Skip to main content

Design, Construction, and Validation of Artificial MicroRNA Vectors Using Agrobacterium-Mediated Transient Expression System

  • Protocol
  • First Online:
Biotechnology of Plant Secondary Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1405))

Abstract

Artificial microRNA (amiRNA) technology utilizes microRNA (miRNA) biogenesis pathway to produce artificially selected small RNAs using miRNA gene backbone. It provides a feasible strategy for inducing loss of gene function, and has been applied in functional genomics study, improvement of crop quality and plant virus disease resistance. A big challenge in amiRNA applications is the unpredictability of silencing efficacy of the designed amiRNAs and not all constructed amiRNA candidates would be expressed effectively in plant cells. We and others found that high efficiency and specificity in RNA silencing can be achieved by designing amiRNAs with perfect or almost perfect sequence complementarity to their targets. In addition, we recently demonstrated that Agrobacterium-mediated transient expression system can be used to validate amiRNA constructs, which provides a simple, rapid and effective method to select highly expressible amiRNA candidates for stable genetic transformation. Here, we describe the methods for design of amiRNA candidates with perfect or almost perfect base-pairing to the target gene or gene groups, incorporation of amiRNA candidates in miR168a gene backbone by one step inverse PCR amplification, construction of plant amiRNA expression vectors, and assay of transient expression of amiRNAs in Nicotiana benthamiana through agro-infiltration, small RNA extraction, and amiRNA Northern blot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhagwat B, Chi M, Su L, Tang H, Tang G, Xiang Y (2013) An in vivo transient expression system can be applied for rapid and effective selection of artificial microRNA constructs for plant stable genetic transformation. J Genet Genomics 40:261–270

    Google Scholar 

  2. Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428

    Article  CAS  PubMed  Google Scholar 

  3. Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    Article  CAS  PubMed  Google Scholar 

  4. Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Chi M, Bhagwat B, Lane WD, Tang G, Su Y, Sun R, Oomah BD, Wiersma PA, Xiang Y (2014) Reduced polyphenol oxidase gene expression and enzymatic browning in potato (Solanum tuberosum L.) with artificial microRNAs. BMC Plant Biol 14:62

    Article  PubMed Central  PubMed  Google Scholar 

  6. Deveson I, Li J, Millar AA (2013) MicroRNAs with analogous target complementarities perform with highly variable efficacies in Arabidopsis. FEBS Lett 587:3703–3708

    Article  CAS  PubMed  Google Scholar 

  7. Li JF, Chung HS, Niu Y, Bush J, McCormack M, Sheen J (2013) Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants. Plant Cell 25:1507–1522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Eamens AL, McHale M, Waterhouse PM (2014) The use of artificial microRNA technology to control gene expression in Arabidopsis thaliana. Methods Mol Biol 1062:211–224

    Article  PubMed  Google Scholar 

  9. Li JF, Zhang D, Sheen J (2014) Epitope-tagged protein-based artificial miRNA screens for optimized gene silencing in plants. Nat Protoc 9:939–949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Schwartz T, Blobel G (2003) Structural basis for the function of the beta subunit of the eukaryotic signal recognition particle receptor. Cell 112:793–803

    Article  CAS  PubMed  Google Scholar 

  12. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    Article  CAS  PubMed  Google Scholar 

  13. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  CAS  PubMed  Google Scholar 

  14. Guo Y, Han Y, Ma J, Wang H, Sang X, Li M (2014) Undesired small RNAs originate from an artificial microRNA precursor in transgenic petunia (Petunia hybrida). PLoS One 9(6):e98783

    Article  PubMed Central  PubMed  Google Scholar 

  15. Park W, Zhai J, Lee JY (2009) Highly efficient gene silencing using perfect complementary artificial miRNA targeting AP1 or heteromeric artificial miRNA targeting AP1 and CAL genes. Plant Cell Rep 28:469–480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ai T, Zhang L, Gao Z, Zhu CX, Guo X (2011) Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants. Plant Biol 13:304–316

    Article  CAS  PubMed  Google Scholar 

  17. Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18:1134–1151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kung YJ, Lin SS, Huang YL, Chen TC, Harish SS, Chua NH, Yeh SD (2012) Multiple artificial microRNAs targeting conserved motifs of the replicase gene confer robust transgenic resistance to negative-sense single-stranded RNA plant virus. Mol Plant Pathol 13:303–317

    Article  CAS  PubMed  Google Scholar 

  19. Qu J, Ye J, Fang R (2007) Artificial microRNA-mediated virus resistance in plants. J Virol 81:6690–6699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Tang G, Yan J, Gu Y, Qiao M, Fan R, Mao Y, Tang X (2012) Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs. Methods 58:118–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Haley B, Zamore PD (2004) Kinetic analysis of the RNAi enzyme complex. Nat Struct Mol Biol 11:599–606

    Article  CAS  PubMed  Google Scholar 

  22. Johansen LK, Carrington JC (2001) Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol 126:930–938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guiliang Tang or Yu Xiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bhagwat, B., Chi, M., Han, D., Tang, H., Tang, G., Xiang, Y. (2016). Design, Construction, and Validation of Artificial MicroRNA Vectors Using Agrobacterium-Mediated Transient Expression System. In: Fett-Neto, A. (eds) Biotechnology of Plant Secondary Metabolism. Methods in Molecular Biology, vol 1405. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3393-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3393-8_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3391-4

  • Online ISBN: 978-1-4939-3393-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics