Skip to main content

Advertisement

Log in

Dysfunction of PSA-specific CD8+ T cells in prostate cancer patients correlates with CD38 and Tim-3 expression

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The efficacy of immunotherapy in cancer patients is influenced by differences in their immune status. An evaluation of immunocompetence before therapy may help to predict therapeutic success and guide the selection of appropriate regimens. We assessed the preexisting cellular immunity against prostate-specific antigen (PSA) in untreated prostate cancer patients and healthy controls through measurement of the phenotype and function of CD8+ T cells. Our data show that the majority of healthy men possess functional PSA-specific CD8+ T cells in contrast to cancer patients, where <50 % showed a CD8+ T cell response. PSA146–154-specific CD8+ T cells of these patients had a higher expression of the activation marker CD38 and the exhaustion marker Tim-3, indicating that PSA-specific cells are exhausted. The heterogeneity of the CD8+ T cell response against PSA in prostate cancer patients may influence their response to therapy and is a factor to be taken into account while designing and selecting treatment regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CTLA-4:

Cytotoxic T lymphocyte antigen 4

HD:

Healthy donors

HLA:

Human leukocyte antigen

MHC:

Major histocompatibility complex

PBMCs:

Peripheral blood mononuclear cells

PCa:

Prostate cancer

PD-1:

Programmed cell death protein 1

PD-L1:

Programmed death-ligand 1

PSA:

Prostate-specific antigen

Tim-3:

T cell immunoglobulin and mucin domain 3

References

  1. Cameron BJ, Gerry AB, Dukes J, Harper JV, Kannan V, Bianchi FC, Grand F, Brewer JE, Gupta M, Plesa G, Bossi G, Vuidepot A, Powlesland AS, Legg A, Adams KJ, Bennett AD, Pumphrey NJ, Williams DD, Binder-Scholl G, Kulikovskaya I, Levine BL, Riley JL, Varela-Rohena A, Stadtmauer EA, Rapoport AP, Linette GP, June CH, Hassan NJ, Kalos M, Jakobsen BK (2013) Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci Transl Med 5(197):197ra103. doi:10.1126/scitranslmed.3006034

    Article  PubMed  Google Scholar 

  2. Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L, Litzky L, Bagg A, Carreno BM, Cimino PJ, Binder-Scholl GK, Smethurst DP, Gerry AB, Pumphrey NJ, Bennett AD, Brewer JE, Dukes J, Harper J, Tayton-Martin HK, Jakobsen BK, Hassan NJ, Kalos M, June CH (2013) Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122(6):863–871. doi:10.1182/blood-2013-03-490565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Elkord E, Williams PE, Kynaston H, Rowbottom AW (2005) Differential CTLs specific for prostate-specific antigen in healthy donors and patients with prostate cancer. Int Immunol 17(10):1315–1325. doi:10.1093/intimm/dxh309

    Article  CAS  PubMed  Google Scholar 

  4. Hadaschik B, Su Y, Huter E, Ge Y, Hohenfellner M, Beckhove P (2012) Antigen specific T-cell responses against tumor antigens are controlled by regulatory T cells in patients with prostate cancer. J Urol 187(4):1458–1465. doi:10.1016/j.juro.2011.11.083

    Article  CAS  PubMed  Google Scholar 

  5. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF, Investigators IS (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422. doi:10.1056/NEJMoa1001294

    Article  CAS  PubMed  Google Scholar 

  6. Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M, Manson K, Panicali DL, Laus R, Schlom J, Dahut WL, Arlen PM, Gulley JL, Godfrey WR (2010) Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 28(7):1099–1105. doi:10.1200/JCO.2009.25.0597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Sanda MG, Smith DC, Charles LG, Hwang C, Pienta KJ, Schlom J, Milenic D, Panicali D, Montie JE (1999) Recombinant vaccinia-PSA (PROSTVAC) can induce a prostate-specific immune response in androgen-modulated human prostate cancer. Urology 53(2):260–266

    Article  CAS  PubMed  Google Scholar 

  8. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348(3):203–213. doi:10.1056/NEJMoa020177

    Article  CAS  PubMed  Google Scholar 

  9. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pages F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964. doi:10.1126/science.1129139

    Article  CAS  PubMed  Google Scholar 

  10. Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N, Honjo T, Fujii S (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA 104(9):3360–3365. doi:10.1073/pnas.0611533104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ulloa-Montoya F, Louahed J, Dizier B, Gruselle O, Spiessens B, Lehmann FF, Suciu S, Kruit WH, Eggermont AM, Vansteenkiste J, Brichard VG (2013) Predictive gene signature in MAGE-A3 antigen-specific cancer immunotherapy. J Clin Oncol 31(19):2388–2395. doi:10.1200/JCO.2012.44.3762

    Article  CAS  PubMed  Google Scholar 

  12. Ji RR, Chasalow SD, Wang L, Hamid O, Schmidt H, Cogswell J, Alaparthy S, Berman D, Jure-Kunkel M, Siemers NO, Jackson JR, Shahabi V (2012) An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol Immunother 61(7):1019–1031. doi:10.1007/s00262-011-1172-6

