Skip to main content

Advertisement

Log in

Generation of T cell effectors using tumor cell-loaded dendritic cells for adoptive T cell therapy

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Adoptive T cell transfer has been shown to be an effective method used to boost tumor-specific immune responses in several types of malignancies. In this study, we set out to optimize the ACT protocol for the experimental treatment of prostate cancer. The protocol includes a pre-stimulation step whereby T cells were primed with autologous dendritic cells loaded with the high hydrostatic pressure-treated prostate cancer cell line, LNCaP. Primed T cells were further expanded in vitro with anti-CD3/CD28 Dynabeads in the WAVE bioreactor 2/10 system and tested for cytotoxicity. Our data indicates that the combination of pre-stimulation and expansion steps resulted in the induction and enrichment of tumor-responsive CD4+ and CD8+ T cells at clinically relevant numbers. The majority of both CD4+ and CD8+ IFN-γ producing cells were CD62L, CCR7 and CD57 negative but CD28 and CD27 positive, indicating an early antigen experienced phenotype in non-terminal differentiation phase. Expanded T cells showed significantly greater cytotoxicity against LNCaP cells compared to the control SKOV-3, an ovarian cancer line. In summary, our results suggest that the ACT approach together with LNCaP-loaded dendritic cells provides a viable way to generate prostate cancer reactive T cell effectors that are capable of mounting efficient and targeted antitumor responses and can be thus considered for further testing in a clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29. doi:10.3322/caac.21254.

    Article  PubMed  Google Scholar 

  2. Rosenberg SA, Dudley ME. Cancer regression in patients with metastatic melanoma after the transfer of autologous antitumor lymphocytes. Proc Natl Acad Sci USA. 2004;101(Suppl 2):14639–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Radvanyi LG, Bernatchez C, Zhang M, Fox PS, Miller P, Chacon J, et al. Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin Cancer Res. 2012;18(24):6758–70. doi:10.1158/1078-0432.CCR-12-1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Besser MJ, Shapira-Frommer R, Treves AJ, Zippel D, Itzhaki O, Hershkovitz L, et al. Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin Cancer Res. 2010;16(9):2646–55. doi:10.1158/1078-0432.CCR-10-0041.

    Article  CAS  PubMed  Google Scholar 

  5. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550–7. doi:10.1158/1078-0432.CCR-11-0116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA. Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother. 2003;26(4):332–42.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Powell DJ Jr, Dudley ME, Hogan KA, Wunderlich JR, Rosenberg SA. Adoptive transfer of vaccine-induced peripheral blood mononuclear cells to patients with metastatic melanoma following lymphodepletion. J Immunol. 2006;177(9):6527–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med. 2005;202(7):907–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298(5594):850–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Andersen R, Donia M, Westergaard MC, Pedersen M, Hansen M, Svane IM. Tumor infiltrating lymphocyte therapy for ovarian cancer and renal cell carcinoma. Hum Vaccines Immunother. 2015;11(12):2790–5. doi:10.1080/21645515.2015.1075106.

    Article  Google Scholar 

  11. Figlin RA, Pierce WC, Kaboo R, Tso CL, Moldawer N, Gitlitz B, et al. Treatment of metastatic renal cell carcinoma with nephrectomy, interleukin-2 and cytokine-primed or CD8(+) selected tumor infiltrating lymphocytes from primary tumor. J Urol. 1997;158(3 Pt 1):740–5.

    Article  CAS  PubMed  Google Scholar 

  12. Trickett A, Kwan YL. T cell stimulation and expansion using anti-CD3/CD28 beads. J Immunol Methods. 2003;275(1–2):251–5.

    Article  CAS  PubMed  Google Scholar 

  13. Huang J, Khong HT, Dudley ME, El-Gamil M, Li YF, Rosenberg SA, et al. Survival, persistence, and progressive differentiation of adoptively transferred tumor-reactive T cells associated with tumor regression. J Immunother. 2005;28(3):258–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li Y, Kurlander RJ. Comparison of anti-CD3 and anti-CD28-coated beads with soluble anti-CD3 for expanding human T cells: differing impact on CD8 T cell phenotype and responsiveness to restimulation. J Transl Med. 2010;8:104. doi:10.1186/1479-5876-8-104.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Spisek R, Bougras G, Ebstein F, Masse D, Meflah K, McIlroy D, et al. Transient exposure of dendritic cells to maturation stimuli is sufficient to induce complete phenotypic maturation while preserving their capacity to respond to subsequent restimulation. Cancer Immunol Immunother. 2003;52(7):445–54.

