Skip to main content
Log in

n−3 Fatty acid deficiency decreases phosphatidylserine accumulation selectively in neuronal tissues

  • Published:
Lipids

Abstract

We have previously shown that the docosahexaenoate (22∶6n−3) status in membrane phospholipids influences the biosynthesis and accumulation of phosphatidylserine (PS) in brain microsomes and C6 glioma cells. In the present study, we investigated whether the observed effect of membrane docosahexaenoic acid status on PS accumulation is universal or occurs specifically in neuronal tissues. We observed that rat brain cortex, brain mitochondria, and olfactory bulb, where 22∶6n−3 is highly concentrated, contain significantly higher levels of PS in comparison to liver and adrenal, where 22∶6n−3 is a rather minor component. Phospholipid molecular species analysis revealed that in brain cortex, mitochondria, and olfactory bulb 18∶0,22∶6n−3 was the most abundant species representing 45–65% of total PS. In nonneuronal tissues such as liver and adrenal, 18∶0,20∶4n−6 was the major PS species. Dietary depletion of n−3 fatty acids during prenatal and postnatal developmental periods decreased the brain 22∶6n−3 content by more than 80%, with a concomitant increase in 22∶5n−6 in all tissues. Under these conditions, an approximately 30–35% reduction in total PS in rat brain cortex, brain mitochondria, and olfactory bulb was observed, while PS levels in liver and adrenal were unchanged. The observed reduction of PS content in neuronal membranes appears to be due to a dramatic reduction of 18∶0,22∶6n−3-PS without complete replacement by 18∶0,22∶5n−6-PS. These results establish that variations in membrane 22∶6n−3 fatty acid composition have a profound influence on PS accumulation in neuronal tissues where 22∶6n−3 is abundant. These data have implications in neuronal signaling events where PS is believed to play an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

20∶4n−6:

rachidonic acid

22∶6n−3:

docosahexaenoic acid

22∶5n−6:

docosapentaenoic acid

22∶4n−6:

docosatetraenoic acid

18∶3n−3:

α-linolenic acid

ESI/MS:

electrospray ionization/mass spectrometry

GC:

gas chromatography

HPLC/MS:

high-performance liquid chromatography/mass spectrometry

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PS:

phosphatidylserine

PSS:

phosphatidylserine synthase

References

  1. Salem Jr., N. (1989) New Protective Roles for Selected Nutrients, in Omega-3 Fatty Acids: Molecular and Biochemical Aspects (Spiller, G., and Scala, J., eds.), pp. 109–228, Alan R. Liss, New York.

    Google Scholar 

  2. Salem Jr., N., Kim, H.K., and Yergey, J.A. (1986) Docosahexaenoic Acid: Membrane Function and Metabolism, in Health Effect of Polyunsaturated Fatty Acids in Seafoods (Simopoulos, A.P., and Kifer, R.R., eds.), pp. 263–317, Academic Press, New York.

    Google Scholar 

  3. Carlson, S.E. (2000) Behavioral Methods Used in the Study of Long-Chain Polyunsaturated Fatty Acids Nutrition in Primate Infants, Am. J. Clin. Nutr. 71, 268S-274S.

    PubMed  CAS  Google Scholar 

  4. Uauy, R., Birch, E., Birch, D., and Peirano, P. (1992) Visual and Brain Function Measurements in Studies of n−3 Fatty Acid Requirements of Infants, J. Pediatr. 120, S168-S180.

    Article  PubMed  CAS  Google Scholar 

  5. Hamosh, M., and Salem Jr., N. (1998) Long-Chain Polyunsaturated Fatty Acids, Biol. Neonate 74, 106–120.

    Article  PubMed  CAS  Google Scholar 

  6. Hubscher, G., Dils, R.R., and Pover, W.F.R. (1959) Studies on the Biosynthesis of Phosphatidylserine, Biochim. Biophys. Acta 36, 518–528.

    Article  PubMed  CAS  Google Scholar 

  7. Dils, R.R., and Hubscher, G. (1959) Metabolism of Phospholipids III. The Effect of Calcium Ions on the Incorporation of Labeled Choline into Rat-Liver Microsomes, Biochim. Biophys. Acta 46, 503–513.

    Google Scholar 

  8. Borkenhagen, J.D., Kennedy, E.P., and Fielding, L. (1961) Enzymatic Formation and Decarboxylation of Phosphatidylserine, J. Biol. Chem. 236, PC28-PC29.