    Article  CAS  PubMed  Google Scholar 

  13. Galon J, Pages F, Marincola FM, Thurin M, Trinchieri G, Fox BA, Gajewski TF, Ascierto PA (2012) The immune score as a new possible approach for the classification of cancer. J Transl Med 10:1. doi:10.1186/1479-5876-10-1

    Article  PubMed Central  PubMed  Google Scholar 

  14. Angell H, Galon J (2013) From the immune contexture to the immunoscore: the role of prognostic and predictive immune markers in cancer. Curr Opin Immunol 25(2):261–267. doi:10.1016/j.coi.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  15. Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12(4):298–306. doi:10.1038/nrc3245

    Article  CAS  PubMed  Google Scholar 

  16. Chang S, Kohrt H, Maecker HT (2014) Monitoring the immune competence of cancer patients to predict outcome. Cancer Immunol Immunother 63(7):713–719. doi:10.1007/s00262-014-1521-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Kuchroo V, Zarour HM (2010) Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 207(10):2175–2186. doi:10.1084/jem.20100637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Frentsch M, Arbach O, Kirchhoff D, Moewes B, Worm M, Rothe M, Scheffold A, Thiel A (2005) Direct access to CD4 + T cells specific for defined antigens according to CD154 expression. Nat Med 11(10):1118–1124

    Article  CAS  PubMed  Google Scholar 

  19. Kennedy-Smith AG, McKenzie JL, Owen MC, Davidson PJ, Vuckovic S, Hart DN (2002) Prostate specific antigen inhibits immune responses in vitro: a potential role in prostate cancer. J Urol 168(2):741–747

    Article  CAS  PubMed  Google Scholar 

  20. Van Parijs L, Abbas AK (1998) Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science 280(5361):243–248

    Article  PubMed  Google Scholar 

  21. Terhorst C, van Agthoven A, LeClair K, Snow P, Reinherz E, Schlossman S (1981) Biochemical studies of the human thymocyte cell-surface antigens T6, T9 and T10. Cell 23(3):771–780

    Article  CAS  PubMed  Google Scholar 

  22. Baitsch L, Baumgaertner P, Devevre E, Raghav SK, Legat A, Barba L, Wieckowski S, Bouzourene H, Deplancke B, Romero P, Rufer N, Speiser DE (2011) Exhaustion of tumor-specific CD8(+) T cells in metastases from melanoma patients. J Clin Invest 121(6):2350–2360. doi:10.1172/JCI46102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, Zheng XX, Strom TB, Kuchroo VK (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6(12):1245–1252. doi:10.1038/ni1271

    Article  CAS  PubMed  Google Scholar 

  24. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207(10):2187–2194. doi:10.1084/jem.20100643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Jones RB, Ndhlovu LC, Barbour JD, Sheth PM, Jha AR, Long BR, Wong JC, Satkunarajah M, Schweneker M, Chapman JM, Gyenes G, Vali B, Hyrcza MD, Yue FY, Kovacs C, Sassi A, Loutfy M, Halpenny R, Persad D, Spotts G, Hecht FM, Chun TW, McCune JM, Kaul R, Rini JM, Nixon DF, Ostrowski MA (2008) Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. J Exp Med 205(12):2763–2779. doi:10.1084/jem.20081398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. McMahan RH, Golden-Mason L, Nishimura MI, McMahon BJ, Kemper M, Allen TM, Gretch DR, Rosen HR (2010) Tim-3 expression on PD-1 + HCV-specific human CTLs is associated with viral persistence, and its blockade restores hepatocyte-directed in vitro cytotoxicity. J Clin Invest 120(12):4546–4557. doi:10.1172/JCI43127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Yang ZZ, Grote DM, Ziesmer SC, Niki T, Hirashima M, Novak AJ, Witzig TE, Ansell SM (2012) IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma. J Clin Invest 122(4):1271–1282. doi:10.1172/JCI59806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Afanasiev OK, Yelistratova L, Miller N, Nagase K, Paulson K, Iyer JG, Ibrani D, Koelle DM, Nghiem P (2013) Merkel polyomavirus-specific T cells fluctuate with merkel cell carcinoma burden and express therapeutically targetable PD-1 and Tim-3 exhaustion markers. Clin Cancer Res 19(19):5351–5360. doi:10.1158/1078-0432.CCR-13-0035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Jin HT, Anderson AC, Tan WG, West EE, Ha SJ, Araki K, Freeman GJ, Kuchroo VK, Ahmed R (2010) Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc Natl Acad Sci USA 107(33):14733–14738. doi:10.1073/pnas.1009731107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ngiow SF, von Scheidt B, Akiba H, Yagita H, Teng MW, Smyth MJ (2011) Anti-TIM3 antibody promotes T cell IFN-gamma-mediated antitumor immunity and suppresses established tumors. Cancer Res 71(10):3540–3551. doi:10.1158/0008-5472.CAN-11-0096