    Article  CAS  PubMed  Google Scholar 

  16. Truxova I, Pokorna K, Kloudova K, Partlova S, Spisek R, Fucikova J. Day 3 Poly (I:C)-activated dendritic cells generated in Cell Gro for use in cancer immunotherapy trials are fully comparable to standard Day 5 DCs. Immunol Lett. 2014;160(1):39–49. doi:10.1016/j.imlet.2014.03.010.

    Article  CAS  PubMed  Google Scholar 

  17. Carlsson B, Forsberg O, Bengtsson M, Totterman TH, Essand M. Characterization of human prostate and breast cancer cell lines for experimental T cell-based immunotherapy. Prostate. 2007;67(4):389–95. doi:10.1002/pros.20498.

    Article  PubMed  Google Scholar 

  18. zum Buschenfelde CM, Metzger J, Hermann C, Nicklisch N, Peschel C, Bernhard H. The generation of both T killer and Th cell clones specific for the tumor-associated antigen HER2 using retrovirally transduced dendritic cells. J Immunol. 2001;167(3):1712–9.

    Article  CAS  PubMed  Google Scholar 

  19. Fucikova J, Moserova I, Truxova I, Hermanova I, Vancurova I, Partlova S, et al. High hydrostatic pressure induces immunogenic cell death in human tumor cells. Int J Cancer. 2014;135(5):1165–77. doi:10.1002/ijc.28766.

    Article  CAS  PubMed  Google Scholar 

  20. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol. 1984;133(4):1710–5.

    CAS  PubMed  Google Scholar 

  21. Anichini A, Molla A, Vegetti C, Bersani I, Zappasodi R, Arienti F, et al. Tumor-reactive CD8 + early effector T cells identified at tumor site in primary and metastatic melanoma. Cancer Res. 2010;70(21):8378–87. doi:10.1158/0008-5472.CAN-10-2028.

    Article  CAS  PubMed  Google Scholar 

  22. Lim SC, Choi JE, Kang HS, Han SI. Ursodeoxycholic acid switches oxaliplatin-induced necrosis to apoptosis by inhibiting reactive oxygen species production and activating p53-caspase 8 pathway in HepG2 hepatocellular carcinoma. Int J Cancer. 2010;126(7):1582–95. doi:10.1002/ijc.24853.

    CAS  PubMed  Google Scholar 

  23. Dang Y, Knutson KL, Goodell V, dela Rosa C, Salazar LG, Higgins D, et al. Tumor antigen-specific T-cell expansion is greatly facilitated by in vivo priming. Clinical Cancer Res. 2007;13(6):1883–91.

    Article  CAS  Google Scholar 

  24. Haque T, Wilkie GM, Jones MM, Higgins CD, Urquhart G, Wingate P, et al. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood. 2007;110(4):1123–31. doi:10.1182/blood-2006-12-063008.

    Article  CAS  PubMed  Google Scholar 

  25. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74. doi:10.1126/science.aaa4971.

    Article  CAS  PubMed  Google Scholar 

  26. Rasmussen AM, Borelli G, Hoel HJ, Lislerud K, Gaudernack G, Kvalheim G, et al. Ex vivo expansion protocol for human tumor specific T cells for adoptive T cell therapy. J Immunol Methods. 2010;355(1–2):52–60. doi:10.1016/j.jim.2010.02.004.

    Article  CAS  PubMed  Google Scholar 

  27. Adkins I, Fucikova J, Garg AD, Agostinis P, Spisek R. Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy. Oncoimmunology. 2014;3(12):e968434. doi:10.4161/21624011.2014.968434.

    Article  PubMed  Google Scholar 

  28. Mikyskova R, Stepanek I, Indrova M, Bieblova J, Simova J, Truxova I, et al. Dendritic cells pulsed with tumor cells killed by high hydrostatic pressure induce strong immune responses and display therapeutic effects both in murine TC-1 and TRAMP-C2 tumors when combined with docetaxel chemotherapy. Int J Oncol. 2016;48(3):953–64. doi:10.3892/ijo.2015.3314.

    PubMed  Google Scholar 

  29. Topalian SL, Muul LM, Solomon D, Rosenberg SA. Expansion of human tumor infiltrating lymphocytes for use in immunotherapy trials. J Immunol Methods. 1987;102(1):127–41.

    Article  CAS  PubMed  Google Scholar 

  30. Ellebaek E, Iversen TZ, Junker N, Donia M, Engell-Noerregaard L, Met O, et al. Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients. J transl Med. 2012;10:169. doi:10.1186/1479-5876-10-169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andersen R, Donia M, Ellebaek E, Borch TH, Kongsted P, Iversen TZ, et al. Long-lasting complete responses in patients with metastatic melanoma after adoptive cell therapy with tumor-infiltrating lymphocytes and an attenuated IL2 regimen. Clin Cancer Res. 2016;22(15):3734–45. doi:10.1158/1078-0432.CCR-15-1879.