    Google Scholar 

  9. Dennis, E.A., and Kennedy, E.P. (1972) Intracellular Sites of Lipid Synthesis and the Biogenesis of Mitochondria, J. Lipid Res. 13, 263–267.

    PubMed  CAS  Google Scholar 

  10. Vance, J.E. (1990) Phospholipid Synthesis in a Membrane Fraction Associated with Mitochondria, J. Biol. Chem. 265 7248–7256.

    PubMed  CAS  Google Scholar 

  11. Kuge, O., and Nishijima, M. (1997) Phosphatidylserine Synthase I and II of Mammalian Cells, Biochim. Biophys. Acta 1348, 151–156.

    PubMed  CAS  Google Scholar 

  12. Shiao, Y.-J., Lupo, G., and Vance, J.E. (1995) Evidence That Phsophatidylserine Is Imported into Mitochondria via a Mitochondria-Associated Membrane and That the Majority of Mitochondrial Phosphatidylethanolamine Is Derived from Decarboxylation of Phosphatidylserine, J. Biol. Chem. 270, 11190–11198.

    Article  PubMed  CAS  Google Scholar 

  13. Ghosh, S., Xie, W.Q., Quest, A.F.G., Mabrouk, G.M., Strum, J.C., and Bell, R.M. (1994) The Cysteine-Rich Region of Raf-1 Kinse Contains Zinc, Translocates to Liposomes, and Is Adjacent to a Segment That Binds GTP-Ras, J. Biol. Chem. 269, 10000–10007.

    PubMed  CAS  Google Scholar 

  14. Ghosh, S., Strum, J.C., Sciorra, V.A., Daniel, L., and Bell, R.M. (1996) Raf-1 Kinase Possesses Distinct Binding Domains for Phosphatidylserine and Phosphatidic Acid, J. Biol. Chem. 271, 8472–8480.

    Article  PubMed  CAS  Google Scholar 

  15. Yuryev, A., and Wennogle, L.P. (1998) The RAF Family: An Expanding Network of Post-Translational Controls and Protein-Protein Interactions, Cell Res. 2, 81–98.

    Google Scholar 

  16. Mosior, M., and Newton, A.C. (1998) Mechanism of the Apparent Cooperativity in the Interaction of Protein Kinase C with Phosphatidylserine, Biochem. J. 37, 17271–17279.

    Article  CAS  Google Scholar 

  17. Valente, M., and Calabrese, F. (1999) Liver and Apoptosis, Ital. J. Gastroenterol Hepatol. 1, 73–77.

    Google Scholar 

  18. Martin, S.J., Reutelingsperger, C.P.M., McGahon, A.J., van Schie, R.C.C.A., La Face, D.M., and Green, D.R. (1995) Early Distribution of Plasma Membrane Phosphatidylserine Is a General Feature of Apoptosis Regardless of the Initiating Stimulus: Inhibition by Overexpression of Bcl-2 and Abl, J. Exp. Med. 182, 1545–1556.

    Article  PubMed  CAS  Google Scholar 

  19. Fadok, V.A., Voelker, D.R., Campbell, P.A., Cohen, J.J., Bratton, D.L., and Henson, P.M. (1992) Exposure of PS on the Surface of Apoptotic Lymphocytes Triggers Specific Recognition and Removal by Macrophages, J. Immunol. 148, 2207–2216.

    PubMed  CAS  Google Scholar 

  20. Gustincich, S., Vatt, P., Goruppi, S., Wolf, M., Saccone, S., Della Valle, G., Baggiolini, M., and Schneider, C. (1999) The Human Serum Deprivation Response Gene (SDPR) Maps to 2q32-q33 and Codes for a Phosphatidylserine-Binding Protein, Genomics 57, 120–129.

    Article  PubMed  CAS  Google Scholar 

  21. Crook, T., Petrie, W., Wells, C., and Massari, D.C. (1992) Effects of Phosphatidylserine in Alzheimer’s Disease, Psychopharm. Bull. 28, 81–66.

    Google Scholar 

  22. Claro, F.T., Silva, R.H., and Frussa-Filho, R. (1999) Bovine Brain Phosphatidylserine Attenuates Scopolamine-Induced Amnesia, Physiol. Behav. 67, 551–554.

    Article  PubMed  CAS  Google Scholar 

  23. Garcia, M.C., Ward, G., Ma, Y.C., Salem Jr., N., and Kim, H.Y. (1998) Effect of Docosahexaenoic Acid on the Synthesis of Phosphatidylserine in Rat Brain Microsomes and C6 Glioma Cells, J. Neurochem. 70, 24–30.

    Article  PubMed  CAS  Google Scholar 

  24. Kim, H.Y., and Hamilton, J. (2000) Accumulation of Docosahexaenoic Acid in Phosphatidylserine Is Selectively Inhibited by Chronic Ethanol Exposure in C-6 Glioma Cells, Lipids 35, 187–195.

    PubMed  CAS  Google Scholar 

  25. Green, P., and Yavin, E. (1995) Modulation of Fetal Rat Brain and Liver Phospholipid Content by Intraamniotic Ethyl Docosahexaenoate Administration, J. Neurochem. 65, 2555–2560.

    Article  PubMed  CAS  Google Scholar 

  26. Bartlett, G. (1959) Phosphorus Assay in Column Chromatography, J. Biol. Chem. 234, 466–468.

    PubMed  CAS  Google Scholar 

  27. Greiner, R.S., Moriguchi, T., Hutton, A., Slotnick, B.M., and Salem Jr., N. (1999) Rats with Low Levels of Brain Docosahexaenoic Acid Show Impaired Performance in Olfactory-Based and Spatial Learning Tasks, Lipids 34 Suppl., S239-S243.

    PubMed  CAS  Google Scholar 

  28. Cotman, C.W. (1974) Isolation of Synaptosomal and Synaptic Plasma Membrane Fractions, in Methods of Enzymology (Fleischer, S., and Packer, L., eds.), Vol. 31, pp. 445–452, Academic Press, New York.

    Google Scholar 

  29. Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., and Klenk, D.C. (1985) Measurement of Protein Using Bicinchoninic Acid, Anal. Biochem. 150, 76–85.

    Article  PubMed  CAS  Google Scholar 

  30. Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  31. Morrison, W.R., and Smith, L.M. (1961) Preparation of Fatty Acid Methyl Esters and Dimethylacetals from Lipids with Boron Fluoride-Methanol, J. Lipid Res. 35, 600–608.

    Google Scholar 

  32. Kim, H.Y., Wang, T.C., and Ma, Y.C. (1994) Liquid Chromatography/Mass Spectrometry of Phospholipids Using Electrospray Ionization, Anal. Chem. 15, 3977–3982.

    Article  Google Scholar 

  33. Ma, Y.C., and Kim, H.Y. (1995) Development of the On-Line High-Performance Liquid Chromatography/Thermospray Mass Spectrometry Method for the Analysis of Phospholipid Molecular Species in Rat Brain, Anal. Biochem. 226, 293–301.

    Article  PubMed  CAS  Google Scholar 

  34. Tarachi, T.F., Ellingson, J.S., Wu, A., Zimmerman, R., and Rubin, E. (1986) Phosphatidylinositol from Ethanol-Fed Rats Confers Membrane Tolerance to Ethanol, Proc. Natl. Acad. Sci. USA 83, 9398–9402.

    Article  Google Scholar 

  35. Diagne, A., Fauvel, J., Record, M., Chap, H., and Dousie-Blazy, L. (1984) Studies on Ether Phospholipids II Comparative Composition of Various Tissues from Human, Rat and Guinea Pig, Biochim. Biophy. Acta 793, 221–231.

    CAS  Google Scholar 

  36. Igarashi, Y., and Kimura, T. (1984) Adrenocorticotropic Hormone-Mediated Changes in Rat Adrenal Mitochondrial Phospholipids, J. Biol. Chem. 259, 10745–10753.

    PubMed  CAS  Google Scholar 

  37. Holub, B.J., and Kuksis, A. (1978) Metabolism of Molecular Species of Diacylglycerolphospholipids, Adv. Lipid Res. 16, 1–125.

    PubMed  CAS  Google Scholar 

  38. Lynch, D.V., and Thompson, G.A. (1984) Retailored Lipid Molecular Species: A Tactical Mechanism for Modulating Membrane Properties, Trans. Biochem. Sci. 9, 442–445.

    Article  CAS  Google Scholar 

  39. Foot, M., Cruz, T.F., and Clandinin, M.T. (1982) Influence of Dietary Fat on the Lipid Composition of Rat Brain Synaptosomal and Microsomal Membranes, Biochem. J. 208, 631–640.

