Skip to main content

Artificial MicroRNAs for Specific Gene Silencing in Rice

  • Protocol
  • First Online:
Rice Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 956))

Abstract

Artificial microRNAs (amiRNAs) have been shown to facilitate efficient gene silencing with high specificity to the intended target gene(s). For the plant breeder, gene silencing by artificial miRNAs will certainly accelerate gene discovery, because it allows targeting of all genes in a mapping interval, independent of the genetic background. In addition, beneficial knockout phenotypes can easily be transferred between varieties and across incompatibility barriers. This chapter describes the generation and application of amiRNAs as a gene silencing tool in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krishnan A, Guiderdoni E, An G et al (2009) Mutant resources in rice for functional genomics of the grasses. Plant Physiol 149:165–170

    Article  PubMed  CAS  Google Scholar 

  2. Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8:884–896

    Article  PubMed  CAS  Google Scholar 

  3. Tang G, Galili G, Zhuang X (2007) RNAi and microRNA: breakthrough technologies for the improvement of plant nutritional value and metabolic engineering. Metabolomics 3:357–369

    Article  CAS  Google Scholar 

  4. Palatnik JF, Allen E, Wu X et al (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263

    Article  PubMed  CAS  Google Scholar 

  5. Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  PubMed  CAS  Google Scholar 

  6. Warthmann N, Chen H, Ossowski S, Weigel D, Herve P (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS One 3:e1829

    Article  PubMed  Google Scholar 

  7. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  PubMed  CAS  Google Scholar 

  8. Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527

    Article  PubMed  CAS  Google Scholar 

  9. Ossowski O, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    Article  PubMed  CAS  Google Scholar 

  10. Vaucheret H (2005) MicroRNA-dependent trans-acting siRNA production. Sci STKE 2005:pe43

    Article  PubMed  Google Scholar 

  11. Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18:1134–1151

    Article  PubMed  CAS  Google Scholar 

  12. Niu QW, Lin SS, Reyes JL et al (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428

    Article  PubMed  CAS  Google Scholar 

  13. Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18:2237–2242

    Article  PubMed  CAS  Google Scholar 

  14. Qu J, Ye J, Fang R (2007) Artificial miRNA-mediated virus resistance in plants. J Virol 81:6690–6699

    Article  PubMed  CAS  Google Scholar 

  15. Khraiwesh B, Ossowski S, Weigel D, Reski R, Frank W (2008) Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol 148:684–693

    Article  PubMed  CAS  Google Scholar 

  16. Chen S, Songkumarn P, Liu J, Wang G (2009) A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiol 150:1111–1121

    Article  PubMed  CAS  Google Scholar 

  17. Michniewicz M, Zago MK, Abas L et al (2007) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130:1044–1056

    Article  PubMed  CAS  Google Scholar 

  18. Abouelhoda MI, Kurtz S, Ohlebusch E (2004) Replacing suffix trees with enhanced suffix arrays. J Discrete Algorithm 2:53–86

    Article  Google Scholar 

  19. Schneeberger K, Hagmann J, Ossowski S et al (2009) Simultaneous alignment of short reads against multiple genomes. Genome Biol 10:R98

    Article  PubMed  Google Scholar 

  20. Molnar A, Bassett A, Thuenemann E et al (2009) Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J 58:165–174

    Article  PubMed  CAS  Google Scholar 

  21. Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:D109–D111

    Article  PubMed  CAS  Google Scholar 

  22. Ameres SL, Martinez J, Schroeder R (2007) Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130:101–112

    Article  PubMed  CAS  Google Scholar 

  23. Muckstein U, Tafer H, Hackermuller J, Bernhart SH, Stadler PF, Hofacker IL (2006) Thermodynamics of RNA-RNA binding. Bioinformatics 22:1177–1182

    Article  PubMed  Google Scholar 

  24. Matzke M, Kanno T, Huettel B, Daxinger L, Matzke AJ (2006) RNA-directed DNA methylation and pol IVb in Arabidopsis. Cold Spring Harb Symp Quant Biol 71:449–459

    Article  PubMed  CAS  Google Scholar 

  25. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  PubMed  CAS  Google Scholar 

  26. Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  PubMed  CAS  Google Scholar 

  27. Gandikota M, Birkenbihl RP, Hohmann S, Cardon GH, Saedler H, Huijser P (2007) The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49:683–693

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Hao Chen and Philippe Hervé, who generated and evaluated the first transgenic rice plants (Nipponbare and IR64) carrying aMIRNA transgenes at the International Rice Research Institute in the Philippines (IRRI). Markus Riester contributed to earlier versions of WMD and Joffrey Fitz codeveloped AmiRNA/WMD3; we are further thankful to everybody who contributed by sharing technical expertise and discussion, namely, Alexis Maizel, Javier Palatnik, Heike Wollmann, and Wolfgang Busch. Work on small RNAs in the Weigel laboratory is supported by European Community FP6 IP SIROCCO (contract LSHG-CT-2006-037900) and by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman Warthmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Warthmann, N., Ossowski, S., Schwab, R., Weigel, D. (2013). Artificial MicroRNAs for Specific Gene Silencing in Rice. In: Yang, Y. (eds) Rice Protocols. Methods in Molecular Biology, vol 956. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-194-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-194-3_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-193-6

  • Online ISBN: 978-1-62703-194-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics