Skip to main content

Advertisement

Log in

hIgD promotes human Burkitt lymphoma Daudi cell proliferation by accelerated G1/S transition via IgD receptor activity

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate the role and molecular mechanism of human IgD (hIgD) on the proliferation of human Burkitt lymphoma Daudi cells in vitro. Logarithmically growing Daudi cells were treated with hIgD for different time periods, and cell proliferation was evaluated by cell counting kit-8 (CCK-8) assay. The expressions of Daudi surface markers and IgD receptor (IgDR) as well as cell cycle and apoptosis were measured by flow cytometry analysis. Our results showed that hIgD stimulation induced proliferation and IgDR expression and reduced the apoptosis of Daudi cells. Treatment with hIgD promoted progression of the cell cycle at the G1/S transition, and this was accompanied by upregulation of c-myc, cyclin D3, and CDK6 as well as downregulation of p16 mRNA and protein levels. Moreover, hIgD treatment also upregulated the expression of tyrosine phosphorylation of 70 kDa protein (IgDR) and p-Lyn. Taken together, these results indicate that hIgD can induce Daudi cell proliferation through activating IgDR to initiate the tyrosine phosphorylation signaling cascade to accelerate the G1/S transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pannone G, Zamparese R, Pace M, Pedicillo MC, Cagiano S, Somma P, Errico ME, Donofrio V, Franco R, De Chiara A, Aquino G, Bucci P, Bucci E, Santoro A, Bufo P. The role of EBV in the pathogenesis of Burkitt’s Lymphoma: an Italian hospital based survey. Infect Agent Cancer. 2014;9:34.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Molyneux EM, Rochford R, Griffin B, Newton R, Jackson G, Menon G, Harrison CJ, Israels T, Bailey S. Burkitt’s lymphoma. Lancet. 2012;379:1234–44.

    Article  PubMed  Google Scholar 

  3. Scheller H, Tobollik S, Kutzera A, Eder M, Unterlehberg J, Pfeil I, Jungnickel B. c-myc overexpression promotes a germinal center-like program in Burkitt’s lymphoma. Oncogene. 2010;29:888–97.

    Article  CAS  PubMed  Google Scholar 

  4. