Skip to main content
Log in

Neuronal Peroxisome Proliferator-Activated Receptor γ Signaling: Regulation by Mood-Stabilizer Valproate

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Valproate (Depakote) remains an effective medication for the prevention and treatment of seizures in epilepsy and of mood symptoms in bipolar disorder. Both of these disorders are severe and debilitating, and both warrant further medication options as well as a better understanding of the side effects associated with their current treatments. Although a number of molecular and cellular processes have been found to be altered by valproate, the medication’s therapeutic mechanism has not been fully elucidated. In this paper, peroxisome proliferator-activated receptor (PPAR) signaling was examined to determine valproate’s effects on this transcriptional regulatory system in neuronal tissue. PPAR signaling has been found to affect a number of biochemical processes, including lipid metabolism, cellular differentiation, insulin sensitivity, and cell survival. When primary neuronal cultures were treated with valproate, a significant decrease in PPARγ signaling was observed. This effect was demonstrated through a change in nuclear quantities of PPARγ receptor and decreased DNA binding of the receptor. Valproate also caused gene expression changes and a change to the peroxisome biochemistry consistent with a decrease of PPARγ signaling. These biochemical changes may have functional consequences for either valproate’s therapeutic mechanism or for its neurological side effects and merit further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

ACOX:

acyl-coA oxidase

bcl-2:

B-cell CLL/lymphoma 2

BAG-1:

B-cell CLL/lymphoma 2 associated athanogene 1

ERK:

extracellular signal-regulated kinase

FeCl3 :

iron chloride

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

GSK-3:

glycogen synthase kinase-3

H2O2 :

hydrogen peroxide

HDAC:

histone deacetylase

PBS:

phosphate buffer saline

PMP-70:

peroxisome membrane protein-70

PPAR:

peroxisome proliferators-activated receptor

PPRE:

PPAR-response element

qPCR:

quantitative PCR

SDS:

sodium dodecal sulfate

References

  • Bazinet, R. P., Rao, J. S., Chang, L., Rapoport, S. I., & Lee, H. J. (2005). Chronic valproate does not alter the kinetics of docosahexaenoic acid within brain phospholipids of the unanesthetized rat. Psychopharmacology (Berl), 182, 180–185.

    Article  CAS  Google Scholar 

  • Begley, C. E., Annegers, J. F., Swann, A. C., et al. (2001). The lifetime cost of bipolar disorder in the US: an estimate for new cases in 1998. Pharmacoeconomics, 19, 483–495.

    Article  PubMed  CAS  Google Scholar 

  • Begley, C. E., & Beghi, E. (2002). The economic cost of epilepsy: A review of the literature. Epilepsia, 43(Suppl 4), 3–9.

    Article  PubMed  Google Scholar 

  • Beier, K., Volkl, A., Hashimoto, T., & Fahimi, H. D. (1988). Selective induction of peroxisomal enzymes by the hypolipidemic drug bezafibrate. Detection of modulations by automatic image analysis in conjunction with immunoelectron microscopy and immunoblotting. European Journal of Cell Biology, 46, 383–393.

    PubMed  CAS  Google Scholar 

  • Belmaker, R. H. (2004). Bipolar disorder. New England Journal of Medicine, 351, 476–486.

    Article  PubMed  CAS  Google Scholar 

  • Bosetti, F., Bell, J. M., & Manickam, P. (2005). Microarray analysis of rat brain gene expression after chronic administration of sodium valproate. Brain Research Bulletin, 65, 331–338.

    Article  PubMed  CAS  Google Scholar 

  • Bosetti, F., Weerasinghe, G. R., Rosenberger, T. A., & Rapoport, S. I. (2003). Valproic acid down-regulates the conversion of arachidonic acid to eicosanoids via cyclooxygenase-1 and -2 in rat brain. Journal of Neurochemistry, 85, 690–696.

    PubMed  CAS  Google Scholar 

  • Browne, T. R., & Holmes, G. L. (2001). Epilepsy. New England Journal of Medicine, 344, 1145–1151.

    Article  PubMed  CAS  Google Scholar 

  • Chang, M. C., Contreras, M. A., Rosenberger, T. A., Rintala, J. J., Bell, J. M., & Rapoport, S. I. (2001). Chronic valproate treatment decreases the in vivo turnover of arachidonic acid in brain phospholipids: A possible common effect of mood stabilizers. Journal of Neurochemistry, 77, 796–803.

    Article  PubMed  CAS  Google Scholar 

  • Chen, G., Huang, L. D., Jiang, Y. M., & Manji, H. K. (1999a). The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. Journal of Neurochemistry, 72, 1327–1330.

    Article  PubMed  CAS  Google Scholar 

  • Chen, G., Zeng, W. Z., Yuan, P. X., et al. (1999b). The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. Journal of Neurochemistry, 72, 879–882.

    Article  PubMed  CAS  Google Scholar 

  • Chen, S. D., Wu, H. Y., Yang, D. I., et al. (2006). Effects of rosiglitazone on global ischemia-induced hippocampal injury and expression of mitochondrial uncoupling protein 2. Biochemical and Biophysical Research Communication, 351, 198–203.

    Article  CAS  Google Scholar 

  • Cimini, A., Benedetti, E., Cristiano, L., et al. (2005). Expression of peroxisome proliferator-activated receptors (PPARs) and retinoic acid receptors (RXRs) in rat cortical neurons. Neuroscience, 130, 325–337.

    Article  PubMed  CAS  Google Scholar 

  • Cristiano, L., Bernardo, A., & Ceru, M. P. (2001). Peroxisome proliferator-activated receptors (PPARs) and peroxisomes in rat cortical and cerebellar astrocytes. Journal Neurocytology, 30, 671–683.

    Article  CAS  Google Scholar 

  • Cullingford, T. E., Bhakoo, K., Peuchen, S., Dolphin, C. T., Patel, R., & Clark, J. B. (1998). Distribution of mRNAs encoding the peroxisome proliferator-activated receptor alpha, beta, and gamma and the retinoid X receptor alpha, beta, and gamma in rat central nervous system. Journal of Neurochemistry, 70, 1366–1375.

    Article  PubMed  CAS  Google Scholar 

  • Einat, H., Yuan, P., Gould, T. D., et al. (2003). The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. Journal Neuroscience, 23, 7311–7316.

    CAS  Google Scholar 

  • Feige, J. N., Gelman, L., Michalik, L., Desvergne, B., & Wahli, W. (2006). From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Progress in Lipid Research, 45, 120–159.

    Article  PubMed  CAS  Google Scholar 

  • Forman, B. M., Chen, J., & Evans, R. M. (1997). Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proceedings of National Academy of Science of United States of America, 94, 4312–4317.

    Article  CAS  Google Scholar 

  • Fredenrich, A., & Grimaldi, P. A. (2005). PPAR delta: An uncompletely known nuclear receptor. Diabetes and Metabolism, 31, 23–27.

    Article  PubMed  CAS  Google Scholar 

  • Gaillard, W. D., Zeffiro, T., Fazilat, S., DeCarli, C., & Theodore, W. H. (1996). Effect of valproate on cerebral metabolism and blood flow: an 18F-2-deoxyglucose and 15O water positron emission tomography study. Epilepsia, 37, 515–521.

    Article  PubMed  CAS  Google Scholar 

  • Girnun, G. D., Domann, F. E., Moore, S. A., & Robbins, M. E. (2002). Identification of a functional peroxisome proliferator-activated receptor response element in the rat catalase promoter. Molecular Endocrinology, 16, 2793–2801.

    Article  PubMed  CAS  Google Scholar 

  • Gobbi, G., & Janiri, L. (2006). Sodium- and magnesium-valproate in vivo modulate glutamatergic and GABAergic synapses in the medial prefrontal cortex. Psychopharmacology (Berl), 185, 255–262.

    Article  CAS  Google Scholar 

  • Gould, T. D., Picchini, A. M., Einat, H., & Manji, H. K. (2006). Targeting glycogen synthase kinase-3 in the CNS: Implications for the development of new treatments for mood disorders. Current Drug Targets, 7, 1399–1409.