    Article  CAS  PubMed  Google Scholar 

  32. Nishikawa H, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Curr Opin Immunol. 2014;27:1–7. doi:10.1016/j.coi.2013.12.005.

    Article  CAS  PubMed  Google Scholar 

  33. Schabowsky RH, Madireddi S, Sharma R, Yolcu ES, Shirwan H. Targeting CD4+ CD25+ FoxP3+ regulatory T-cells for the augmentation of cancer immunotherapy. Curr Opin Investig Drugs. 2007;8(12):1002–8.

    CAS  PubMed  Google Scholar 

  34. Wilke CM, Wu K, Zhao E, Wang G, Zou W. Prognostic significance of regulatory T cells in tumor. Int J Cancer. 2010;127(4):748–58. doi:10.1002/ijc.25464.

    CAS  PubMed  Google Scholar 

  35. Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR, et al. CD8 + T cell immunity against a tumor/self-antigen is augmented by CD4 + T helper cells and hindered by naturally occurring T regulatory cells. J Immunol. 2005;174(5):2591–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Powell DJ Jr, Dudley ME, Robbins PF, Rosenberg SA. Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood. 2005;105(1):241–50. doi:10.1182/blood-2004-06-2482.

    Article  CAS  PubMed  Google Scholar 

  37. Hendriks J, Gravestein LA, Tesselaar K, van Lier RA, Schumacher TN, Borst J. CD27 is required for generation and long-term maintenance of T cell immunity. Nat Immunol. 2000;1(5):433–40. doi:10.1038/80877.

    Article  CAS  PubMed  Google Scholar 

  38. Somerville RP, Devillier L, Parkhurst MR, Rosenberg SA, Dudley ME. Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the WAVE(R) bioreactor. J transl Med. 2012;10:69. doi:10.1186/1479-5876-10-69.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cartellieri M, Bachmann M, Feldmann A, Bippes C, Stamova S, Wehner R, et al. Chimeric antigen receptor-engineered T cells for immunotherapy of cancer. J Biomed Biotechnol. 2010;2010:956304. doi:10.1155/2010/956304.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Maus MV, Fraietta JA, Levine BL, Kalos M, Zhao Y, June CH. Adoptive immunotherapy for cancer or viruses. Annu Rev Immunol. 2014;32:189–225. doi:10.1146/annurev-immunol-032713-120136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Munir Ahmad S, Martinenaite E, Hansen M, Junker N, Borch TH, Met O, et al. PD-L1 peptide co-stimulation increases immunogenicity of a dendritic cell-based cancer vaccine. Oncoimmunology. 2016;5(8):e1202391. doi:10.1080/2162402X.2016.1202391.

    Article  PubMed  Google Scholar 

  42. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. doi:10.1038/nrc3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gerritsen W, van den Eertwegh AJ, de Gruijl T, van den Berg HP, Scheper RJ, Sacks N et al. Expanded phase I combination trial of GVAX immunotherapy for prostate cancer and ipilimumab in patients with metastatic hormone-refractory prostate cancer (mHPRC). J Clin Oncol (Meeting Abstracts). 2008;26(15_suppl):5146.

  44. Ngiow SF, von Scheidt B, Akiba H, Yagita H, Teng MW, Smyth MJ. Anti-TIM3 antibody promotes T cell IFN-gamma-mediated antitumor immunity and suppresses established tumors. Cancer Res. 2011;71(10):3540–51. doi:10.1158/0008-5472.CAN-11-0096.

    Article  CAS  PubMed  Google Scholar 

  45. Aspeslagh S, Postel-Vinay S, Rusakiewicz S, Soria JC, Zitvogel L, Marabelle A. Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer. 2016;52:50–66. doi:10.1016/j.ejca.2015.08.021.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was funded by the Charles University in Prague, Project GA UK No. 960214, and by the research Grant provided by Sotio, a. s. DF was supported by Grant P302/12/G101 from Grant Agency of Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Horvath.

Ethics declarations

Conflict of interest

The co-author J. Bartunkova is a minority shareholder of Sotio, a.s.; the biotech company developing DC-based immunotherapy. The following authors (KV, PV, DF and RH) declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethics committee for multicentric studies and evaluation of the Faculty Hospital Motol, Prague, Czech Republic on November 15, 2013. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 379 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vavrova, K., Vrabcova, P., Filipp, D. et al. Generation of T cell effectors using tumor cell-loaded dendritic cells for adoptive T cell therapy. Med Oncol 33, 136 (2016). https://doi.org/10.1007/s12032-016-0855-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-016-0855-4

Keywords

Navigation