Skip to main content

The Strategy of Targeting Peroxisome Proliferator-Activated Receptor (PPAR) in the Treatment of Neuropsychiatric Disorders

  • Chapter
  • First Online:
Neuroinflammation, Gut-Brain Axis and Immunity in Neuropsychiatric Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1411))

Abstract

Peroxisome proliferator-activated receptors (PPARs) are nonsteroid nuclear receptors and transcription factors that regulate several neuroinflammatory and metabolic processes, recently involved in several neuropsychiatric conditions, including Alzheimer’s disease, Parkinson’s disease, major depressive disorder, post-traumatic stress disorder (PTSD), schizophrenia spectrum disorders, and autism spectrum disorders. PPARs are ligand-activated receptors that, following stimulation, induce neuroprotective effects by decreasing neuroinflammatory processes through inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) expression and consequent suppression of pro-inflammatory cytokine production. PPARs heterodimerize with the retinoid X-receptor (RXR) and bind to PPAR-responsive regulatory elements (PPRE) in the promoter region of target genes involved in lipid metabolism, synthesis of cholesterol, catabolism of amino acids, and inflammation. Interestingly, PPARs are considered functionally part of the extended endocannabinoid (eCB) system that includes the classic eCB, anandamide, which act at cannabinoid receptor types 1 (CB1) and 2 (CB2) and are implicated in the pathophysiology of stress-related neuropsychiatric disorders. In preclinical studies, PPAR stimulation improves anxiety and depression-like behaviors by enhancing neurosteroid biosynthesis. The peculiar functional role of PPARs by exerting anti-inflammatory and neuroprotective effects and their expression localization in neurons and glial cells of corticolimbic circuits make them particularly interesting as novel therapeutic targets for several neuropsychiatric disorders characterized by underlying neuroinflammatory/neurodegenerative mechanisms. Herein, we discuss the pathological hallmarks of neuropsychiatric conditions associated with neuroinflammation, as well as the pivotal role of PPARs with a special emphasis on the subtype alpha (PPAR-α) as a suitable molecular target for therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beurel E, Toups M, Nemeroff CB. The bidirectional relationship of depression and inflammation: double trouble. Neuron. 2020;107(2):234–56. https://doi.org/10.1016/j.neuron.2020.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Buckley PF. Neuroinflammation and schizophrenia. Curr Psychiatry Rep. 2019;21(8):72. https://doi.org/10.1007/s11920-019-1050-z.

    Article  PubMed  Google Scholar 

  3. Hori H, Kim Y. Inflammation and post-traumatic stress disorder. Psychiatry Clin Neurosci. 2019;73(4):143–53. https://doi.org/10.1111/pcn.12820.

    Article  PubMed  Google Scholar 

  4. Feigenson KA, Kusnecov AW, Silverstein SM. Inflammation and the two-hit hypothesis of schizophrenia. Neurosci Biobehav Rev. 2014;38:72–93. https://doi.org/10.1016/j.neubiorev.2013.11.006.

    Article  PubMed  Google Scholar 

  5. Inta D, Lang UE, Borgwardt S, Meyer-Lindenberg A, Gass P. Microglia activation and schizophrenia: lessons from the effects of minocycline on postnatal neurogenesis, neuronal survival and synaptic pruning. Schizophr Bull. 2017;43(3):493–6. https://doi.org/10.1093/schbul/sbw088.

    Article  PubMed  Google Scholar 

  6. Upthegrove R, Khandaker GM. Cytokines, oxidative stress and cellular markers of inflammation in schizophrenia. Curr Top Behav Neurosci. 2020;44:49–66. https://doi.org/10.1007/7854_2018_88.

    Article  CAS  PubMed  Google Scholar 

  7. Gonzalez-Burgos G, Lewis DA. NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophr Bull. 2012;38(5):950–7. https://doi.org/10.1093/schbul/sbs010.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Anderson G, Maes M. Schizophrenia: linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;42:5–19. https://doi.org/10.1016/j.pnpbp.2012.06.014.

    Article  CAS  Google Scholar 

  9. Notter T, Coughlin JM, Sawa A, Meyer U. Reconceptualization of translocator protein as a biomarker of neuroinflammation in psychiatry. Mol Psychiatry. 2018;23(1):36–47. https://doi.org/10.1038/mp.2017.232.

    Article  CAS  PubMed  Google Scholar 

  10. Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener. 2020;9(1):42. https://doi.org/10.1186/s40035-020-00221-2.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wolf SA, Boddeke HW, Kettenmann H. Microglia in physiology and disease. Annu Rev Physiol. 2017;79:619–43. https://doi.org/10.1146/annurev-physiol-022516-034406.

    Article  CAS  PubMed  Google Scholar 

  12. Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol. 2017;35:441–68. https://doi.org/10.1146/annurev-immunol-051116-052358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Linnerbauer M, Rothhammer V. Protective functions of reactive astrocytes following central nervous system insult. Front Immunol. 2020;11:573256. https://doi.org/10.3389/fimmu.2020.573256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sofroniew MV. Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci. 2015;16(5):249–63. https://doi.org/10.1038/nrn3898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rosciszewski G, Cadena V, Murta V, Lukin J, Villarreal A, Roger T, Ramos AJ. Toll-like receptor 4 (TLR4) and triggering receptor expressed on myeloid Cells-2 (TREM-2) activation balance astrocyte polarization into a Proinflammatory phenotype. Mol Neurobiol. 2018;55(5):3875–88. https://doi.org/10.1007/s12035-017-0618-z.

    Article  CAS  PubMed  Google Scholar 

  16. Jha MK, Jo M, Kim JH, Suk K. Microglia-astrocyte crosstalk: an intimate molecular conversation. Neuroscientist. 2019;25(3):227–40. https://doi.org/10.1177/1073858418783959.

    Article  CAS  PubMed  Google Scholar 

  17. Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T. Bidirectional microglia-neuron communication in health and disease. Front Cell Neurosci. 2018;12:323. https://doi.org/10.3389/fncel.2018.00323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rizzo FR, Musella A, De Vito F, Fresegna D, Bullitta S, Vanni V, Guadalupi L, Stampanoni Bassi M, Buttari F, Mandolesi G, Centonze D, Gentile A. Tumor necrosis factor and interleukin-1β modulate synaptic plasticity during Neuroinflammation. Neural Plast. 2018;2018:8430123. https://doi.org/10.1155/2018/8430123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marinelli S, Basilico B, Marrone MC, Ragozzino D. Microglia-neuron crosstalk: signaling mechanism and control of synaptic transmission. Semin Cell Dev Biol. 2019;94:138–51. https://doi.org/10.1016/j.semcdb.2019.05.017.

    Article  PubMed  Google Scholar 

  20. Zheng ZH, Tu JL, Li XH, Hua Q, Liu WZ, Liu Y, Pan BX, Hu P, Zhang WH. Neuroinflammation induces anxiety- and depressive-like behavior by modulating neuronal plasticity in the basolateral amygdala. Brain Behav Immun. 2021;91:505–18. https://doi.org/10.1016/j.bbi.2020.11.007.

    Article  CAS  PubMed  Google Scholar 

  21. Crews FT, Lawrimore CJ, Walter TJ, Coleman LG Jr. The role of neuroimmune signaling in alcoholism. Neuropharmacology. 2017;122:56–73. https://doi.org/10.1016/j.neuropharm.2017.01.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kéri S, Szabó C, Kelemen O. Antipsychotics influence toll-like receptor (TLR) expression and its relationship with cognitive functions in schizophrenia. Brain Behav Immun. 2017;62:256–64. https://doi.org/10.1016/j.bbi.2016.12.011.

    Article  CAS  PubMed  Google Scholar 

  23. Yang J, Wise L, Fukuchi KI. TLR4 cross-talk with NLRP3 Inflammasome and complement signaling pathways in Alzheimer's disease. Front Immunol. 2020;11:724. https://doi.org/10.3389/fimmu.2020.00724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang NM, Cowan M, Moonah SN, Petri WA Jr. The impact of systemic inflammation on neurodevelopment. Trends Mol Med. 2018;24(9):794–804. https://doi.org/10.1016/j.molmed.2018.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van Sadelhoff J, Perez Pardo P, Wu J, Garssen J, van Bergenhenegouwen J, Hogenkamp A, Hartog A, Kraneveld AD. The gut-immune-brain axis in autism spectrum disorders; a focus on amino acids. Front Endocrinol. 2019;10:247. https://doi.org/10.3389/fendo.2019.00247.

    Article  Google Scholar 

  26. Cheng HS, Tan WR, Low ZS, Marvalim C, Lee J, Tan NS. Exploration and development of PPAR modulators in health and disease: an update of clinical evidence. Int J Mol Sci. 2019;20(20):5055. https://doi.org/10.3390/ijms20205055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tufano M, Pinna G. Is there a future for PPARs in the treatment of neuropsychiatric disorders? Molecules. 2020;25(5):1062. https://doi.org/10.3390/molecules25051062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications—a review. Nutr J. 2014;13:17. https://doi.org/10.1186/1475-2891-13-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Corrales P, Vidal-Puig A, Medina-Gómez G. PPARs and metabolic disorders associated with challenged adipose tissue plasticity. Int J Mol Sci. 2018;19(7):2124. https://doi.org/10.3390/ijms19072124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Iglesias J, Morales L, Barreto GE. Metabolic and inflammatory adaptation of reactive astrocytes: role of PPARs. Mol Neurobiol. 2017;54(4):2518–38. https://doi.org/10.1007/s12035-016-9833-2.

    Article  CAS  PubMed  Google Scholar 

  31. Moreno S, Farioli-Vecchioli S, Cerù MP. Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS. Neuroscience. 2004;123(1):131–45. https://doi.org/10.1016/j.neuroscience.2003.08.064.

    Article  CAS  PubMed  Google Scholar 

  32. Heneka MT, Landreth GE. PPARs in the brain. Biochim Biophys Acta. 2007;1771(8):1031–45. https://doi.org/10.1016/j.bbalip.2007.04.016.

    Article  CAS  PubMed  Google Scholar 

  33. Warden A, Truitt J, Merriman M, Ponomareva O, Jameson K, Ferguson LB, Mayfield RD, Harris RA. Localization of PPAR isotypes in the adult mouse and human brain. Sci Rep. 2016;6:27618. https://doi.org/10.1038/srep27618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med. 2002;53:409–35. https://doi.org/10.1146/annurev.med.53.082901.104018.

    Article  CAS  PubMed  Google Scholar 

  35. Matrisciano F, Pinna G. PPAR-α Hypermethylation in the hippocampus of mice exposed to social isolation stress is associated with enhanced neuroinflammation and aggressive behavior. Int J Mol Sci. 2021;22(19):10678. https://doi.org/10.3390/ijms221910678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K. Molecular actions of PPARα in lipid metabolism and inflammation. Endocr Rev. 2018;39(5):760–802. https://doi.org/10.1210/er.2018-00064.

    Article  PubMed  Google Scholar 

  37. Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors: new targets for the pharmacological modulation of macrophage gene expression and function. Curr Opin Lipidol. 2003;14(5):459–68. https://doi.org/10.1097/00041433-200310000-00006.

    Article  CAS  PubMed  Google Scholar 

  38. Locci A, Pinna G. Stimulation of peroxisome proliferator-activated receptor-α by N-Palmitoylethanolamine engages allopregnanolone biosynthesis to modulate emotional behavior. Biol Psychiatry. 2019;85(12):1036–45. https://doi.org/10.1016/j.biopsych.2019.02.006.

    Article  CAS  PubMed  Google Scholar 

  39. Locci A, Pinna G. Social isolation as a promising animal model of PTSD comorbid suicide: neurosteroids and cannabinoids as possible treatment options. Prog Neuro-Psychopharmacol Biol Psychiatry. 2019;92:243–59. https://doi.org/10.1016/j.pnpbp.2018.12.014.

    Article  CAS  Google Scholar 

  40. D'Agostino G, Russo R, Avagliano C, Cristiano C, Meli R, Calignano A. Palmitoylethanolamide protects against the amyloid-β25-35-induced learning and memory impairment in mice, an experimental model of Alzheimer’sdisease. Neuropsychopharmacology. 2012;37(7):1784–92. https://doi.org/10.1038/npp.2012.25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Scuderi C, Stecca C, Valenza M, Ratano P, Bronzuoli MR, Bartoli S, Steardo L, Pompili E, Fumagalli L, Campolongo P, Steardo L. Palmitoylethanolamide controls reactive gliosis and exerts neuroprotective functions in a rat model of Alzheimer's disease. Cell Death Dis. 2014;5(9):e1419. https://doi.org/10.1038/cddis.2014.376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Clayton P, Hill M, Bogoda N, Subah S, Venkatesh R. Palmitoylethanolamide: a natural compound for health management. Int J Mol Sci. 2021;22(10):5305. https://doi.org/10.3390/ijms22105305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Petrosino S, Di Marzo V. The pharmacology of palmitoylethanolamide and first data on the therapeutic efficacy of some of its new formulations. Br J Pharmacol. 2017;174(11):1349–65. https://doi.org/10.1111/bph.13580.

    Article  CAS  PubMed  Google Scholar 

  44. Beggiato S, Tomasini MC, Ferraro L. Palmitoylethanolamide (PEA) as a potential therapeutic agent in Alzheimer's disease. Front Pharmacol. 2019;10:821. https://doi.org/10.3389/fphar.2019.00821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Na KS, Jung HY, Kim YK. The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;48:277–86. https://doi.org/10.1016/j.pnpbp.2012.10.022.