    Article  CAS  PubMed  Google Scholar 

  31. Fourcade J, Sun Z, Pagliano O, Chauvin JM, Sander C, Janjic B, Tarhini AA, Tawbi HA, Kirkwood JM, Moschos S, Wang H, Guillaume P, Luescher IF, Krieg A, Anderson AC, Kuchroo VK, Zarour HM (2014) PD-1 and Tim-3 regulate the expansion of tumor antigen-specific CD8(+) T cells induced by melanoma vaccines. Cancer Res 74(4):1045–1055. doi:10.1158/0008-5472.CAN-13-2908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Fourcade J, Sun Z, Pagliano O, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Olive D, Kuchroo V, Zarour HM (2012) CD8(+) T cells specific for tumor antigens can be rendered dysfunctional by the tumor microenvironment through upregulation of the inhibitory receptors BTLA and PD-1. Cancer Res 72(4):887–896. doi:10.1158/0008-5472.CAN-11-2637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Sfanos KS, Bruno TC, Meeker AK, De Marzo AM, Isaacs WB, Drake CG (2009) Human prostate-infiltrating CD8+ T lymphocytes are oligoclonal and PD-1+. Prostate 69(15):1694–1703. doi:10.1002/pros.21020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Ebelt K, Babaryka G, Frankenberger B, Stief CG, Eisenmenger W, Kirchner T, Schendel DJ, Noessner E (2009) Prostate cancer lesions are surrounded by FOXP3+ , PD-1+ and B7-H1+ lymphocyte clusters. Eur J Cancer 45(9):1664–1672. doi:10.1016/j.ejca.2009.02.015

    Article  CAS  PubMed  Google Scholar 

  35. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454. doi:10.1056/NEJMoa1200690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kwek SS, Cha E, Fong L (2012) Unmasking the immune recognition of prostate cancer with CTLA4 blockade. Nat Rev Cancer 12(4):289–297. doi:10.1038/nrc3223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Vanneman M, Dranoff G (2012) Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 12(4):237–251. doi:10.1038/nrc3237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Xue BH, Zhang Y, Sosman JA, Peace DJ (1997) Induction of human cytotoxic T lymphocytes specific for prostate-specific antigen. Prostate 30(2):73–78

    Article  CAS  PubMed  Google Scholar 

  39. Perambakam SM, Srivastava R, Peace DJ (2005) Distinct cytokine patterns exist in peripheral blood mononuclear cell cultures of patients with prostate cancer. Clin Immunol 117(1):94–99. doi:10.1016/j.clim.2005.06.011

    Article  CAS  PubMed  Google Scholar 

  40. Corman JM, Sercarz EE, Nanda NK (1998) Recognition of prostate-specific antigenic peptide determinants by human CD4 and CD8 T cells. Clin Exp Immunol 114(2):166–172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Martins PN, Tullius SG, Markmann JF (2014) Immunosenescence and immune response in organ transplantation. Int Rev Immunol 33(3):162–173. doi:10.3109/08830185.2013.829469

    Article  CAS  PubMed  Google Scholar 

  42. do Canto FB, Lima Junior C, Teixeira IA, Bellio M, Nobrega A, Fucs R (2008) Susceptibility of neonatal T cells and adult thymocytes to peripheral tolerance to allogeneic stimuli. Immunology 125(3):387–396. doi:10.1111/j.1365-2567.2008.02855.x

    Article  PubMed Central  PubMed  Google Scholar 

  43. Prelog M (2006) Aging of the immune system: a risk factor for autoimmunity? Autoimmun Rev 5(2):136–139. doi:10.1016/j.autrev.2005.09.008

    Article  CAS  PubMed  Google Scholar 

  44. Yu W, Jiang N, Ebert PJ, Kidd BA, Muller S, Lund PJ, Juang J, Adachi K, Tse T, Birnbaum ME, Newell EW, Wilson DM, Grotenbreg GM, Valitutti S, Quake SR, Davis MM (2015) Clonal deletion prunes but does not eliminate self-specific alphabeta CD8(+) T lymphocytes. Immunity 42(5):929–941. doi:10.1016/j.immuni.2015.05.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Beate Möwes and the BCRT Flow Cytometry Lab for expert technical help. This work was supported by the German Research Foundation (DFG) Sonderforschungsbereich Transregio 36 (SFB TR36) and Th 806/5-1, and a flexible funds grant from the Berlin-Brandenburg Center for Regenerative Therapies/Federal Ministry of Education and Research (BCRT/BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Frentsch.

Ethics declarations

Conflict of interest

The authors have no conflicting financial interests.

Additional information

Alberto Sada Japp and M. Alper Kursunel as well as Andreas Thiel and Marco Frentsch have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Japp, A.S., Kursunel, M.A., Meier, S. et al. Dysfunction of PSA-specific CD8+ T cells in prostate cancer patients correlates with CD38 and Tim-3 expression. Cancer Immunol Immunother 64, 1487–1494 (2015). https://doi.org/10.1007/s00262-015-1752-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1752-y

Keywords

Navigation