surface display of transglucosidase on Escherichia coli by using the ice nucleation protein of Xanthomonas campestris and its application in glucosylation of hydroquinone. Biotechnol Bioeng 95(6):1138–1147. doi:10.1002/bit.21076

    PubMed  CAS  Google Scholar 

  • Xu X, Gao C, Zhang X, Che B, Ma C, Qiu J, Tao F, Xu P (2011) Production of n-acetyl-d-neuraminic acid by use of an efficient spore surface display system. Appl Environ Microbiol 77(10):3197–3201. doi:10.1128/aem.00151-11

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yamamoto K, Fujimatsu I, Komatsu K-I (1992) Purification and characterization of the nitrilase from Alcaligenes faecalis ATCC 8750 responsible for enantioselective hydrolysis of mandelonitrile. J Ferment Bioeng 73(6):425–430. doi:10.1016/0922-338X(92)90131-D

  • Yamashita C, K-i H, Kumagai K, Maeda T, Takada A, Yabe I, Kawasaki H, Wachi M (2013) L-glutamate secretion by the N-terminal domain of the Corynebacterium glutamicum NCgl1221 mechanosensitive channel. Biosci Biotechnol Biochem 77(5):1008–1013. doi:10.1271/bbb.120988

    PubMed  CAS  Google Scholar 

  • Yang C, Freudl R, Qiao C, Mulchandani A (2010) Cotranslocation of methyl parathion hydrolase to the periplasm and of organophosphorus hydrolase to the cell surface of Escherichia coli by the tat pathway and ice nucleation protein display system. Appl Environ Microbiol 76(2):434–440. doi:10.1128/aem.02162-09

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yao W, Chu C, Deng X, Zhang Y, Liu M, Zheng P, Sun Z (2009) Display of α-amylase on the surface of Corynebacterium glutamicum cells by using NCgl1221 as the anchoring protein, and production of glutamate from starch. Arch Microbiol 191(10):751–759. doi:10.1007/s00203-009-0506-7

    PubMed  CAS  Google Scholar 

  • Yao W, Fan W, Xu X, Deng X, Zhang W (2012) A novel cell-surface display system for heterologous gene expression in Escherichia coli by using NCgl1221423 as the anchoring protein. Afr J Microbiol 6(14):3564–3570. doi:10.5897/ajmr11.1616

    CAS  Google Scholar 

  • Yim S-K (2010) Surface display of heme- and diflavin-containing cytochrome P450 BM3 in Escherichia coli: a whole-cell biocatalyst for oxidation. J Microbiol Biotechnol 20(4):712–717. doi:10.4014/jmb.0910.10043

    PubMed  CAS  Google Scholar 

  • Yim S-K, Jung H-C, Pan J-G, Kang H-S, Ahn T, Yun C-H (2006) Functional expression of mammalian NADPH–cytochrome P450 oxidoreductase on the cell surface of Escherichia coli. Protein Expr Purif 49(2):292–298. doi:10.1016/j.pep.2006.05.013

    PubMed  CAS  Google Scholar 

  • Yomano LP, York SW, Ingram LO (1998) Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol Biotechnol 20(2):132–138. doi:10.1038/sj.jim.2900496

    PubMed  CAS  Google Scholar 

  • Zhai Y, Zhang K, Huo Y, Zhu Y, Zhou Q, Lu J, Black I, Pang X, Roszak AW, Zhang X, Isaacs NW, Sun F (2011) Autotransporter passenger domain secretion requires a hydrophobic cavity at the extracellular entrance of the β-domain pore. Biochem J 435(3):577–587. doi:10.1042/bj20101548

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Jose.

Additional information

Jan Schüürmann and Paul Quehl contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schüürmann, J., Quehl, P., Festel, G. et al. Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application. Appl Microbiol Biotechnol 98, 8031–8046 (2014). https://doi.org/10.1007/s00253-014-5897-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5897-y

Keywords

Navigation