    Article  CAS  Google Scholar 

  46. Khandaker GM, Cousins L, Deakin J, Lennox BR, Yolken R, Jones PB. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry. 2015;2(3):258–70. https://doi.org/10.1016/S2215-0366(14)00122-9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Blednov YA, Benavidez JM, Black M, Ferguson LB, Schoenhard GL, Goate AM, Edenberg HJ, Wetherill L, Hesselbrock V, Foroud T, Harris RA. Peroxisome proliferator-activated receptors α and γ are linked with alcohol consumption in mice and withdrawal and dependence in humans. Alcohol Clin Exp Res. 2015;39(1):136–45. https://doi.org/10.1111/acer.12610.

    Article  CAS  PubMed  Google Scholar 

  48. Benedetti E, Cristiano L, Antonosante A, d'Angelo M, D'Angelo B, Selli S, Castelli V, Ippoliti R, Giordano A, Cimini A. PPARs in neurodegenerative and neuroinflammatory pathways. Curr Alzheimer Res. 2018;15(4):336–44. https://doi.org/10.2174/1567205014666170517150037.

    Article  CAS  PubMed  Google Scholar 

  49. D'Angelo M, Castelli V, Tupone MG, Catanesi M, Antonosante A, Dominguez-Benot R, Ippoliti R, Cimini AM, Benedetti E. Lifestyle and food habits impact on chronic diseases: roles of PPARs. Int J Mol Sci. 2019;20(21):5422. https://doi.org/10.3390/ijms20215422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry. 2011;70(7):663–71. https://doi.org/10.1016/j.biopsych.2011.04.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. García-Álvarez L, Caso JR, García-Portilla MP, de la Fuente-Tomás L, González-Blanco L, Sáiz Martínez P, Leza JC, Bobes J. Regulation of inflammatory pathways in schizophrenia: a comparative study with bipolar disorder and healthy controls. Eur Psychiatry. 2018;47:50–9. https://doi.org/10.1016/j.eurpsy.2017.09.007.

    Article  PubMed  Google Scholar 

  52. Müller N. Inflammation in schizophrenia: pathogenetic aspects and therapeutic considerations. Schizophr Bull. 2018;44(5):973–82. https://doi.org/10.1093/schbul/sby024.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zeni-Graiff M, Rizzo LB, Mansur RB, Maurya PK, Sethi S, Cunha GR, Asevedo E, Pan P, Zugman A, Yamagata AS, Higuchi C, Bressan RA, Gadelha A, Brietzke E. Peripheral immuno-inflammatory abnormalities in ultra-high risk of developing psychosis. Schizophr Res. 2016;176(2–3):191–5. https://doi.org/10.1016/j.schres.2016.06.031.

    Article  PubMed  Google Scholar 

  54. Balan I, Beattie MC, O’Buckley TK, Aurelian L, Morrow AL. Endogenous neurosteroid (3α,5α)3-hydroxypregnan-20-one inhibits toll-like-4 receptor activation and pro-inflammatory signaling in macrophages and brain. Sci Rep. 2019;9:1220.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Balan I, et al. Neurosteroid allopregnanolone (3α,5α-THP) inhibits inflammatory signals induced by activated MyD88-dependent toll-like receptors. Transl Psychiatry. 2021;11:145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sullivan CR, Mielnik CA, O'Donovan SM, Funk AJ, Bentea E, DePasquale EA, Alganem K, Wen Z, Haroutunian V, Katsel P, Ramsey AJ, Meller J, McCullumsmith RE. Connectivity analyses of bioenergetic changes in schizophrenia: identification of novel treatments. Mol Neurobiol. 2019;56(6):4492–517. https://doi.org/10.1007/s12035-018-1390-4.

    Article  CAS  PubMed  Google Scholar 

  57. De Felice M, Melis M, Aroni S, Muntoni AL, Fanni S, Frau R, Devoto P, Pistis M. The PPARα agonist fenofibrate attenuates disruption of dopamine function in a maternal immune activation rat model of schizophrenia. CNS Neurosci Ther. 2019;25(5):549–61. https://doi.org/10.1111/cns.13087.

    Article  CAS  PubMed  Google Scholar 

  58. Lian J, Huang XF, Pai N, Deng C. Ameliorating antipsychotic-induced weight gain by betahistine: mechanisms and clinical implications. Pharmacol Res. 2016;106:51–63. https://doi.org/10.1016/j.phrs.2016.02.011.

    Article  CAS  PubMed  Google Scholar 

  59. D'Aniello E, Fellous T, Iannotti FA, Gentile A, Allarà M, Balestrieri F, Gray R, Amodeo P, Vitale RM, Di Marzo V. Identification and characterization of phytocannabinoids as novel dual PPARα/γ agonists by a computational and in vitro experimental approach. Biochim Biophy Acta Gen Subj. 2019;1863(3):586–97. https://doi.org/10.1016/j.bbagen.2019.01.002.

    Article  CAS  Google Scholar 

  60. Najjar RS, Feresin RG. Plant-based diets in the reduction of body fat: physiological effects and biochemical insights. Nutrients. 2019;11(11):2712. https://doi.org/10.3390/nu11112712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on aging-Alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7(3):263–9. https://doi.org/10.1016/j.jalz.2011.03.005.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–6. https://doi.org/10.1126/science.1072994.

    Article  CAS  PubMed  Google Scholar 

  63. Lannfelt L, Relkin NR, Siemers ER. Amyloid-ß-directed immunotherapy for Alzheimer's disease. J Intern Med. 2014;275(3):284–95. https://doi.org/10.1111/joim.12168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Heneka, M. T., Carson, M. J., El Khoury, J., Landreth, G. E., Brosseron, F., Feinstein, D. L., , … Kummer, M. P. (2015). Neuroinflammation in Alzheimer's disease. Lancet Neurol, 14(4), 388–405. doi:https://doi.org/10.1016/S1474-4422(15)70016-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer’sdisease: where do we go from here? Nat Rev Neurol. 2021;17(3):157–72. https://doi.org/10.1038/s41582-020-00435-y.

    Article  PubMed  Google Scholar 

  66. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139(Suppl 2):136–53. https://doi.org/10.1111/jnc.13607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Munhoz CD, García-Bueno B, Madrigal JL, Lepsch LB, Scavone C, Leza JC. Stress-induced neuroinflammation: mechanisms and new pharmacological targets. Braz J of Med Biol Res. 2008;41(12):1037–46. https://doi.org/10.1590/s0100-879x2008001200001.

    Article  CAS  Google Scholar 

  68. Lyman M, Lloyd DG, Ji X, Vizcaychipi MP, Ma D. Neuroinflammation: the role and consequences. Neurosci Res. 2014;79:1–12. https://doi.org/10.1016/j.neures.2013.10.004.

    Article  CAS  PubMed  Google Scholar 

  69. Wójtowicz S, Strosznajder AK, Jeżyna M, Strosznajder JB. The novel role of PPAR alpha in the brain: promising target in therapy of Alzheimer's disease and other neurodegenerative disorders. Neurochem Res. 2020;45(5):972–88. https://doi.org/10.1007/s11064-020-02993-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Luo R, Su LY, Li G, Yang J, Liu Q, Yang LX, Zhang DF, Zhou H, Xu M, Fan Y, Li J, Yao YG. Activation of PPARA-mediated autophagy reduces Alzheimer’sdisease-like pathology and cognitive decline in a murine model. Autophagy. 2020;16(1):52–69. https://doi.org/10.1080/15548627.2019.1596488.

    Article  CAS  PubMed  Google Scholar 

  71. Nisbett KE, Pinna G. Emerging therapeutic role of PPAR-α in cognition and emotions. Front Pharmacol. 2018;9:998. https://doi.org/10.3389/fphar.2018.00998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Samii A, Nutt JG, Ransom BR. Parkinson's disease. Lancet. 2004;363(9423):1783–93. https://doi.org/10.1016/S0140-6736(04)16305-8.

    Article  CAS  PubMed  Google Scholar 

  73. Emre M. Dementia associated with Parkinson's disease. Lancet Neurol. 2003;2(4):229–37. https://doi.org/10.1016/s1474-4422(03)00351-x.

    Article  CAS  PubMed  Google Scholar 

  74. McDonald WM, Richard IH, DeLong MR. Prevalence, etiology, and treatment of depression in Parkinson's disease. Biol Psychiatry. 2003;54(3):363–75. https://doi.org/10.1016/s0006-3223(03)00530-4.

    Article  PubMed  Google Scholar 

  75. Schneider RB, Iourinets J, Richard IH. Parkinson's disease psychosis: presentation, diagnosis and management. Neurodegener Dis Manag. 2017;7(6):365–76. https://doi.org/10.2217/nmt-2017-0028.

    Article  PubMed  Google Scholar 

  76. Cacabelos R. Parkinson's disease: from pathogenesis to pharmacogenomics. Int J Mol Sci. 2017;18(3):551. https://doi.org/10.3390/ijms18030551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinson's disease. Neurobiol Dis. 2018;109(Pt B):249–57. https://doi.org/10.1016/j.nbd.2017.04.004.

    Article  CAS  PubMed  Google Scholar 

  78. Marogianni C, Sokratous M, Dardiotis E, Hadjigeorgiou GM, Bogdanos D, Xiromerisiou G. Neurodegeneration and inflammation-an interesting interplay in Parkinson's disease. Int J Mol Sci. 2020;21(22):8421. https://doi.org/10.3390/ijms21228421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Singer TP, Ramsay RR. Mechanism of the neurotoxicity of MPTP. An update. FEBS Lett. 1990;274(1–2):1–8. https://doi.org/10.1016/0014-5793(90)81315-f.

    Article  CAS  PubMed  Google Scholar 

  80. Simon DK, Simuni T, Elm J, Clark-Matott J, Graebner AK, Baker L, Dunlop SR, Emborg M, Kamp C, Morgan JC, Ross GW, Sharma S, Ravina B, Investigators NINDSNET-PD. Peripheral biomarkers of Parkinson's disease progression and pioglitazone effects. J Parkinsons Dis. 2015;5(4):731–6. https://doi.org/10.3233/JPD-150666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pisanu A, Lecca D, Mulas G, Wardas J, Simbula G, Spiga S, Carta AR. Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-γ agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson's disease. Neurobiol Dis. 2014;71:280–91. https://doi.org/10.1016/j.nbd.2014.08.011.

    Article  CAS  PubMed  Google Scholar 

  82. Lee Y, Cho JH, Lee S, Lee W, Chang SC, Chung HY, Moon HR, Lee J. Neuroprotective effects of MHY908, a PPAR α/γ dual agonist, in a MPTP-induced Parkinson's disease model. Brain Res. 2019;1704:47–58. https://doi.org/10.1016/j.brainres.2018.09.036.

    Article  CAS  PubMed  Google Scholar 

  83. Bordet R, Ouk T, Petrault O, Gelé P, Gautier S, Laprais M, Deplanque D, Duriez P, Staels B, Fruchart JC, Bastide M. PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem Soc Trans. 2006;34(Pt 6):1341–6. https://doi.org/10.1042/BST0341341.

    Article  CAS  PubMed  Google Scholar 

  84. Kreisler A, Duhamel A, Vanbesien-Mailliot C, Destée A, Bordet R. Differing short-term neuroprotective effects of the fibrates fenofibrate and bezafibrate in MPTP and 6-OHDA experimental models of Parkinson's disease. Behav Pharmacol. 2010;21(3):194–205. https://doi.org/10.1097/FBP.0b013e32833a5c81.

    Article  CAS  PubMed  Google Scholar 

  85. Zhao C, Zhu J, Liu X, Pu C, Lai Y, Chen L, Yu X, Hong N. Structural and functional brain abnormalities in schizophrenia: a cross-sectional study at different stages of the disease. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;83:27–32. https://doi.org/10.1016/j.pnpbp.2017.12.017.

    Article  Google Scholar 

  86. Torres US, Portela-Oliveira E, Borgwardt S, Busatto GF. Structural brain changes associated with antipsychotic treatment in schizophrenia as revealed by voxel-based morphometric MRI: an activation likelihood estimation meta-analysis. BMC Psychiatry. 2013;13:342. https://doi.org/10.1186/1471-244X-13-342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lewine R, Hart M. Schizophrenia spectrum and other psychotic disorders. Handb Clin Neurol. 2020;175:315–33. https://doi.org/10.1016/B978-0-444-64123-6.00022-9.

    Article  PubMed  Google Scholar 

  88. Millan MJ. An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy. Neuropharmacology. 2013;68:2–82. https://doi.org/10.1016/j.neuropharm.2012.11.015.

    Article  CAS  PubMed  Google Scholar 

  89. Millan MJ, Andrieux A, Bartzokis G, Cadenhead K, Dazzan P, Fusar-Poli P, Gallinat J, Giedd J, Grayson DR, Heinrichs M, Kahn R, Krebs MO, Leboyer M, Lewis D, Marin O, Marin P, Meyer-Lindenberg A, McGorry P, McGuire P, Owen MJ, et al. Altering the course of schizophrenia: progress and perspectives. Nat Rev Drug Discov. 2016;15(7):485–515. https://doi.org/10.1038/nrd.2016.28.

    Article  CAS  PubMed  Google Scholar 

  90. García-Bueno B, Bioque M, Mac-Dowell KS, Barcones MF, Martínez-Cengotitabengoa M, Pina-Camacho L, et al. Pro−/anti-inflammatory dysregulation in patients with first episode of psychosis: toward an integrative inflammatory hypothesis of schizophrenia. Schizophr Bull. 2014;40(2):376–87. https://doi.org/10.1093/schbul/sbt001.

    Article  PubMed  Google Scholar 

  91. Na KS, Kim YK. Monocytic, Th1 and th2 cytokine alterations in the pathophysiology of schizophrenia. Neuropsychobiology. 2007;56(2–3):55–63. https://doi.org/10.1159/000111535.

    Article  CAS  PubMed  Google Scholar 

  92. Maes M. Cytokines in schizophrenia. Biol Psychiatry. 1997;42(4):308–9. https://doi.org/10.1016/S0006-3223(97)00240-0.

    Article  CAS  PubMed  Google Scholar 

  93. Fond G, Godin O, Boyer L, Berna F, Andrianarisoa M, Coulon N, Brunel L, Bulzacka E, Aouizerate B, Capdevielle D, Chereau I, D'Amato T, Dubertret C, Dubreucq J, Faget C, Leignier S, Lançon C, Mallet J, Misdrahi D, Passerieux C, et al. Chronic low-grade peripheral inflammation is associated with ultra resistant schizophrenia. Results from the FACE-SZ cohort. Eur Arch Psychiatry Clin Neurosci. 2019;269(8):985–92. https://doi.org/10.1007/s00406-018-0908-0.

    Article  CAS  PubMed  Google Scholar 

  94. Leboyer M, Godin O, Terro E, Boukouaci W, Lu CL, Andre M, et al. Immune signatures of treatment-resistant schizophrenia: a fondamental academic centers of expertise for schizophrenia (FACE-SZ) study. Schizophr Bull Open. 2021;2(1):sgab012. https://doi.org/10.1093/schizbullopen/sgab012.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Labonté C, Zhand N, Park A, Harvey PD. Complete blood count inflammatory markers in treatment-resistant schizophrenia: evidence of association between treatment responsiveness and levels of inflammation. Psychiatry Res. 2022;308:114382. https://doi.org/10.1016/j.psychres.2021.114382.

    Article  CAS  PubMed  Google Scholar 

  96. Fineberg AM, Ellman LM. Inflammatory cytokines and neurological and neurocognitive alterations in the course of schizophrenia. Biol Psychiatry. 2013;73(10):951–66. https://doi.org/10.1016/j.biopsych.2013.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bora E. Peripheral inflammatory and neurotrophic biomarkers of cognitive impairment in schizophrenia: a meta-analysis. Psychol Med. 2019;49(12):1971–9. https://doi.org/10.1017/S0033291719001685.

    Article  PubMed  Google Scholar 

  98. Murphy CE, Walker AK, O'Donnell M, Galletly C, Lloyd AR, Liu D, Weickert CS, Weickert TW. Peripheral NF-κB dysregulation in people with schizophrenia drives inflammation: putative anti-inflammatory functions of NF-κB kinases. Transl Psychiatry. 2022;12(1):21. https://doi.org/10.1038/s41398-021-01764-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Riazi K, Galic MA, Kentner AC, Reid AY, Sharkey KA, Pittman QJ. Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation. J Neurosci Off J Soc Neurosci. 2015;35(12):4942–52. https://doi.org/10.1523/JNEUROSCI.4485-14.2015.

    Article  CAS  Google Scholar 

  100. Barron H, Hafizi S, Andreazza AC, Mizrahi R. Neuroinflammation and oxidative stress in psychosis and psychosis risk. Int J Mol Sci. 2017;18(3):651. https://doi.org/10.3390/ijms18030651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Olmos G, Lladó J. Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediat Inflamm. 2014;2014:861231. https://doi.org/10.1155/2014/861231.

    Article  CAS  Google Scholar 

  102. Cai H, Cao T, Zhou X, Yao JK. Neurosteroids in schizophrenia: pathogenic and therapeutic implications. Front Psych. 2018;9:73. https://doi.org/10.3389/fpsyt.2018.00073.

    Article  Google Scholar 

  103. Locci A, Pinna G. Neurosteroid biosynthesis down-regulation and changes in GABAA receptor subunit composition: a biomarker axis in stress-induced cognitive and emotional impairment. Br J Pharmacol. 2017;174(19):3226–41. https://doi.org/10.1111/bph.13843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Javitt DC. Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry. 2004;9(11):984–79. https://doi.org/10.1038/sj.mp.4001551.

    Article  CAS  PubMed  Google Scholar 

  105. Vyklicky V, Smejkalova T, Krausova B, Balik A, Korinek M, Borovska J, Horak M, Chvojkova M, Kleteckova L, Vales K, Cerny J, Nekardova M, Chodounska H, Kudova E, Vyklicky L. Preferential inhibition of tonically over phasically activated NMDA receptors by pregnane derivatives. J Neurosci Off J Soc Neurosci. 2016;36(7):2161–75. https://doi.org/10.1523/JNEUROSCI.3181-15.2016.

    Article  CAS  Google Scholar 

  106. Howes OD, McCutcheon R, Agid O, de Bartolomeis A, van Beveren NJ, Birnbaum ML, Bloomfield MA, Bressan RA, Buchanan RW, Carpenter WT, Castle DJ, Citrome L, Daskalakis ZJ, Davidson M, Drake RJ, Dursun S, Ebdrup BH, Elkis H, Falkai P, Fleischacker WW, et al. Treatment-resistant schizophrenia: treatment response and resistance in psychosis (TRRIP) working group consensus guidelines on diagnosis and terminology. Am J Psychiatry. 2017;174(3):216–29. https://doi.org/10.1176/appi.ajp.2016.16050503.

    Article  PubMed  Google Scholar 

  107. Kennedy JL, Altar CA, Taylor DL, Degtiar I, Hornberger JC. The social and economic burden of treatment-resistant schizophrenia: a systematic literature review. Int Clin Psychopharmacol. 2014;29(2):63–76.

    Article  PubMed  Google Scholar 

  108. Barnes TR, Drake R, Paton C, Cooper SJ, Deakin B, Ferrier IN, Gregory CJ, Haddad PM, Howes OD, Jones I, Joyce EM, Lewis S, Lingford-Hughes A, MacCabe JH, Owens DC, Patel MX, Sinclair JM, Stone JM, Talbot PS, Upthegrove R, et al. Evidence-based guidelines for the pharmacological treatment of schizophrenia: updated recommendations from the British Association for Psychopharmacology. J Psychopharmacol. 2020;34(1):3–78. https://doi.org/10.1177/0269881119889296.

    Article  PubMed  Google Scholar 

  109. Potkin SG, Kane JM, Correll CU, Lindenmayer JP, Agid O, Marder SR, Olfson M, Howes OD. The neurobiology of treatment-resistant schizophrenia: paths to antipsychotic resistance and a roadmap for future research. NPJ Schizophr. 2020;6(1):1. https://doi.org/10.1038/s41537-019-0090-z.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Keller WR, Kum LM, Wehring HJ, Koola MM, Buchanan RW, Kelly DL. A review of anti-inflammatory agents for symptoms of schizophrenia. J Psychopharmacol. 2013;27(4):337–42. https://doi.org/10.1177/0269881112467089.

