Skip to main content

Design of Novel PPAR Agonist for Neurodegenerative Disease

  • Chapter
  • First Online:
Nuclear Receptors
  • 836 Accesses

Abstract

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors of the nuclear hormone receptor superfamily comprising three subtypes: PPARα, PPARγ, and PPARβ/δ. The PPAR family of nuclear receptors is centrally involved in regulating whole-body energy homeostasis and metabolic function. Endogenous ligands include free fatty acids, eicosanoids, and leukotrienes. Synthetic ligands developed to serve as full agonists aim at treating diabetes type 2, hyperlipidemia, and other metabolic-related diseases. Further, there has been a developing interest in the role of PPAR agonist’s role in neurodegenerative disease. However, many of these clinically practical therapeutics are associated with harmful effects on human health. Therefore, new approaches have led to a new class of selective PPAR modulators (SPARMs), or partial agonists meet this challenge. In addition, these partial agonists have been observed to show a favorable impact on insulin sensitivity, blood glucose levels, and dyslipidemia with significantly reduced side effects on human health. Partial agonists have been found to display differences in transcriptional and cellular outcomes by acting through distinct structural and dynamic mechanisms within the ligand-binding region when compared to full agonists. Recently, a new focus on PPAR agonists’ class has intensified for neurodegenerative diseases, as new ligands and novel biological roles have emerged particularly for its therapeutic potential in Alzheimer’s disease (AD). The present chapter critically analyzes current PPAR ligands using in silico modeling and the implication of promising new therapeutics in neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W. From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res. 2006;45:120–59.

    Article  CAS  PubMed  Google Scholar 

  2. Kersten S, Stienstra R. The role and regulation of the peroxisome proliferator activated receptor alpha in human liver. Biochimie. 2017;136:75–84.

    Article  CAS  PubMed  Google Scholar 

  3. Bougarne N, et al. Molecular actions of PPARalpha in lipid metabolism and inflammation. Endocr Rev. 2018;39:760–802.

    Article  PubMed  Google Scholar 

  4. Festuccia WT, Blanchard PG, Richard D, Deshaies Y. Basal adrenergic tone is required for maximal stimulation of rat brown adipose tissue UCP1 expression by chronic PPAR-gamma activation. Am J Physiol Regul Integr Comp Physiol. 2010;299:R159–67.

    Article  CAS  PubMed  Google Scholar 

  5. Escher P, Wahli W. Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Mutat Res. 2000;448:121–38.

    Article  CAS  PubMed  Google Scholar 

  6. Angeli V, et al. Peroxisome proliferator-activated receptor gamma inhibits the migration of dendritic cells: consequences for the immune response. J Immunol. 2003;170:5295–301.

    Article  CAS  PubMed  Google Scholar 

  7. Aleshin S, Reiser G. Role of the peroxisome proliferator-activated receptors (PPAR)-alpha, beta/delta and gamma triad in regulation of reactive oxygen species signaling in brain. Biol Chem. 2013;394:1553–70.

    Article  CAS  PubMed  Google Scholar 

  8. Hall MG, Quignodon L, Desvergne B. Peroxisome proliferator-activated receptor beta/delta in the brain: facts and hypothesis. PPAR Res. 2008;2008:780452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holzer G, Markov GV, Laudet V. Evolution of nuclear receptors and ligand signaling: toward a soft key-lock model? Curr Top Dev Biol. 2017;125:1–38.

    Article  CAS  PubMed  Google Scholar 

  10. Chandra V, et al. Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Nature. 2008;456:350–6.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nolte RT, et al. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature. 1998;395:137–43.

    Article  CAS  PubMed  Google Scholar 

  12. Batista FA, et al. Structural insights into human peroxisome proliferator activated receptor delta (PPAR-delta) selective ligand binding. PLoS One. 2012;7:e33643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu CC, et al. Structural basis for specific ligation of the peroxisome proliferator-activated receptor delta. Proc Natl Acad Sci U S A. 2017;114:E2563–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. IJpenberg A, Jeannin E, Wahli W, Desvergne B. Polarity and specific sequence requirements of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor heterodimer binding to DNA. A functional analysis of the malic enzyme gene PPAR response element. J Biol Chem. 1997;272:20108–17.