    PubMed  CAS  Google Scholar 

  • Hao, Y., Creson, T., Zhang, L., et al. (2004). Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. Journal Neuroscience, 24, 6590–6599.

    Article  CAS  Google Scholar 

  • Hauser, W. A. (1990). Epilepsy: Frequency, Causes and Consequences. New York: Demos.

    Google Scholar 

  • Horie, S., & Suga, T. (1985). Enhancement of peroxisomal beta-oxidation in the liver of rats and mice treated with valproic acid. Biochemical pharmacology, 34, 1357–1362.

    Article  PubMed  CAS  Google Scholar 

  • Hsieh, J., Nakashima, K., Kuwabara, T., Mejia, E., & Gage, F. H. (2004). Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proceedings of National Academy of Science of United States of America, 101, 16659–16664.

    Article  CAS  Google Scholar 

  • Johannessen, C. U., Petersen, D., Fonnum, F., & Hassel, B. (2001). The acute effect of valproate on cerebral energy metabolism in mice. Epilepsy Research, 47, 247–256.

    Article  PubMed  CAS  Google Scholar 

  • Kainu, T., Wikstrom, A. C., Gustafsson, J. A., & Pelto-Huikko, M. (1994). Localization of the peroxisome proliferator-activated receptor in the brain. Neuroreport, 5, 2481–2485.

    Article  PubMed  CAS  Google Scholar 

  • Kane, C. D., Francone, O. L., & Stevens, K. A. (2006). Differential regulation of the cynomolgus, human, and rat acyl-CoA oxidase promoters by PPARalpha. Gene, 380, 84–94.

    Article  PubMed  CAS  Google Scholar 

  • Keller, H., Mahfoudi, A., Dreyer, C., et al. (1993). Peroxisome proliferator-activated receptors and lipid metabolism. Annals of the New York Academy of Science, 684, 157–173.

    Article  CAS  Google Scholar 

  • Laeng, P., Pitts, R. L., Lemire, A. L., et al. (2004). The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells. Journal of Neurochemistry, 91, 238–251.

    Article  PubMed  CAS  Google Scholar 

  • Lampen, A., Carlberg, C., & Nau, H. (2001). Peroxisome proliferator-activated receptor delta is a specific sensor for teratogenic valproic acid derivatives. European Journal of Pharmacology, 431, 25–33.

    Article  PubMed  CAS  Google Scholar 

  • Lampen, A., Grimaldi, P. A., & Nau, H. (2005). Modulation of peroxisome proliferator-activated receptor delta activity affects neural cell adhesion molecule and polysialyltransferase ST8SiaIV induction by teratogenic valproic acid analogs in F9 cell differentiation. Molecular Pharmacol, 68, 193–203.

    CAS  Google Scholar 

  • Latruffe, N., Cherkaoui Malki, M., Nicolas-Frances, V., Clemencet, M. C., Jannin, B., & Berlot, J. P. (2000). Regulation of the peroxisomal beta-oxidation-dependent pathway by peroxisome proliferator-activated receptor alpha and kinases. Biochemical Pharmacology, 60, 1027–1032.

    Article  PubMed  CAS  Google Scholar 

  • Loscher, W. (1999). Valproate: a reappraisal of its pharmacodynamic properties and mechanisms of action. Progress of Neurobiology, 58, 31–59.

    Article  CAS  Google Scholar 

  • Luo, Y., Yin, W., Signore, A. P., et al. (2006). Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Journal of Neurochemistry, 97, 435–448.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, T., Kiguchi, N., Fukazawa, Y., Yamamoto, A., Ozaki, M., & Kishioka, S. (2006). Peroxisome proliferator-activated receptor gamma activation relieves expression of behavioral sensitization to methamphetamine in mice. Neuropsychopharmacology, 32, 1133–1140.

    Article  PubMed  CAS  Google Scholar 

  • Mandard, S., Muller, M., & Kersten, S. (2004). Peroxisome proliferator-activated receptor alpha target genes. Cellular and Molecular Life Science, 61, 393–416.

    Article  CAS  Google Scholar 

  • Martin, G., Schoonjans, K., Lefebvre, A. M., Staels, B., & Auwerx, J. (1997). Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARalpha and PPARgamma activators. Journal of Biological Chemistry, 272, 28210–28217.

    Article  PubMed  CAS  Google Scholar 

  • Moreno, S., Farioli-Vecchioli, S., & Ceru, M. P. (2004). Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS. Neuroscience, 123, 131–145.

    Article  PubMed  CAS  Google Scholar 

  • Ou, Z., Zhao, X., Labiche, L. A., et al. (2006). Neuronal expression of peroxisome proliferator-activated receptor-gamma (PPARgamma) and 15d-prostaglandin J2-mediated protection of brain after experimental cerebral ischemia in rat. Brain Research, 1096, 196–203.

    Article  PubMed  CAS  Google Scholar 

  • Park, K. S., Lee, R. D., Kang, S. K., et al. (2004). Neuronal differentiation of embryonic midbrain cells by upregulation of peroxisome proliferator-activated receptor-gamma via the JNK-dependent pathway. Experimental Cell Research, 297, 424–433.

    Article  PubMed  CAS  Google Scholar 

  • Patel, C. B., De Lemos, J. A., Wyne, K. L., & McGuire, D. K. (2006). Thiazolidinediones and risk for atherosclerosis: Pleiotropic effects of PPar gamma agonism. Diabetes and Vascular Disease Research, 3, 65–71.

    Article  PubMed  Google Scholar 

  • Perucca, E. (2002). Pharmacological and therapeutic properties of valproate: A summary after 35 years of clinical experience. CNS Drugs, 16, 695–714.

    Article  PubMed  CAS  Google Scholar 

  • Phiel, C. J., Zhang, F., Huang, E. Y., Guenther, M. G., Lazar, M. A., & Klein, P. S. (2001). Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. Journal of Biological Chemistry, 276, 36734–36741.

    Article  PubMed  CAS  Google Scholar 

  • Phrolov, K., Applebaum, J., Levine, J., Miodovnick, H., & Belmaker, R. H. (2004). Single-dose intravenous valproate in acute mania. Journal of Clinical Psychiatry, 65, 68–70.

    Article  PubMed  CAS  Google Scholar 

  • Ponchaut, S., Draye, J. P., Veitch, K., & Van Hoof, F. (1991). Influence of chronic administration of valproate on ultrastructure and enzyme content of peroxisomes in rat liver and kidney. Oxidation of valproate by liver peroxisomes. Biochemical Pharmacology, 41, 1419–1428.

    Article  PubMed  CAS  Google Scholar 

  • Roberti, R., Bocchini, V., Freysz, L., et al. (1989). Effect of pyridoxal 5'-phosphate and valproic acid on phospholipid synthesis in neuroblastoma NA. Biochemical Pharmacology, 38, 3407–3413.

    Article  PubMed  CAS  Google Scholar 

  • Rosenson, R. S. (2007). Effects of peroxisome proliferator-activated receptors on lipoprotein metabolism and glucose control in type 2 diabetes mellitus. American Journal of Cardiology, 99, 96B–104B.

    Article  PubMed  CAS  Google Scholar 

  • Shimazu, T., Inoue, I., Araki, N., et al. (2005). A peroxisome proliferator-activated receptor-gamma agonist reduces infarct size in transient but not in permanent ischemia. Stroke, 36, 353–359.

    Article  PubMed  CAS  Google Scholar 

  • Sohlenius, A. K., Wigren, J., Backstrom, K., Andersson, K., & DePierre, J. W. (1995). Synergistic induction of acyl-CoA oxidase activity, an indicator of peroxisome proliferation, by arachidonic acid and retinoic acid in Morris hepatoma 7800C1 cells. Biochimica et Biophysica Acta, 1258, 257–264.

    PubMed  Google Scholar 

  • Sundararajan, S., Gamboa, J. L., Victor, N. A., Wanderi, E. W., Lust, W. D., & Landreth, G. E. (2005). Peroxisome proliferator-activated receptor-gamma ligands reduce inflammation and infarction size in transient focal ischemia. Neuroscience, 130, 685–696.