    Article  CAS  PubMed  Google Scholar 

  111. Meltzer HY. Treatment-resistant schizophrenia--the role of clozapine. Curr Med Res Opin. 1997;14(1):1–20. https://doi.org/10.1185/03007999709113338.

    Article  CAS  PubMed  Google Scholar 

  112. Siskind D, Siskind V, Kisely S. Clozapine response rates among people with treatment-resistant schizophrenia: data from a systematic review and meta-analysis. Can J Psychiatry. 2017;62(11):772–7. https://doi.org/10.1177/0706743717718167.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Fernandes BS, Steiner J, Bernstein HG, Dodd S, Pasco JA, Dean OM, Nardin P, Gonçalves CA, Berk M. C-reactive protein is increased in schizophrenia but is not altered by antipsychotics: meta-analysis and implications. Mol Psychiatry. 2016;21(4):554–64. https://doi.org/10.1038/mp.2015.87.

    Article  CAS  PubMed  Google Scholar 

  114. Mondelli V, Ciufolini S, Belvederi Murri M, Bonaccorso S, Di Forti M, Giordano A, Marques TR, Zunszain PA, Morgan C, Murray RM, Pariante CM, Dazzan P. Cortisol and inflammatory biomarkers predict poor treatment response in first episode psychosis. Schizophr Bull. 2015;41(5):1162–70. https://doi.org/10.1093/schbul/sbv028.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Kose M, Pariante CM, Dazzan P, Mondelli V. The role of peripheral inflammation in clinical outcome and brain imaging abnormalities in psychosis: a systematic review. Front Psych. 2021;12:612471. https://doi.org/10.3389/fpsyt.2021.612471.

    Article  Google Scholar 

  116. Guang S, Pang N, Deng X, Yang L, He F, Wu L, Chen C, Yin F, Peng J. Synaptopathology involved in autism Spectrum disorder. Front Cell Neurosci. 2018;12:470. https://doi.org/10.3389/fncel.2018.00470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Masini E, Loi E, Vega-Benedetti AF, Carta M, Doneddu G, Fadda R, Zavattari P. An overview of the Main genetic, epigenetic and environmental factors involved in autism Spectrum disorder focusing on synaptic activity. Int J Mol Sci. 2020;21(21):8290. https://doi.org/10.3390/ijms21218290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yoon SH, Choi J, Lee WJ, Do JT. Genetic and epigenetic Etiology underlying autism Spectrum disorder. J Clin Med. 2020;9(4):966. https://doi.org/10.3390/jcm9040966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Matta SM, Hill-Yardin EL, Crack PJ. The influence of neuroinflammation in autism Spectrum disorder. Brain Behav Immun. 2019;79:75–90. https://doi.org/10.1016/j.bbi.2019.04.037.

    Article  PubMed  Google Scholar 

  120. Meltzer A, Van de Water J. The role of the immune system in autism Spectrum disorder. Neuropsychopharmacology: official publication of the American college of. Neuropsychopharmacology. 2017;42(1):284–98. https://doi.org/10.1038/npp.2016.158.

    Article  CAS  PubMed  Google Scholar 

  121. Prata J, Machado AS, von Doellinger O, Almeida MI, Barbosa MA, Coelho R, Santos SG. The contribution of inflammation to autism Spectrum disorders: recent clinical evidence. Methods Mol Biol. 2019;2011:493–510. https://doi.org/10.1007/978-1-4939-9554-7_29.

    Article  CAS  PubMed  Google Scholar 

  122. Thom RP, Keary CJ, Palumbo ML, Ravichandran CT, Mullett JE, Hazen EP, Neumeyer AM, McDougle CJ. Beyond the brain: a multi-system inflammatory subtype of autism spectrum disorder. Psychopharmacology. 2019;236(10):3045–61. https://doi.org/10.1007/s00213-019-05280-6.

    Article  CAS  PubMed  Google Scholar 

  123. Barone R, Rizzo R, Tabbì G, Malaguarnera M, Frye RE, Bastin J. Nuclear peroxisome proliferator-activated receptors (PPARs) as therapeutic targets of resveratrol for autism Spectrum disorder. Int J Mol Sci. 2019;20(8):1878. https://doi.org/10.3390/ijms20081878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Capano L, Dupuis A, Brian J, Mankad D, Genore L, Hastie Adams R, Smile S, Lui T, Odrobina D, Foster JA, Anagnostou E. A pilot dose finding study of pioglitazone in autistic children. Mol Autism. 2018;9:59. https://doi.org/10.1186/s13229-018-0241-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ghaleiha A, Rasa SM, Nikoo M, Farokhnia M, Mohammadi MR, Akhondzadeh S. A pilot double-blind placebo-controlled trial of pioglitazone as adjunctive treatment to risperidone: effects on aberrant behavior in children with autism. Psychiatry Res. 2015;229(1–2):181–7. https://doi.org/10.1016/j.psychres.2015.07.043.

    Article  CAS  PubMed  Google Scholar 

  126. Kirsten TB, Casarin RC, Bernardi MM, Felicio LF. Pioglitazone abolishes autistic-like behaviors via the IL-6 pathway. PLoS One. 2018;13(5):e0197060. https://doi.org/10.1371/journal.pone.0197060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mirza R, Sharma B. Benefits of Fenofibrate in prenatal valproic acid-induced autism spectrum disorder related phenotype in rats. Brain Res Bull. 2019;147:36–46. https://doi.org/10.1016/j.brainresbull.2019.02.003.

    Article  CAS  PubMed  Google Scholar 

  128. D'Agostino G, Cristiano C, Lyons DJ, Citraro R, Russo E, Avagliano C, Russo R, Raso GM, Meli R, De Sarro G, Heisler LK, Calignano A. Peroxisome proliferator-activated receptor alpha plays a crucial role in behavioral repetition and cognitive flexibility in mice. Molecular Metab. 2015;4(7):528–36. https://doi.org/10.1016/j.molmet.2015.04.005.

    Article  CAS  Google Scholar 

  129. Cristiano C, Pirozzi C, Coretti L, Cavaliere G, Lama A, Russo R, Lembo F, Mollica MP, Meli R, Calignano A, Mattace Raso G. Palmitoylethanolamide counteracts autistic-like behaviours in BTBR T+tf/J mice: contribution of central and peripheral mechanisms. Brain Behav Immun. 2018;74:166–75. https://doi.org/10.1016/j.bbi.2018.09.003.

    Article  CAS  PubMed  Google Scholar 

  130. Aleshin S, Strokin M, Sergeeva M, Reiser G. Peroxisome proliferator-activated receptor (PPAR)β/δ, a possible nexus of PPARα- and PPARγ-dependent molecular pathways in neurodegenerative diseases: review and novel hypotheses. Neurochem Int. 2013;63(4):322–30. https://doi.org/10.1016/j.neuint.2013.06.012.

