Skip to main content
Log in

Chronic valproate does not alter the kinetics of docosahexaenoic acid within brain phospholipids of the unanesthetized rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

It has been reported that each of three drugs effective in treating bipolar disorder (lithium, carbamazepine, and valproate) decreases the turnover of arachidonic acid (AA, 20:4n-6) in brain phospholipids of the awake rat. It is also known that lithium and carbamazepine do so without decreasing the turnover of docosahexaenoic acid (DHA, 22:6n-3).

Objective

The aim of this study was to see whether valproate also specifically targets the turnover of AA but not of DHA in brain phospholipids.

Methods

Valproate was administered (200 mg kg−1, i.p.) to rats for 30 days to produce a therapeutically relevant plasma concentration and then determine its effect compared with that of vehicle on incorporation and turnover rates of DHA in brain phospholipids. In unanesthetized rats that had received valproate or vehicle, [1-14C]DHA was infused intravenously, and arterial blood plasma was sampled until the animal was killed at 5 min; and its brain, after being microwaved, was subjected to chemical and radiotracer analysis.

Results

Using equations derived from our fatty acid model, it was found that chronic valproate compared with vehicle did not alter the rate of incorporation or turnover of DHA in brain phospholipids. Valproate-treated animals had higher concentrations of linoleic acid (18:2n-6) in several brain phospholipids, supporting the hypothesis that it alters brain n-6 fatty acid metabolism.

Conclusions

The results, comparable to published findings following chronic administration of lithium and carbamazepine to rats, support the hypothesis that drugs are effective against mania in bipolar disorder act by downregulating incorporation and turnover of AA, but not of DHA, in brain phospholipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

DHA:

Docosahexaenoic acid

PC:

Choline glycerophospholipid

PS:

Phosphatidylserine

PI:

Phosphatidylinositol

PE:

Ethanolamine glycerophospholipid

PL:

Phospholipid

References

  • Bazinet RP, Douglas H, Cunnane SC (2003) Whole-body utilization of n-3 PUFA in n-6 PUFA-deficient rats. Lipids 38:187–189

    Article  PubMed  CAS  Google Scholar 

  • Bazinet RP, Weis MT, Rapoport SI, Rosenberger TA (2005) Valproic acid inhibits brain microsomal fatty acyl–CoA synthetases at physiologically relevant concentrations. Experimental Biology, San Diego, CA Abstract 3672

    Google Scholar 

  • Bolanos JP, Medina JM (1997) Effect of valproate on the metabolism of the central nervous system. Life Sci 60:1933–1942

    Article  PubMed  CAS  Google Scholar 

  • Bosetti F, Rintala J, Seemann R, Rosenberger TA, Contreras MA, Rapoport SI, Chang MC (2002) Chronic lithium downregulates cyclooxygenase-2 activity and prostaglandin E(2) concentration in rat brain. Mol Psychiatry 7:845–850

    Article  PubMed  CAS  Google Scholar 

  • Bosetti F, Weerasinghe GR, Rosenberger TA, Rapoport SI (2003) Valproic acid down-regulates the conversion of arachidonic acid to eicosanoids via cyclooxygenase-1 and -2 in rat brain. J Neurochem 85:690–696

    Article  PubMed  CAS  Google Scholar 

  • Calabrese JR, Bowden C, Woyshville MJ (1995) Lithium and the anticonvulsants in the treatment of bipolar disorder. In: Kupfer D (ed) Psychopharmacology: the fourth generation of progress. Raven, New York, pp 1099–1111

    Google Scholar 

  • Chang MC, Grange E, Rabin O, Bell JM, Allen DD, Rapoport SI (1996) Lithium decreases turnover of arachidonate in several brain phospholipids. Neurosci Lett 220:171–174

    Article  PubMed  CAS  Google Scholar 

  • Chang MC, Bell JM, Purdon AD, Chikhale EG, Grange E (1999) Dynamics of docosahexaenoic acid metabolism in the central nervous system: lack of effect of chronic lithium treatment. Neurochem Res 24:399–406

    Article  PubMed  CAS  Google Scholar 

  • Chang MC, Contreras MA, Rosenberger TA, Rintala JJ, Bell JM, Rapoport SI (2001) Chronic valproate treatment decreases the in vivo turnover of arachidonic acid in brain phospholipids: a possible common effect of mood stabilizers. J Neurochem 77:796–803

    Article  PubMed  CAS  Google Scholar 

  • Contreras MA, Chang MC, Rosenberger TA, Greiner RS, Myers CS, Salem N Jr, Rapoport SI (2001) Chronic nutritional deprivation of n-3 alpha-linolenic acid does not affect n-6 arachidonic acid recycling within brain phospholipids of awake rats. J Neurochem 79:1090–1099