    PubMed  CAS  Google Scholar 

  40. Bourre, J.M., Pascal, D., Durand, G., Masson, M., Dumont, O., and Piciotti, M. (1984) Alterations in the Fatty Acid Composition of Rat Brain Cells (neurons, astrocytes and oligodendrocytes) and of Subcellular Fractions (myelin and synaptosomes) Induced by a Diet Devoid of n−3 Fatty Acids, J. Neurochem. 43, 342–348.

    Article  PubMed  CAS  Google Scholar 

  41. Hargreaves, K.M., and Clandinin, M.T. (1987) Phosphatidylethanolamine Methyltransferase: Evidence for Influence of Diet on Selectivity of Substrate for Methylation in Rat Brain Synaptic Membranes, Biochim. Biophys. Acta 918, 97–105.

    PubMed  CAS  Google Scholar 

  42. Bourre, J.M., Francois, M., Youyou, A., Dumont, O., Piciotti, M., Pascal, G., and Durand, G. (1989) The Effects of Dietary Alpha-Linolenic Acid on the Composition of Nerve Membranes, Enzymatic Activity, Amplitude of Eletrophysiologic Parameters, Resistance to Poisons and Performance of Learning Tasks in Rats, J. Nutr. 119, 1880–1892.

    PubMed  CAS  Google Scholar 

  43. Neuringer, M., Anderson, G.J., and Connor, W.E. (1988) The Essentiality of n−3 Fatty Acids for the Development and Function of Retina and Brain, Annu. Rev. Nutr. 8, 517–541.

    Article  PubMed  CAS  Google Scholar 

  44. Neuringer, M., Reisbick, S., and Janowsky, J. (1994) The Role on n−3 Fatty Acids in Visual and Cognitive Development: Current Evidence and Methods of Assessment, J. Pediatr. 125, S39-S47.

    PubMed  CAS  Google Scholar 

  45. Birch, E., Birch, D., Hoffman, D., Hale, L., Everest, M., and Uauy, R. (1993) Breast-Feeding and Optimal Visual Development, J. Pediatr. Ophthalmol Strabismus 30, 33–38.

    PubMed  CAS  Google Scholar 

  46. Yoshida, S., Yasuda, A., Kawazato, H., Sakai, K., Shimada, T., Takeshita, M., Yuasa, S., Kobayashi, T., Watanabe, S., and Okuyama, H. (1997) Synaptic Vesicle Ultrastructural Changes in the Rat Hippocampus Induced by a Combination of Alpha-Linolenate Deficiency and a Learning Task, J. Neurochem. 3, 1261–1268.

    Google Scholar 

  47. Martinez, M. (1992) Abnormal Profiles of Polyunsaturated Fatty Acids in the Brain, Liver, Kidney and Retina of Patients with Peroxisomal Disorders, Brain Res. 583, 171–182.

    Article  PubMed  CAS  Google Scholar 

  48. Delion, S., Chalon, S., Guilloteau, D., Lejeune, B., Besnard, J.-C., and Durand, G. (1997) Age-Related Changes in Phospholipid Fatty Acid Composition and Monoaminergic Neurotransmission in the Hippocampus of Rats Fed a Balanced or a n−3 Polyunsaturated Fatty Acid Deficient-Diet, J. Lipid Res. 38, 680–688.

    PubMed  CAS  Google Scholar 

  49. Bell, M.V., Batty, R.S., Dick, J.R., Fretwell, K., Navarro, J.C., and Sargent, J.R. (1995) Dietary Deficiency of Docosahexaenoic Acid Impairs Vision at Low Light Intensities in Juvenile Herring (Clupea harengus L.), Lipids 30, 443–449.

    PubMed  CAS  Google Scholar 

  50. Farquharson, J., Jamieson, E.C., Abbasi, K.A., Patrick, W.J.A., Logan, R.W., and Cockburn, F. (1995) Effect of Diet on the Fatty Acid Composition of the Major Phospholipids of Infant Cerebral Cortex, Arch. Dis. Child 72, 198–203.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Yong Kim.

About this article

Cite this article

Hamilton, J., Greiner, R., Salem, N. et al. n−3 Fatty acid deficiency decreases phosphatidylserine accumulation selectively in neuronal tissues. Lipids 35, 863–869 (2000). https://doi.org/10.1007/S11745-000-0595-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/S11745-000-0595-x

Keywords

Navigation