Skip to main content
Log in

Neuronal Specific Increase of Phosphatidylserine by Docosahexaenoic Acid

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Phosphatidylserine (PS), the major acidic phospholipid class in eukaryotic biomembranes, plays an important role in various signaling pathways. We have previously demonstrated that docosahexaenoic acid (DHA, 22:6n-3) positively modulates PS biosynthesis and accumulation in neuronal cells, promoting survival. In this paper, we demonstrate that the increase of PS levels upon DHA enrichment is not a universal mechanism, but specific to neuronal cells. When cells were enriched with 20 μM DHA, 18:0, 22:6-PS increased in both neuronal (Neuro 2A) and non-neuronal cells (Chinese hamster ovary K1 cells, NIH-3T3, and human embryonic kidney cells). However, the increase of the total PS level was observed only in Neuro 2A cells because of the fact that other PS species, such as 18:0, 18:1-PS and 18:1, 18:1-PS decreased significantly in non-neuronal cells, compensating for the increase of 18:0, 22:6-PS. DHA enrichment did not affect the messenger RNA levels of PS synthase 1 (PSS1) and PSS2. Over-expression of genes encoding PSS1 or PSS2 altered neither the PS level nor the effect of DHA on PS increase in both neuronal and non-neuronal cells. From these results, it is concluded that the PS increase by DHA, specifically observed in neuronal cells, may represent a unique mechanism for expanding the PS pool so far known in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

CHO-K1 cells:

Chinese hamster ovary K1 cells

DHA:

docosahexaenoic acid

GC:

gas chromatography

HEK-293 cells:

human embryonic kidney cells

HPLC-ESI-MS:

high-performance liquid chromatography–electrospray ionization–mass spectrometry

Neuro 2A cells:

neuroblastoma cell

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PS:

phosphatidylserine

PSS:

phosphatidylserine synthase

PUFA:

polyunsaturated fatty acids

References

  • Akbar, M., Calderon, F., Wen, Z., & Kim, H. Y. (2005). Docosahexaenoic acid: A positive modulator of Akt signaling in neuronal survival. Proceedings of the National Academy of Sciences, 31, 10858–10863.

    Article  CAS  Google Scholar 

  • Akbar, M., & Kim, H. Y. (2002). Protective effects of docosahexaenoic acid in staurosporine-induced apoptosis: Involvement of phophatidylinositol-3 kinase pathway. Journal of Neurochemistry, 82, 655–665.

    Article  PubMed  CAS  Google Scholar 

  • Ansell, G. B., & Spanner, S. (1982) Phosphatidylserine, phosphatidylethanolamine and phosphatidylcholine. In J. N. Hawthorne & G. B. Ansell (Eds.), Phospholipids (pp. 1–49). New York: Elsevier Biomedical Press.

    Google Scholar 

  • Bittova, L., Stahelin, R. V., & Cho, W. (2001). Roles of ionic residues of the C1 domain in protein kinase C-α activation and the origin of phosphatidylserine specificity. Journal of Biological Chemistry, 276, 4218–4226.

    Article  PubMed  CAS  Google Scholar 

  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.

    PubMed  CAS  Google Scholar 

  • Borkenhagen, J. D., Kennedy, E. P., & Fielding L. (1961) Enzymatic formation and decarboxylation of phosphatidylserine. Journal of Biological Chemistry, 236, PC28–PC29.

    Google Scholar 

  • Garcia, M. C., Ward, G., Ma, Y. C., Salem, N. Jr., & Kim, H. Y. (1998). Effect of docosahexaenoic acid on the synthesis of phosphatidylserine in rat brain microsomes and C6 glioma cells. Journal of Neurochemistry, 70, 24–30.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, S., Strumm, J. C., Siorra, V. A., Daniel, L., & Bell, R. M. (1996). Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid. Phosphatidic acid regulates the translocation of Raf-1 in 12-O-tetradecanoylphorbol-13-acetate-stimulated Madin–Darby canine kidney cells. Journal of Biological Chemistry, 271, 8472–8480.

    Article  PubMed  CAS  Google Scholar 

  • Green, P., & Yavin, E. (1995). Modulation of fetal rat brain and liver phospholipid content by intraamniotic ethyl docosahexaenoate administration. Journal of Neurochemistry, 65, 2555–2560.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, J., Greiner, R., Salem, N. Jr., & Kim, H. Y. (2000). N-3 fatty acid deficiency decrease phosphatidylserine accumulation selectively in neuronal tissues. Lipids, 35, 863–869.

    Article  PubMed  CAS  Google Scholar 

  • Kanfer, J. N. (1980). The base exchange enzymes and phospholipase D of mammalian tissue. Canadian Journal of Biochemistry, 58, 1370–1380.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H.Y., Akbar, M., & Kim, K. Y. (2001). Inhibition of neuronal apoptosis by polyunsaturated fatty acids. Journal of Molecular Neuroscience, 16, 279–284.

    Article  Google Scholar 

  • Kim, H. Y., Akbar, M., Lau, A., & Edsall, L. (2000) Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3). Journal of Biological Chemistry, 275, 35215–35223.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H. Y., Bigelow, J., & Kevala J. H. (2004) Substrate preference in phosphatidylserine biosynthesis for docosahexanoic acid containing species. Biochemistry, 43, 1030–1036.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H. Y., & Salem, N. Jr. (1990). Separation of lipid classes by solid phase extraction. Journal of Lipid Research, 31, 2285–2289.