    Article  CAS  PubMed  Google Scholar 

  131. Song L, Wang H, Wang YJ, Wang JL, Zhu Q, Wu F, Zhang W, Jiang B. Hippocampal PPARα is a novel therapeutic target for depression and mediates the antidepressant actions of fluoxetine in mice. Br J Pharmacol. 2018;175(14):2968–87. https://doi.org/10.1111/bph.14346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ahmad SF, Nadeem A, Ansari MA, Bakheet SA, Alshammari MA, Attia SM. The PPARδ agonist GW0742 restores neuroimmune function by regulating Tim-3 and Th17/Treg-related signaling in the BTBR autistic mouse model. Neurochem Int. 2018;120:251–61. https://doi.org/10.1016/j.neuint.2018.09.006. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th edn. American Psychiatric Publishing, Arlington, VA, 2013

    Article  CAS  PubMed  Google Scholar 

  133. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctôt KL. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–57. https://doi.org/10.1016/j.biopsych.2009.09.033.

    Article  CAS  PubMed  Google Scholar 

  134. Fleshner M, Frank M, Maier SF. Danger signals and Inflammasomes: stress-evoked sterile inflammation in mood disorders. Neuropsychopharmacology: official publication of the American college of. Neuropsychopharmacology. 2017;42(1):36–45. https://doi.org/10.1038/npp.2016.125.

    Article  CAS  PubMed  Google Scholar 

  135. Maes M, Yirmyia R, Noraberg J, Brene S, Hibbeln J, Perini G, Kubera M, Bob P, Lerer B, Maj M. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis. 2009;24(1):27–53. https://doi.org/10.1007/s11011-008-9118-1.

    Article  CAS  PubMed  Google Scholar 

  136. Hong F, Xu P, Zhai Y. The opportunities and challenges of peroxisome proliferator-activated receptors ligands in clinical drug discovery and development. Int J Mol Sci. 2018;19(8):2189. https://doi.org/10.3390/ijms19082189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kemp DE, Schinagle M, Gao K, Conroy C, Ganocy SJ, Ismail-Beigi F, Calabrese JR. PPAR-γ agonism as a modulator of mood: proof-of-concept for pioglitazone in bipolar depression. CNS Drugs. 2014;28(6):571–81. https://doi.org/10.1007/s40263-014-0158-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sepanjnia K, Modabbernia A, Ashrafi M, Modabbernia MJ, Akhondzadeh S. Pioglitazone adjunctive therapy for moderate-to-severe major depressive disorder: randomized double-blind placebo-controlled trial. Neuropsychopharmacology. 2012;37(9):2093–100. https://doi.org/10.1038/npp.2012.58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sasso O, La Rana G, Vitiello S, Russo R, D'Agostino G, Iacono A, Russo E, Citraro R, Cuzzocrea S, Piazza PV, De Sarro G, Meli R, Calignano A. Palmitoylethanolamide modulates pentobarbital-evoked hypnotic effect in mice: involvement of allopregnanolone biosynthesis. Eur Neuropsychopharmacol. 2010;20(3):195–206. https://doi.org/10.1016/j.euroneuro.2009.09.003.

    Article  CAS  PubMed  Google Scholar 

  140. Sasso O, Russo R, Vitiello S, Raso GM, D'Agostino G, Iacono A, La Rana G, Vallée M, Cuzzocrea S, Piazza PV, Meli R, Calignano A. Implication of allopregnanolone in the antinociceptive effect of N-palmitoylethanolamide in acute or persistent pain. Pain. 2012;153(1):33–41. https://doi.org/10.1016/j.pain.2011.08.010.

    Article  CAS  PubMed  Google Scholar 

  141. Pinna G. Animal models of PTSD: the socially isolated mouse and the biomarker role of allopregnanolone. Front Behav Neurosci. 2019;13:114. https://doi.org/10.3389/fnbeh.2019.00114. PMID: 31244621; PMCID: PMC6579844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Pinna G. Endocannabinoids and precision medicine for mood disorders and suicide. Front Psych. 2021;12:658433. https://doi.org/10.3389/fpsyt.2021.658433. PMID: 34093274; PMCID: PMC8173054

    Article  Google Scholar 

  143. Sinyor M, Schaffer A, Levitt A. The sequenced treatment alternatives to relieve depression (STAR*D) trial: a review. Can J Psychiatry. 2010;55(3):126–35. https://doi.org/10.1177/070674371005500303.

    Article  PubMed  Google Scholar 

  144. McIntyre RS, Filteau MJ, Martin L, Patry S, Carvalho A, Cha DS, Barakat M, Miguelez M. Treatment-resistant depression: definitions, review of the evidence, and algorithmic approach. J Affect Disord. 2014;156:1–7. https://doi.org/10.1016/j.jad.2013.10.043.

    Article  CAS  PubMed  Google Scholar 

  145. Halaris A, Sohl E, Whitham EA. Treatment-resistant depression revisited: a glimmer of hope. J Pers Med. 2021;11(2):155. https://doi.org/10.3390/jpm11020155.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Lauden A, Geishin A, Merzon E, Korobeinikov A, Green I, Golan-Cohen A, Vinker S, Manor I, Weizman A, Magen E. Higher rates of allergies, autoimmune diseases and low-grade inflammation markers in treatment-resistant major depression. Brain Behav Immun Health. 2021;16:100313. https://doi.org/10.1016/j.bbih.2021.100313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Strawbridge R, Hodsoll J, Powell TR, Hotopf M, Hatch SL, Breen G, Cleare AJ. Inflammatory profiles of severe treatment-resistant depression. J Affect Disord. 2019;246:42–51. https://doi.org/10.1016/j.jad.2018.12.037.

    Article  CAS  PubMed  Google Scholar 

  148. Soczynska JK, Mansur RB, Brietzke E, Swardfager W, Kennedy SH, Woldeyohannes HO, Powell AM, Manierka MS, McIntyre RS. Novel therapeutic targets in depression: minocycline as a candidate treatment. Behav Brain Res. 2012;235(2):302–17. https://doi.org/10.1016/j.bbr.2012.07.026.

    Article  CAS  PubMed  Google Scholar 

  149. Chamberlain SR, Cavanagh J, de Boer P, Mondelli V, Jones D, Drevets WC, Cowen PJ, Harrison NA, Pointon L, Pariante CM, Bullmore ET. Treatment-resistant depression and peripheral C-reactive protein. Br J Psychiatry J Ment Sci. 2019;214(1):11–9. https://doi.org/10.1192/bjp.2018.66.