    Article  PubMed  CAS  Google Scholar 

  • Cunnane SC, Anderson MJ (1997) Pure linoleate deficiency in the rat: influence on growth, accumulation of n-6 polyunsaturates, and [1-14C]linoleate oxidation. J Lipid Res 38:805–812

    PubMed  CAS  Google Scholar 

  • Cunnane SC, Trotti D, Ryan MA (2000) Specific linoleate deficiency in the rat does not prevent substantial carbon recycling from [(14)C]linoleate into sterols. J Lipid Res 41:1808–1811

    PubMed  CAS  Google Scholar 

  • Cunnane SC, Ryan MA, Nadeau CR, Bazinet RP, Musa-Veloso K, McCloy U (2003) Why is carbon from some polyunsaturates extensively recycled into lipid synthesis? Lipids 38:477–484

    Article  PubMed  CAS  Google Scholar 

  • DeGeorge JJ, Noronha JG, Bell J, Robinson P, Rapoport SI (1989) Intravenous injection of [1-14C]arachidonate to examine regional brain lipid metabolism in unanesthetized rats. J Neurosci Res 24:413–423

    Article  PubMed  CAS  Google Scholar 

  • Deutsch J, Grange E, Rapoport SI, Purdon AD (1994) Isolation and quantitation of long-chain acyl–coenzyme A esters in brain tissue by solid-phase extraction. Anal Biochem 220:321–323

    Article  PubMed  CAS  Google Scholar 

  • Deutsch J, Rapoport SI, Purdon AD (1997) Relation between free fatty acid and acyl–CoA concentrations in rat brain following decapitation. Neurochem Res 22:759–765

    Article  PubMed  CAS  Google Scholar 

  • Deutsch J, Rapoport SI, Rosenberger TA (2003) Valproyl–CoA and esterified valproate are not found in brains of rats treated with valproic acid, but the brain concentrations of CoA and acetyl–CoA are altered. Neurochem Res 28:861–866

    Article  PubMed  CAS  Google Scholar 

  • Flower R, Gryglewski R, Herbaczynska-Cedro K, Vane JR (1972) Effects of anti-inflammatory drugs on prostaglandin biosynthesis. Nat New Biol 238:104–106

    PubMed  CAS  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • Friel P (1990) Valproyl CoA: an active metabolite of valproate? Med Hypotheses 31:31–32

    Article  PubMed  CAS  Google Scholar 

  • Ghelardoni S, Tomita YA, Bell JM, Rapoport SI, Bosetti F (2004) Chronic carbamazepine selectively downregulates cytosolic phospholipase A2 expression and cyclooxygenase activity in rat brain. Biol Psychiatry 56:248–254

    Article  PubMed  CAS  Google Scholar 

  • Ghelardoni S, Bazinet RP, Rapoport SI, Bosetti F (2005) Topiramate does not alter expression in rat brain of enzymes of arachidonic acid metabolism. Psychopharmacology

  • Gould TD, Quiroz JA, Singh J, Zarate CA, Manji HK (2004) Emerging experimental therapeutics for bipolar disorder: insights from the molecular and cellular actions of current mood stabilizers. Mol Psychiatry 9:734–755

    Article  PubMed  CAS  Google Scholar 

  • Grange E, Deutsch J, Smith QR, Chang M, Rapoport SI, Purdon AD (1995) Specific activity of brain palmitoyl–CoA pool provides rates of incorporation of palmitate in brain phospholipids in awake rats. J Neurochem 65:2290–2298

    Article  PubMed  CAS  Google Scholar 

  • Hong S, Gronert K, Devchand PR, Moussignac RL, Serhan CN (2003) Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J Biol Chem 278:14677–14687

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen FM (1993) Low-dose valproate: a new treatment for cyclothymia, mild rapid cycling disorders, and premenstrual syndrome. J Clin Psychiatry 54:229–234

    PubMed  CAS  Google Scholar 

  • Johannessen CU (2000) Mechanisms of action of valproate: a commentary. Neurochem Int 37:103–110

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Rao J, Chang L, Rapoport S, Bazinet R (2004a) The effects of chronic carbamazepine, an antibipolar disorder drug, on the turnover of arachidonic and docosahexaenoic acids in brain phospholipids of the awake rat. The Society for Neuroscience, San Diego, CA

    Google Scholar 

  • Lee H, Villacreses NE, Rapoport SI, Rosenberger TA (2004b) In vivo imaging detects a transient increase in brain arachidonic acid metabolism: a potential marker of neuroinflammation. J Neurochem 91:936–945

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Ghelardoni S, Chang L, Bosetti F, Rapoport SI, Bazinet RP (2005) Topiramate does not alter the kinetics of arachidonic or docosahexaenoic acid in brain phospholipids of the unanesthetized rat. Neurochem Res [in press]

  • Loscher W (1985) Valproic acid. In: Janz D (ed) Handbook of experimental pharmacology. Springer, Berlin Heidelberg New York, pp 507–537

