Skip to main content

Advertisement

Log in

Personalized ex vivo multiple peptide enrichment and detection of T cells reactive to multiple tumor-associated antigens in prostate cancer patients

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Personalized peptide vaccination is a promising immunotherapeutic approach in prostate cancer (PCa). We therefore examined whether an approach, utilizing personalized multiple peptide-mediated ex vivo enrichment with effector T cells reactive to multiple tumor-associated antigens (TAAs), could be employed as a basis for the development of T cell immunotherapy of PCa. In this study, we used the non-adherent fraction (lymphocytes) of cryopreserved peripheral blood mononuclear cells from a leukapheretic product of biochemically recurrent (BR, n = 14) and metastatic hormone-refractory (HR, n = 12) PCa patients. The lymphocytes were primed with a pool of mixed overlapping peptides derived from 6 PCa TAAs–PSA, PAP, NY-ESO-1, MAGE-A1, MAGE-A3 and MAGE-A4. After 2 weeks of culture, the cells were stimulated with the peptides and T cell reactivity determined by externalization of CD107a. No TAAs-reactive effector T cells were detected in the patient’s lymphocytes after their reconstitution. However, following their priming with the TAAs-derived peptides and 2-week culturing, the lymphocytes became enriched with polyclonal TAAs-reactive effector CD8+ T cells in 8 out of 14 BR and 5 out of 12 HR patients. No such reactive CD8+ T cells were detected in cultured lymphocytes without the peptide priming. Stimulation of the responding cultures with peptides derived from individual TAAs revealed a unique repertoire of the reactive CD8+ T cells. Our strategy revealed that the personalized multiple peptide-mediated ex vivo enrichment with multiple TAAs-reactive T cells in the PCa patient’s lymphocytes is a viable approach for development of T cell immunotherapy of PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACT:

Adoptive cell transfer

TAAs:

Tumor-associated antigens

PCa:

Prostate cancer

TILs:

Tumor-infiltrating lymphocytes

PSA:

Prostate-specific antigen

PAP:

Prostatic acid phosphatase

PSMA:

Prostate-specific membrane antigen

DCs:

Dendritic cells

PPV:

Personalized peptide vaccination

PBMCs:

Peripheral blood mononuclear cells

NY-ESO-1:

New York esophageal squamous cell carcinoma-1

MAGE-A:

Melanoma-associated antigen

BR:

Biochemically recurrent prostate cancer

HR:

Hormone-refractory prostate cancer

References

  1. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348(6230):62–8. doi:10.1126/science.aaa4967.

    Article  CAS  PubMed  Google Scholar 

  2. Zhong S, Malecek K, Johnson LA, Yu Z, Vega-Saenz de Miera E, Darvishian F, et al. T-cell receptor affinity and avidity defines antitumor response and autoimmunity in T-cell immunotherapy. Proc Natl Acad Sci U S A. 2013;110(17):6973–8. doi:10.1073/pnas.1221609110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vigano S, Utzschneider DT, Perreau M, Pantaleo G, Zehn D, Harari A. Functional avidity: a measure to predict the efficacy of effector T cells? Clin Dev Immunol. 2012;2012:153863. doi:10.1155/2012/153863.

    PubMed  PubMed Central  Google Scholar 

  4. Ioannidou K, Baumgaertner P, Gannon PO, Speiser MF, Allard M, Hebeisen M, et al. Heterogeneity assessment of functional T cell avidity. Sci Rep. 2017;7:44320. doi:10.1038/srep44320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Parkhurst M, Gros A, Pasetto A, Prickett T, Crystal JS, Robbins P, et al. Isolation of T-Cell receptors specifically reactive with mutated tumor-associated antigens from tumor-infiltrating lymphocytes based on CD137 expression. Clin Cancer Res. 2016;. doi:10.1158/1078-0432.CCR-16-2680.

    PubMed  Google Scholar 

  6. Gordon IO, Tretiakova MS, Noffsinger AE, Hart J, Reuter VE, Al-Ahmadie HA. Prostate-specific membrane antigen expression in regeneration and repair. Mod Pathol. 2008;21(12):1421–7. doi:10.1038/modpathol.2008.143.

    Article  CAS  PubMed  Google Scholar 

  7. Vavrova K, Vrabcova P, Filipp D, Bartunkova J, Horvath R. Generation of T cell effectors using tumor cell-loaded dendritic cells for adoptive T cell therapy. Med Oncol. 2016;33(12):136. doi:10.1007/s12032-016-0855-4.

    Article  PubMed  Google Scholar 

  8. Kimura T, Egawa S, Uemura H. Personalized peptide vaccines and their relation to other therapies in urological cancer. Nat Rev Urol. 2017;. doi:10.1038/nrurol.2017.77.

    PubMed  Google Scholar 

  9. Noguchi M, Kakuma T, Uemura H, Nasu Y, Kumon H, Hirao Y, et al. A randomized phase II trial of personalized peptide vaccine plus low dose estramustine phosphate (EMP) versus standard dose EMP in patients with castration resistant prostate cancer. Cancer Immunol Immunother: CII. 2010;59(7):1001–9. doi:10.1007/s00262-010-0822-4.

    Article  CAS  PubMed  Google Scholar 

  10. Podrazil M, Horvath R, Becht E, Rozkova D, Bilkova P, Sochorova K, et al. Phase I/II clinical trial of dendritic-cell based immunotherapy (DCVAC/PCa) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer. Oncotarget. 2015;6(20):18192–205. doi:10.18632/oncotarget.4145.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fucikova J, Podrazil M, Jarolim L, Bilkova P, Hensler M, Becht E et al. Phase I/II trial of dendritic-cell based active cellular immunotherapy with DCVAC/PCa in patients with rising PSA after primary prostatectomy or salvage radiotherapy for the prostate cancer. Cancer Immunol Immunother: CII. 2017 (In Press).

  12. Rožková D, Tišerová H, Fučíková J, Lašt’ovička J, Podrazil M, Ulčová H, et al. FOCUS on FOCIS: combined chemo-immunotherapy for the treatment of hormone-refractory metastatic prostate cancer. Clin Immunol. 2009;131(1):1–10. doi:10.1016/j.clim.2009.01.001.

    Article  PubMed  Google Scholar 

  13. Fucikova J, Moserova I, Truxova I, Hermanova I, Vancurova I, Partlova S, et al. High hydrostatic pressure induces immunogenic cell death in human tumor cells. Int J Cancer. 2014;135(5):1165–77. doi:10.1002/ijc.28766.

    Article  CAS  PubMed  Google Scholar 

  14. Hudolin T, Juretic A, Spagnoli GC, Pasini J, Bandic D, Heberer M, et al. Immunohistochemical expression of tumor antigens MAGE-A1, MAGE-A3/4, and NY-ESO-1 in cancerous and benign prostatic tissue. Prostate. 2006;66(1):13–8. doi:10.1002/pros.20312.

    Article  CAS  PubMed  Google Scholar 

  15. Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M, et al. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods. 2003;281(1–2):65–78.

    Article  CAS  PubMed  Google Scholar 

  16. Rubio V, Stuge TB, Singh N, Betts MR, Weber JS, Roederer M, et al. Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat Med. 2003;9(11):1377–82. doi:10.1038/nm942.

    Article  CAS  PubMed  Google Scholar 

  17. Japp AS, Kursunel MA, Meier S, Malzer JN, Li X, Rahman NA, et al. Dysfunction of PSA-specific CD8+ T cells in prostate cancer patients correlates with CD38 and Tim-3 expression. Cancer Immunol Immunother: CII. 2015;64(11):1487–94. doi:10.1007/s00262-015-1752-y.

    Article  CAS  PubMed  Google Scholar 

  18. Hebeisen M, Allard M, Gannon PO, Schmidt J, Speiser DE, Rufer N. Identifying individual T cell receptors of optimal avidity for tumor antigens. Front Immunol. 2015;6:582. doi:10.3389/fimmu.2015.00582.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Maia MC, Hansen AR. A comprehensive review of immunotherapies in prostate cancer. Crit Rev Oncol/Hematol. 2017;113:292–303. doi:10.1016/j.critrevonc.2017.02.026.

    Article  Google Scholar 

  20. Dalgleish AG. Rationale for combining immunotherapy with chemotherapy. Immunotherapy. 2015;7(3):309–16. doi:10.2217/imt.14.111.

    Article  CAS  PubMed  Google Scholar 

  21. Kang J, Demaria S, Formenti S. Current clinical trials testing the combination of immunotherapy with radiotherapy. J Immunother Cancer. 2016;4:51. doi:10.1186/s40425-016-0156-7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kalina JL, Neilson DS, Comber AP, Rauw JM, Alexander AS, Vergidis J, et al. Immune modulation by androgen deprivation and radiation therapy: implications for prostate cancer immunotherapy. Cancers. 2017;9(2):13. doi:10.3390/cancers9020013.

    Article  PubMed Central  Google Scholar 

  23. Noguchi M, Uemura H, Naito S, Akaza H, Yamada A, Itoh K. A phase i study of personalized peptide vaccination using 14 kinds of vaccine in combination with low-dose estramustine in HLA-A24-positive patients with castration-resistant prostate cancer. Prostate. 2011;71(5):470–9. doi:10.1002/pros.21261.

    Article  CAS  PubMed  Google Scholar 

  24. Noguchi M, Moriya F, Suekane S, Ohnishi R, Matsueda S, Sasada T, et al. A phase II trial of personalized peptide vaccination in castration-resistant prostate cancer patients: prolongation of prostate-specific antigen doubling time. BMC Cancer. 2013;13:613. doi:10.1186/1471-2407-13-613.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Noguchi M, Arai G, Matsumoto K, Naito S, Moriya F, Suekane S, et al. Phase I trial of a cancer vaccine consisting of 20 mixed peptides in patients with castration-resistant prostate cancer: dose-related immune boosting and suppression. Cancer Immunol Immunother: CII. 2015;64(4):493–505. doi:10.1007/s00262-015-1660-1.

    Article  CAS  PubMed  Google Scholar 

  26. Landsberg J, Kohlmeyer J, Renn M, Bald T, Rogava M, Cron M, et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature. 2012;490(7420):412–6. doi:10.1038/nature11538.

    Article  CAS  PubMed  Google Scholar 

  27. Bethune MT, Joglekar AV. Personalized T cell-mediated cancer immunotherapy: progress and challenges. Curr Opin Biotechnol. 2017;48:142–52. doi:10.1016/j.copbio.2017.03.024.

    Article  CAS  PubMed  Google Scholar 

  28. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74. doi:10.1126/science.aaa4971.

    Article  CAS  PubMed  Google Scholar 

  29. Olsson AY, Bjartell A, Lilja H, Lundwall A. Expression of prostate-specific antigen (PSA) and human glandular kallikrein 2 (hK2) in ileum and other extraprostatic tissues. Int J Cancer. 2005;113(2):290–7. doi:10.1002/ijc.20605.

    Article  CAS  PubMed  Google Scholar 

  30. Graddis TJ, McMahan CJ, Tamman J, Page KJ, Trager JB. Prostatic acid phosphatase expression in human tissues. Int J Clin Exp Pathol. 2011;4(3):295–306.

    PubMed  PubMed Central  Google Scholar 

  31. Suzuki N, Maeda Y, Tanaka S, Hida N, Mine T, Yamamoto K, et al. Detection of peptide-specific cytotoxic T-lymphocyte precursors used for specific immunotherapy of pancreatic cancer. Int J Cancer. 2002;98(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  32. Maeda Y, Ito M, Harashima N, Nakatsura T, Hida N, Imai N, et al. Cleavage and polyadenylation specificity factor (CPSF)-derived peptides can induce HLA-A2-restricted and tumor-specific CTLs in the majority of gastrointestinal cancer patients. Int J Cancer. 2002;99(3):409–17. doi:10.1002/ijc.10377.

    Article  CAS  PubMed  Google Scholar 

  33. Hida N, Maeda Y, Katagiri K, Takasu H, Harada M, Itoh K. A simple culture protocol to detect peptide-specific cytotoxic T lymphocyte precursors in the circulation. Cancer Immunol Immunother: CII. 2002;51(4):219–28. doi:10.1007/s00262-002-0273-7.

    Article  CAS  PubMed  Google Scholar 

  34. Kim MT, Kurup SP, Starbeck-Miller GR, Harty JT. Manipulating memory CD8 T cell numbers by timed enhancement of IL-2 signals. J Immunol. 2016;197(5):1754–61. doi:10.4049/jimmunol.1600641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim MT, Richer MJ, Gross BP, Norian LA, Badovinac VP, Harty JT. Enhancing dendritic cell-based immunotherapy with IL-2/monoclonal antibody complexes for control of established tumors. J Immunol. 2015;195(9):4537–44. doi:10.4049/jimmunol.1501071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gizinski AM, Fox DA, Sarkar S. Pharmacotherapy: concepts of pathogenesis and emerging treatments. Co-stimulation and T cells as therapeutic targets. Best practice & research. Clin Rheumatol. 2010;24(4):463–77. doi:10.1016/j.berh.2009.12.015.

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the clinical research staff, routine laboratory staff and our technicians for their assistance. We thank Dr. Alasdair M. Gilfillan for a critical review of the manuscript.

Funding

Research in the authors’ laboratories was supported by funding of the Charles University—Project GA UK No. 188215 and PRIMUS/MED/12, the Ministry of Health, Czech Republic—Project AZV 16-28135A and the conceptual development fund of research organization University Hospital Motol, Prague, Czech Republic 00064203.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Smrz.

Ethics declarations

Conflict of interest

JB a MP are part-time employees of SOTIO, a.s., a biotech company developing cell-based immunotherapy. JB is a minority shareholder of this company. PT, ZS, KV, Dmitry Stakheev and Daniel Smrz declare no financial or commercial conflict of interest.

Ethical approval

This study was approved by the ethics committee for multicentric studies and evaluation of the Faculty Hospital Motol, Prague, Czech Republic. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 3159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taborska, P., Stakheev, D., Strizova, Z. et al. Personalized ex vivo multiple peptide enrichment and detection of T cells reactive to multiple tumor-associated antigens in prostate cancer patients. Med Oncol 34, 173 (2017). https://doi.org/10.1007/s12032-017-1035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-017-1035-x

Keywords

Navigation