    Article  PubMed  CAS  Google Scholar 

  • Szupera, Z., Mezei, Z., Kis, B., Gecse, A., Vecsei, L., & Telegdy, G. (2000). The effects of valproate on the arachidonic acid metabolism of rat brain microvessels and of platelets. European Journal of Pharmacology, 387, 205–210.

    Article  PubMed  CAS  Google Scholar 

  • Van den Branden, C., & Roels, F. (1985). Peroxisomal beta-oxidation and sodium valproate. Biochemical pharmacology, 34, 2147–2149.

    Article  PubMed  Google Scholar 

  • Varanasi, U., Chu, R., Huang, Q., Castellon, R., Yeldandi, A. V., & Reddy, J. K. (1996). Identification of a peroxisome proliferator-responsive element upstream of the human peroxisomal fatty acyl coenzyme A oxidase gene. Journal of Biological Chemistry, 271, 2147–2155.

    Article  PubMed  CAS  Google Scholar 

  • Victor, N. A., Wanderi, E. W., Gamboa, J., et al. (2006). Altered PPARgamma expression and activation after transient focal ischemia in rats. European Journal of Neuroscience, 24, 1653–1663.

    Article  PubMed  CAS  Google Scholar 

  • Wada, K., Nakajima, A., Katayama, K., et al. (2006). Peroxisome proliferator-activated receptor gamma-mediated regulation of neural stem cell proliferation and differentiation. Journal of Biological Chemistry, 281, 12673–12681.

    Article  PubMed  CAS  Google Scholar 

  • Wanders, R. J., & Waterham, H. R. (2006). Biochemistry of mammalian peroxisomes revisited. Annual Review of Biochemistry, 75, 295–332.

    Article  PubMed  CAS  Google Scholar 

  • Weissman, M. M., Bland, R. C., Canino, G. J., et al. (1996). Cross-national epidemiology of major depression and bipolar disorder. JAMA, 276, 293–299.

    Article  PubMed  CAS  Google Scholar 

  • Werling, U., Siehler, S., Litfin, M., Nau, H., & Gottlicher, M. (2001). Induction of differentiation in F9 cells and activation of peroxisome proliferator-activated receptor delta by valproic acid and its teratogenic derivatives. Molecular Pharmacology, 59, 1269–1276.

    PubMed  CAS  Google Scholar 

  • Zhao, Y., Patzer, A., Herdegen, T., Gohlke, P., & Culman, J. (2006b). Activation of cerebral peroxisome proliferator-activated receptors gamma promotes neuroprotection by attenuation of neuronal cyclooxygenase-2 overexpression after focal cerebral ischemia in rats. FASEB Journal, 20, 1162–1175.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X., Zhang, Y., Strong, R., Grotta, J. C., & Aronowski, J. (2006a). 15d-Prostaglandin J2 activates peroxisome proliferator-activated receptor-gamma, promotes expression of catalase, and reduces inflammation, behavioral dysfunction, and neuronal loss after intracerebral hemorrhage in rats. Journal of Cerebral Blood Flow and Metabolism, 26, 811–820.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, R., Gray, N. A., Yuan, P., et al. (2005). The anti-apoptotic, glucocorticoid receptor cochaperone protein BAG-1 is a long-term target for the actions of mood stabilizers. Journal Neuroscience, 25, 4493–4502.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank Dr. Sabine Bahn and Dr. Jing Du for their thoughtful conversations and advice throughout this work. Thank you also to Dr. Alfred Volkl for his generous gift of the ACOX antibody. Ioline Henter provided outstanding editorial assistance. Martin Lan is the recipient of an NIH-Cambridge health science scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Husseini K. Manji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lan, M.J., Yuan, P., Chen, G. et al. Neuronal Peroxisome Proliferator-Activated Receptor γ Signaling: Regulation by Mood-Stabilizer Valproate. J Mol Neurosci 35, 225–234 (2008). https://doi.org/10.1007/s12031-008-9056-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9056-8

Keywords

Navigation