    Article  CAS  PubMed  Google Scholar 

  15. Aasum E, Hafstad AD, Severson DL, Larsen TS. Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes. 2003;52:434–41.

    Article  CAS  PubMed  Google Scholar 

  16. Santos GM, Fairall L, Schwabe JW. Negative regulation by nuclear receptors: a plethora of mechanisms. Trends Endocrinol Metab. 2011;22:87–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kojetin DJ, Burris TP. Small molecule modulation of nuclear receptor conformational dynamics: implications for function and drug discovery. Mol Pharmacol. 2013;83:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weikum ER, Liu X, Ortlund EA. The nuclear receptor superfamily: a structural perspective. Protein Sci. 2018;27:1876–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou HX. From induced fit to conformational selection: a continuum of binding mechanism controlled by the timescale of conformational transitions. Biophys J. 2010;98:L15–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chandra V, et al. Structure of the intact PPAR-γ–RXR-α nuclear receptor complex on DNA. Nature. 2008;456:350–6.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kliewer SA, et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci U S A. 1997;94:4318–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Desvergne B, Ijpenberg A, Devchand PR, Wahli W. The peroxisome proliferator-activated receptors at the cross-road of diet and hormonal signalling. J Steroid Biochem Mol Biol. 1998;65:65–74.

    Article  CAS  PubMed  Google Scholar 

  23. Lewis DF, Jacobs MN, Dickins M, Lake BG. Molecular modelling of the peroxisome proliferator-activated receptor alpha (PPAR alpha) from human, rat and mouse, based on homology with the human PPAR gamma crystal structure. Toxicol In Vitro. 2002;16:275–80.

    Article  CAS  PubMed  Google Scholar 

  24. dos Santos JC, et al. Different binding and recognition modes of GL479, a dual agonist of peroxisome proliferator-activated receptor alpha/gamma. J Struct Biol. 2015;191:332–40.

    Article  PubMed  CAS  Google Scholar 

  25. Giampietro L, et al. Synthesis and structure–activity relationships of fibrate-based analogues inside PPARs. Bioorg Med Chem Lett. 2012;22:7662–6.

    Article  CAS  PubMed  Google Scholar 

  26. Jang JY, et al. Structural basis for the enhanced anti-diabetic efficacy of lobeglitazone on PPARgamma. Sci Rep. 2018;8:31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kaupang A, Hansen TV, The PPAR. Omega pocket: renewed opportunities for drug development. PPAR Res. 2020;2020:9657380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Cronet P, et al. Structure of the PPARalpha and -gamma ligand binding domain in complex with AZ 242; ligand selectivity and agonist activation in the PPAR family. Structure. 2001;9:699–706.

    Article  CAS  PubMed  Google Scholar 

  29. Huang P, Chandra V, Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol. 2010;72:247–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lewis SN, Bassaganya-Riera J, Bevan DR. Virtual screening as a technique for PPAR modulator discovery. PPAR Res. 2010;2010:861238.

    Article  PubMed  CAS  Google Scholar 

  31. Hughes TS, et al. Ligand and receptor dynamics contribute to the mechanism of graded PPARgamma agonism. Structure. 2012;20:139–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Frkic RL, et al. PPARgamma in complex with an antagonist and inverse agonist: a tumble and trap mechanism of the activation helix. iScience. 2018;5:69–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shang J, et al. Cooperative cobinding of synthetic and natural ligands to the nuclear receptor PPARgamma. Elife. 2018;7:e43320.

    Article  PubMed  PubMed Central  Google Scholar 

  34. de Vera IMS, et al. Synergistic regulation of coregulator/nuclear receptor interaction by ligand and DNA. Structure. 2017;25:1506–18, e1504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Einstein M, et al. The differential interactions of peroxisome proliferator-activated receptor gamma ligands with Tyr473 is a physical basis for their unique biological activities. Mol Pharmacol. 2008;73:62–74.

    Article  CAS  PubMed  Google Scholar 

  36. Gathiaka S, et al. Design, development and evaluation of novel dual PPARdelta/PPARgamma agonists. Bioorg Med Chem Lett. 2013;23:873–9.

    Article  CAS  PubMed  Google Scholar 

  37. Berger JP, et al. Distinct properties and advantages of a novel peroxisome proliferator-activated protein [gamma] selective modulator. Mol Endocrinol. 2003;17:662–76.