    PubMed  CAS  Google Scholar 

  • Kim, H. Y., Wang, T. C., & Ma, Y. C. (1994). Liquid chromatography/mass spectrometry of phospholipids using electrospray ionization. Analytical Chemistry 66, 3977–3982.

    Article  PubMed  CAS  Google Scholar 

  • Kuge, O., & Nishijima, M. (1997). Phosphatidylserine synthase I and II of mammalian cells. Biochimica et Biophysica Acta, 1348, 151–156.

    PubMed  CAS  Google Scholar 

  • Kuge, O., Nishijima, M., & Akamatsu, Y. (1991). A cloned gene encoding phosphatidylserine decarboxylase complements the phosphatidylserine biosynthetic defects of a Chinese hamster ovary cell mutant. Journal of Biological Chemistry, 266, 6370–6376.

    PubMed  CAS  Google Scholar 

  • Kuge, O., Saito, K., & Nishijima, M. (1997). Cloning of a Chinese hamster ovary (CHO) cDNA encoding phosphatidylserine synthase (PSS) II, overexpression of which suppresses the phosphatidylserine biosynthetic defect of a PSS I-lacking mutant of CHO-K1 cells. Journal of Biological Chemistry, 272, 19133–19139.

    Article  PubMed  CAS  Google Scholar 

  • Kuge, O., Saito, K., & Nishijima, M. (1999) Control of phosphatidylserine synthase II activity in Chinese hamster ovary cells. Journal of Biological Chemistry, 274(34), 23844–23849.

    Article  PubMed  CAS  Google Scholar 

  • Ma, Y. C., & Kim, H. Y. (1995). Development of on-line high performance liquid chromatography/thermospray mass spectrometry method for the analysis of phospholipid molecular species in rat brain. Analytical Biochemistry, 226, 293–301.

    Article  PubMed  CAS  Google Scholar 

  • McPherson, R. A., Harding, A., Roy, S., Lane, A., & Hancock, J. F. (1999). Interactions of c-Raf-1 with phosphatidylserine and 14-3-3. Oncogene, 18, 3862–3869.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, W. R., & Smith, L. M. (1961) Preparation of fatty acid methyl esters and dimethylacetals from lipid with boron fluoride-methanol. Journal of Lipid Research, 5, 600–608.

    Google Scholar 

  • Murthy, M., Hamilton, J., Greiner, R. S., Moriguchi, T., Salem, N. Jr., & Kim, H. Y. (2002). Differential effects of n-3 fatty acid deficiency on phospholipids molecular species composition in the rat hippocampus. Journal of Lipid Research, 43, 611–617.

    Article  PubMed  CAS  Google Scholar 

  • Newton, A. C., & Keranen, L. M. (1994) Phosphatidyl-l-serine is necessary for protein kinase C’s high affinity interaction with diacylglycerol-containing membranes. Biochemistry, 33, 6651–6658.

    Article  PubMed  CAS  Google Scholar 

  • Nishijima, M., Kuge, O., & Akamatsu, Y. (1986) Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. I. Inhibition of de novo phosphatidylserine biosynthesis by exogenous phosphatidylserine and its efficient incorporation. Journal of Biological Chemistry, 261, 5784–5789.

    PubMed  CAS  Google Scholar 

  • Rouser, G., Simon, G., & Kritchevsky, G. (1969) Species variations in phospholipid class distribution of organs. I. Kidney, liver, and spleen. Lipids, 4, 599–606.

    Article  PubMed  CAS  Google Scholar 

  • Salem, N. Jr., Litman, B., Kim, H. Y., & Gawrisch, K. (2001) Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids, 36, 945–959.

    Article  PubMed  CAS  Google Scholar 

  • Stone, S. J., Cui, Z., & Vance, J. E. (1998). Cloning and expression of mouse liver phosphatidylserine synthase-1 cDNA. Overexpression in rat hepatoma cells inhibits the CDP–ethanolamine pathway for phosphatidylethanolamine biosynthesis. Journal of Biological Chemistry, 273, 7293–7302.

    Article  PubMed  CAS  Google Scholar 

  • Stone, S. J., & Vance, J. E. (1999) Cloning and expression of murine liver phosphatidylserine synthase (PSS)-2: Differential regulation of phospholipid metabolism by PSS1 and PSS2. Biochemical Journal, 342, 57–64.

    Article  PubMed  CAS  Google Scholar 

  • Vance, J. E. (1998) Eukaryotic lipid-biosynthetic enzymes: The same but not the same. Trends in Biochemical Science, 23, 423–428.

    Article  CAS  Google Scholar 

  • Vance, J. E., & Steenbergen, R. (2005) Metabolism and functions of phosphatidylserine. Progress in Lipid Research, 44, 207–234.

    Article  PubMed  CAS  Google Scholar 

  • Voelker, D. R. (1997) Phosphatidylserine decarboxylase. Biochimica et Biophysica Acta, 1348, 236–244.

    PubMed  CAS  Google Scholar 

  • Wen, Z., & Kim, H. Y. (2004) Alterations in hippocampal phospholipid profile by prenatal exposure to ethanol. Journal of Neurochemistry, 89, 1368–1377.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Dr. J.E. Vance of University of Alberta for the generous gift of pss1 and pss2 plasmid used in this study. This study was supported by the intramural program, NIAAA, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Yong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, M., Stockert, L., Akbar, M. et al. Neuronal Specific Increase of Phosphatidylserine by Docosahexaenoic Acid. J Mol Neurosci 33, 67–73 (2007). https://doi.org/10.1007/s12031-007-0046-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-007-0046-z

Keywords

Navigation