    Article  Google Scholar 

  150. Kruse JL, Congdon E, Olmstead R, Njau S, Breen EC, Narr KL, Espinoza R, Irwin MR. Inflammation and improvement of depression following electroconvulsive therapy in treatment-resistant depression. J Clin Psychiatry. 2018;79(2):17m11597. https://doi.org/10.4088/JCP.17m11597.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Abbasi SH, Hosseini F, Modabbernia A, Ashrafi M, Akhondzadeh S. Effect of celecoxib add-on treatment on symptoms and serum IL-6 concentrations in patients with major depressive disorder: randomized double-blind placebo-controlled study. J Affect Disord. 2012;141(2–3):308–14. https://doi.org/10.1016/j.jad.2012.03.033.

    Article  CAS  PubMed  Google Scholar 

  152. Gallagher PJ, Castro V, Fava M, Weilburg JB, Murphy SN, Gainer VS, Churchill SE, Kohane IS, Iosifescu DV, Smoller JW, Perlis RH. Antidepressant response in patients with major depression exposed to NSAIDs: a pharmacovigilance study. Am J Psychiatry. 2012;169(10):1065–72. https://doi.org/10.1176/appi.ajp.2012.11091325.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, Haroon E, Miller AH. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiat. 2013;70(1):31–41. https://doi.org/10.1001/2013.jamapsychiatry.4.

    Article  CAS  Google Scholar 

  154. Yilmaz C, Karali K, Fodelianaki G, Gravanis A, Chavakis T, Charalampopoulos I, Alexaki VI. Neurosteroids as regulators of neuroinflammation. Front Neuroendocrinol. 2019;55:100788. https://doi.org/10.1016/j.yfrne.2019.100788.

    Article  PubMed  Google Scholar 

  155. Pinna G, Dong E, Matsumoto K, Costa E, Guidotti A. In socially isolated mice, the reversal of brain allopregnanolone down-regulation mediates the anti-aggressive action of fluoxetine. Proc Natl Acad Sci. 2003;100:2035–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Uzunova V, Ceci M, Kohler C, Uzunov DP, Wrynn AS. Region-specific dysregulation of allopregnanolone brain content in the olfactory bulbectomized rat model of depression. Brain Res. 2003;976:1–8.

    Article  CAS  PubMed  Google Scholar 

  157. Uzunova V, et al. Chronic antidepressants reverse cerebrocortical allopregnanolone decline in the olfactory-bulbectomized rat. Eur J Pharmacol. 2004;486:31–4.

    Article  CAS  PubMed  Google Scholar 

  158. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Publishing; 2013.

    Book  Google Scholar 

  159. Friedman MJ, Bernardy NC. Considering future pharmacotherapy for PTSD. Neurosci Lett. 2017;649:181–5. https://doi.org/10.1016/j.neulet.2016.11.048.

    Article  CAS  PubMed  Google Scholar 

  160. Neumeister A, Seidel J, Ragen BJ, Pietrzak RH. Translational evidence for a role of endocannabinoids in the etiology and treatment of posttraumatic stress disorder. Psychoneuroendocrinology. 2015;51:577–84. https://doi.org/10.1016/j.psyneuen.2014.10.012.

    Article  CAS  PubMed  Google Scholar 

  161. Michopoulos V, Powers A, Gillespie CF, Ressler KJ, Jovanovic T. Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology. 2017;42(1):254–70. https://doi.org/10.1038/npp.2016.146.

    Article  CAS  PubMed  Google Scholar 

  162. Miller MW, Lin AP, Wolf EJ, Miller DR. Oxidative stress, inflammation, and neuroprogression in chronic PTSD. Harv Rev Psychiatry. 2018;26(2):57–69. https://doi.org/10.1097/HRP.0000000000000167.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Quinones MM, Gallegos AM, Lin FV, Heffner K. Dysregulation of inflammation, neurobiology, and cognitive function in PTSD: an integrative review. Cogn Affect Behav Neurosci. 2020;20(3):455–80. https://doi.org/10.3758/s13415-020-00782-9.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Rasmusson AM, et al. Decreased cerebrospinal fluid Allopregnanolone levels in women with posttraumatic stress disorder. Biol Psychiatry. 2006;60:704–13.

    Article  CAS  PubMed  Google Scholar 

  165. Rasmusson AM, King MW, Valovski I, Gregor K, Scioli-Salter E, Pineles SL, Hamouda M, Nillni YI, Anderson GM, Pinna G. Relationships between cerebrospinal fluid GABAergic neurosteroid levels and symptom severity in men with PTSD. Psychoneuroendocrinology. 2019;102:95–104. https://doi.org/10.1016/j.psyneuen.2018.11.027.

    Article  CAS  PubMed  Google Scholar 

  166. Rasmusson AM, Pineles SL, Brown KD, Pinna G. A role for deficits in GABAergic neurosteroids and their metabolites with NMDA receptor antagonist activity in the pathophysiology of posttraumatic stress disorder. J Neuroendocrinol. 2022;34(2):e13062. https://doi.org/10.1111/jne.13062. Epub 2021 Dec 28. PMID: 34962690

    Article  CAS  PubMed  Google Scholar 

  167. Passos IC, Vasconcelos-Moreno MP, Costa LG, Kunz M, Brietzke E, Quevedo J, Salum G, Magalhães PV, Kapczinski F, Kauer-Sant'Anna M. Inflammatory markers in post-traumatic stress disorder: a systematic review, meta-analysis, and meta-regression. Lancet Psychiatry. 2015;2(11):1002–12. https://doi.org/10.1016/S2215-0366(15)00309-0.

    Article  PubMed  Google Scholar 

  168. Hill MN, Campolongo P, Yehuda R, Patel S. Integrating endocannabinoid Signaling and cannabinoids into the biology and treatment of posttraumatic stress disorder. Neuropsychopharmacology. 2018;43(1):80–102. https://doi.org/10.1038/npp.2017.162.

    Article  PubMed  Google Scholar 

  169. Steenkamp MM, Blessing EM, Galatzer-Levy IR, Hollahan LC, Anderson WT. Marijuana and other cannabinoids as a treatment for posttraumatic stress disorder: a literature review. Depress Anxiety. 2017;34(3):207–16. https://doi.org/10.1002/da.22596.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graziano Pinna .

Editor information

Editors and Affiliations

Ethics declarations

GP is a paid consultant to PureTech Health, GABA Therapeutics, and NeuroTrauma Science and has two pending patent applications, one on N-palmitoylethanolamine (PEA) and peroxisome proliferator-activated receptor alpha (PPAR-α) agonists and one on allopregnanolone analogs in the treatment of neuropsychiatric disorders.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matrisciano, F., Pinna, G. (2023). The Strategy of Targeting Peroxisome Proliferator-Activated Receptor (PPAR) in the Treatment of Neuropsychiatric Disorders. In: Kim, YK. (eds) Neuroinflammation, Gut-Brain Axis and Immunity in Neuropsychiatric Disorders. Advances in Experimental Medicine and Biology, vol 1411. Springer, Singapore. https://doi.org/10.1007/978-981-19-7376-5_22

Download citation

Publish with us

Policies and ethics