    Article  CAS  PubMed  Google Scholar 

  38. Acton JJ 3rd, et al. Benzoyl 2-methyl indoles as selective PPARgamma modulators. Bioorg Med Chem Lett. 2005;15:357–62.

    Article  CAS  PubMed  Google Scholar 

  39. Dropinski JF, et al. Synthesis and biological activities of novel aryl indole-2-carboxylic acid analogs as PPARgamma partial agonists. Bioorg Med Chem Lett. 2005;15:5035–8.

    Article  CAS  PubMed  Google Scholar 

  40. Minoura H, et al. Pharmacological characteristics of a novel nonthiazolidinedione insulin sensitizer, FK614. Eur J Pharmacol. 2004;494:273–81.

    Article  CAS  PubMed  Google Scholar 

  41. Oberfield JL, et al. A peroxisome proliferator-activated receptor gamma ligand inhibits adipocyte differentiation. Proc Natl Acad Sci U S A. 1999;96:6102–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Burgermeister E, et al. A novel partial agonist of peroxisome proliferator-activated receptor-gamma (PPARgamma) recruits PPARgamma-coactivator-1alpha, prevents triglyceride accumulation, and potentiates insulin signaling in vitro. Mol Endocrinol. 2006;20:809–30.

    Article  CAS  PubMed  Google Scholar 

  43. Sheu SH, Kaya T, Waxman DJ, Vajda S. Exploring the binding site structure of the PPAR gamma ligand-binding domain by computational solvent mapping. Biochemistry. 2005;44:1193–209.

    Article  CAS  PubMed  Google Scholar 

  44. Kintscher U, et al. Peroxisome proliferator-activated receptor and retinoid X receptor ligands inhibit monocyte chemotactic protein-1-directed migration of monocytes. Eur J Pharmacol. 2000;401:259–70.

    Article  CAS  PubMed  Google Scholar 

  45. Schupp M, et al. Molecular characterization of new selective peroxisome proliferator-activated receptor gamma modulators with angiotensin receptor blocking activity. Diabetes. 2005;54:3442–52.

    Article  CAS  PubMed  Google Scholar 

  46. Batista FAH, et al. Structural insights into human peroxisome proliferator activated receptor delta (PPAR-Delta) selective ligand binding. PLoS One. 2012;7:e33643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu C-C, et al. Structural basis for specific ligation of the peroxisome proliferator-activated receptor δ. Proc Natl Acad Sci. 2017;114:E2563–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zoete V, Grosdidier A, Michielin O. Peroxisome proliferator-activated receptor structures: ligand specificity, molecular switch and interactions with regulators. Biochim Biophys Acta. 2007;1771:915–25.

    Article  CAS  PubMed  Google Scholar 

  49. Ohashi M, et al. Design, synthesis, and structural analysis of phenylpropanoic acid-type PPARgamma-selective agonists: discovery of reversed stereochemistry-activity relationship. J Med Chem. 2011;54:331–41.

    Article  CAS  PubMed  Google Scholar 

  50. Bruning JB, et al. Partial agonists activate PPARgamma using a helix 12 independent mechanism. Structure. 2007;15:1258–71.

    Article  CAS  PubMed  Google Scholar 

  51. Choi YJ, et al. Effects of the PPAR-delta agonist MBX-8025 on atherogenic dyslipidemia. Atherosclerosis. 2012;220:470–6.

    Article  CAS  PubMed  Google Scholar 

  52. Toyota Y, Nomura S, Makishima M, Hashimoto Y, Ishikawa M. Structure-activity relationships of rosiglitazone for peroxisome proliferator-activated receptor gamma transrepression. Bioorg Med Chem Lett. 2017;27:2776–80.

    Article  CAS  PubMed  Google Scholar 

  53. Artis DR, et al. Scaffold-based discovery of indeglitazar, a PPAR pan-active anti-diabetic agent. Proc Natl Acad Sci U S A. 2009;106:262–7.