    Google Scholar 

  • Loscher W (1993) Effects of the antiepileptic drug valproate on metabolism and function of inhibitory and excitatory amino acids in the brain. Neurochem Res 18:485–502

    Article  PubMed  CAS  Google Scholar 

  • Makrides M, Neumann MA, Byard RW, Simmer K, Gibson RA (1994) Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. Am J Clin Nutr 60:189–194

    PubMed  CAS  Google Scholar 

  • Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A, Hardy M, Gimenez JM, Chiang N, Serhan CN, Bazan NG (2003) Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 278:43807–43817

    Article  PubMed  CAS  Google Scholar 

  • Meunier H, Carraz G, Neunier Y, Eymard P, Aimard M (1963) Pharmacodynamic properties of N-dipropylacetic acid. Therapie 18:435–438

    PubMed  CAS  Google Scholar 

  • Noaghiul S, Hibbeln JR (2003) Cross-national comparisons of seafood consumption and rates of bipolar disorders. Am J Psychiatry 160:2222–2227

    Article  PubMed  Google Scholar 

  • Pope HG Jr, McElroy SL, Keck PE Jr, Hudson JI (1991) Valproate in the treatment of acute mania. A placebo-controlled study. Arch Gen Psychiatry 48:62–68

    PubMed  Google Scholar 

  • Rapoport SI, Bosetti F (2002) Do lithium and anticonvulsants target the brain arachidonic acid cascade in bipolar disorder? Arch Gen Psychiatry 59:592–596

    Article  PubMed  CAS  Google Scholar 

  • Rapoport SI, Chang MC, Spector AA (2001) Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. J Lipid Res 42:678–685

    PubMed  CAS  Google Scholar 

  • Rintala J, Seemann R, Chandrasekaran K, Rosenberger TA, Chang L, Contreras MA, Rapoport SI, Chang MC (1999) 85 kDa cytosolic phospholipase A2 is a target for chronic lithium in rat brain. Neuroreport 10:3887–3890

    Article  PubMed  CAS  Google Scholar 

  • Robinson PJ, Noronha J, DeGeorge JJ, Freed LM, Nariai T, Rapoport SI (1992) A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis. Brain Res Brain Res Rev 17:187–214

    Article  PubMed  CAS  Google Scholar 

  • Sachs G, Kushner S, Wang D, Olson W, Capece J, Fazzio L, Rosenthal N (2004) Topiramate in adults with acute bipolar I mania: pooled results. American Psychiatric Association Annual Meeting Abstract

  • Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR, Mirick G, Moussignac RL (2002) Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med 196:1025–1037

    Article  PubMed  CAS  Google Scholar 

  • Siafaka-Kapadai A, Patiris M, Bowden C, Javors M (1998) Incorporation of [3H]valproic acid into lipids in GT1-7 neurons. Biochem Pharmacol 56:207–212

    Article  PubMed  CAS  Google Scholar 

  • Skipski VP, Good JJ, Barclay M, Reggio RB (1968) Quantitative analysis of simple lipid classes by thin-layer chromatography. Biochim Biophys Acta 152:10–19

    PubMed  CAS  Google Scholar 

  • Stoll AL, Severus WE, Freeman MP, Rueter S, Zboyan HA, Diamond E, Cress KK, Marangell LB (1999) Omega 3 fatty acids in bipolar disorder: a preliminary double-blind, placebo-controlled trial. Arch Gen Psychiatry 56:407–412

    Article  PubMed  CAS  Google Scholar 

  • Veitch K, Draye JP, Van Hoof F (1989) Inhibition of mitochondrial beta-oxidation and peroxisomal stimulation in rodent livers by valproate. Biochem Soc Trans 17:1070–1071

    PubMed  CAS  Google Scholar 

  • Washizaki K, Smith QR, Rapoport SI, Purdon AD (1994) Brain arachidonic acid incorporation and precursor pool specific activity during intravenous infusion of unesterified [3H]arachidonate in the anesthetized rat. J Neurochem 63:727–736

    PubMed  CAS  Google Scholar 

  • Weerasinghe GR, Seemann R, Rapoport SI, Bosetti F (2003) Lithium chloride, administered chronically to rats, does not affect the fractional phosphorylation of brain cytosolic phospholipase A2, while reducing its net protein level. Brain Res Bull 59:303–306

    Article  PubMed  CAS  Google Scholar 

  • Williams RS, Cheng L, Mudge AW, Harwood AJ (2002) A common mechanism of action for three mood-stabilizing drugs. Nature 415:292–295

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Joo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazinet, R.P., Rao, J.S., Chang, L. et al. Chronic valproate does not alter the kinetics of docosahexaenoic acid within brain phospholipids of the unanesthetized rat. Psychopharmacology 182, 180–185 (2005). https://doi.org/10.1007/s00213-005-0059-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0059-7

Keywords

Navigation