    Article  CAS  PubMed  Google Scholar 

  54. Sullivan HJ, Wang X, Nogle S, Liao S, Wu C. To probe full and partial activation of human peroxisome proliferator-activated receptors by pan-agonist chiglitazar using molecular dynamics simulations. PPAR Res. 2020;2020:5314187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Veiga FMS, et al. Anti-obesogenic effects of WY14643 (PPAR-alpha agonist): hepatic mitochondrial enhancement and suppressed lipogenic pathway in diet-induced obese mice. Biochimie. 2017;140:106–16.

    Article  CAS  PubMed  Google Scholar 

  56. Almad A, Lash AT, Wei P, Lovett-Racke AE, McTigue DM. The PPAR alpha agonist gemfibrozil is an ineffective treatment for spinal cord injured mice. Exp Neurol. 2011;232:309–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Warden A, et al. Localization of PPAR isotypes in the adult mouse and human brain. Sci Rep. 2016;6:27618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Perez MJ, Quintanilla RA. Therapeutic actions of the thiazolidinediones in Alzheimer’s disease. PPAR Res. 2015;2015:957248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Jojo GM, Kuppusamy G. Scope of new formulation approaches in the repurposing of pioglitazone for the management of Alzheimer’s disease. J Clin Pharm Ther. 2019;44:337–48.

    Article  PubMed  Google Scholar 

  60. Racke MK, Drew PD. PPARs in neuroinflammation. PPAR Res. 2008;2008:638356.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Quan Q, Qian Y, Li X, Li M. Pioglitazone reduces beta amyloid levels via inhibition of PPARgamma phosphorylation in a neuronal model of Alzheimer’s disease. Front Aging Neurosci. 2019;11:178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cao B, et al. Comparative efficacy and acceptability of antidiabetic agents for Alzheimer’s disease and mild cognitive impairment: a systematic review and network meta-analysis. Diabetes Obes Metab. 2018;20:2467–71.

    Article  PubMed  Google Scholar 

  63. Kermani A, Garg A. Thiazolidinedione-associated congestive heart failure and pulmonary edema. Mayo Clin Proc. 2003;78:1088–91.

    Article  CAS  PubMed  Google Scholar 

  64. Kumar A, Singh A. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep. 2015;67:195–203.

    Article  CAS  PubMed  Google Scholar 

  65. Bronzuoli MR, Iacomino A, Steardo L, Scuderi C. Targeting neuroinflammation in Alzheimer’s disease. J Inflamm Res. 2016;9:199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kariharan T, et al. Central activation of PPAR-gamma ameliorates diabetes induced cognitive dysfunction and improves BDNF expression. Neurobiol Aging. 2015;36:1451–61.

    Article  CAS  PubMed  Google Scholar 

  67. Sheng M, Sabatini BL, Sudhof TC. Synapses and Alzheimer’s disease. Cold Spring Harb Perspect Biol. 2012;4:a005777.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature. 1998;391:82–6.

    Article  CAS  PubMed  Google Scholar 

  69. Ricote M, et al. Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci U S A. 1998;95:7614–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yamanaka M, et al. PPARgamma/RXRalpha-induced and CD36-mediated microglial amyloid-beta phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J Neurosci. 2012;32:17321–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature. 1998;391:79–82.

    Article  CAS  PubMed  Google Scholar 

  72. Kapadia R, Yi JH, Vemuganti R. Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. Front Biosci. 2008;13:1813–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Heneka MT, Klockgether T, Feinstein DL. Peroxisome proliferator-activated receptor-gamma ligands reduce neuronal inducible nitric oxide synthase expression and cell death in vivo. J Neurosci. 2000;20:6862–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Toledo EM, Inestrosa NC. Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1DeltaE9 mouse model of Alzheimer’s disease. Mol Psychiatry. 2010;15:272–85.

    Article  CAS  PubMed  Google Scholar 

  75. Chapman PF, et al. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci. 1999;2:271–6.

    Article  CAS  PubMed  Google Scholar 

  76. Michelucci A, Heurtaux T, Grandbarbe L, Morga E, Heuschling P. Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: effects of oligomeric and fibrillar amyloid-beta. J Neuroimmunol. 2009;210:3–12.

    Article  CAS  PubMed  Google Scholar 

  77. Odegaard JI, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature. 2007;447:1116–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Martinez B, Peplow PV. Amelioration of Alzheimer’s disease pathology and cognitive deficits by immunomodulatory agents in animal models of Alzheimer’s disease. Neural Regen Res. 2019;14:1158–76.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Defaux A, Zurich MG, Braissant O, Honegger P, Monnet-Tschudi F. Effects of the PPAR-beta agonist GW501516 in an in vitro model of brain inflammation and antibody-induced demyelination. J Neuroinflammation. 2009;6:15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Malm T, Mariani M, Donovan LJ, Neilson L, Landreth GE. Activation of the nuclear receptor PPARdelta is neuroprotective in a transgenic mouse model of Alzheimer’s disease through inhibition of inflammation. J Neuroinflammation. 2015;12:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Falkenberg T, et al. Increased expression of brain-derived neurotrophic factor mRNA in rat hippocampus is associated with improved spatial memory and enriched environment. Neurosci Lett. 1992;138:153–6.

    Article  CAS  PubMed  Google Scholar 

  82. Chiang MC, Cheng YC, Chen HM, Liang YJ, Yen CH. Rosiglitazone promotes neurite outgrowth and mitochondrial function in N2A cells via PPARgamma pathway. Mitochondrion. 2014;14:7–17.

    Article  CAS  PubMed  Google Scholar 

  83. Prakash A, Kumar A. Role of nuclear receptor on regulation of BDNF and neuroinflammation in hippocampus of beta-amyloid animal model of Alzheimer’s disease. Neurotox Res. 2014;25:335–47.

    Article  CAS  PubMed  Google Scholar 

  84. Thouennon E, Cheng Y, Falahatian V, Cawley NX, Loh YP. Rosiglitazone-activated PPARgamma induces neurotrophic factor-alpha1 transcription contributing to neuroprotection. J Neurochem. 2015;134:463–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zolezzi JM, et al. PPARs in the central nervous system: roles in neurodegeneration and neuroinflammation. Biol Rev Camb Philos Soc. 2017;92:2046–69.

    Article  PubMed  Google Scholar 

  86. Carmona S, Hardy J, Guerreiro R. The genetic landscape of Alzheimer disease. Handb Clin Neurol. 2018;148:395–408.

    Article  PubMed  Google Scholar 

  87. Efthymiou AG, Goate AM. Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk. Mol Neurodegener. 2017;12:43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Zhao Y, et al. TREM2 is a receptor for beta-amyloid that mediates microglial function. Neuron. 2018;97:1023–31, e1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Takahashi K, Rochford CD, Neumann H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med. 2005;201:647–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Turnbull IR, et al. Cutting edge: TREM-2 attenuates macrophage activation. J Immunol. 2006;177:3520–4.

    Article  CAS  PubMed  Google Scholar 

  91. Jay TR, et al. TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer’s disease mouse models. J Exp Med. 2015;212:287–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Feuerbach D, et al. ADAM17 is the main sheddase for the generation of human triggering receptor expressed in myeloid cells (hTREM2) ectodomain and cleaves TREM2 after histidine 157. Neurosci Lett. 2017;660:109–14.

    Article  CAS  PubMed  Google Scholar 

  93. Schlepckow K, et al. An Alzheimer-associated TREM2 variant occurs at the ADAM cleavage site and affects shedding and phagocytic function. EMBO Mol Med. 2017;9:1356–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Suarez-Calvet M, et al. sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers. EMBO Mol Med. 2016;8:466–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Suarez-Calvet M, et al. Early changes in CSF sTREM2 in dominantly inherited Alzheimer’s disease occur after amyloid deposition and neuronal injury. Sci Transl Med. 2016;8:369ra178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Wang Y, et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell. 2015;160:1061–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nedergaard M, Dirnagl U. Role of glial cells in cerebral ischemia. Glia. 2005;50:281–6.

    Article  PubMed  Google Scholar 

  98. Romera C, et al. Ischemic preconditioning reveals that GLT1/EAAT2 glutamate transporter is a novel PPARgamma target gene involved in neuroprotection. J Cereb Blood Flow Metab. 2007;27:1327–38.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Amin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Steinke, I., Amin, R. (2021). Design of Novel PPAR Agonist for Neurodegenerative Disease. In: Badr, M.Z. (eds) Nuclear Receptors. Springer, Cham. https://doi.org/10.1007/978-3-030-78315-0_10

Download citation

Publish with us

Policies and ethics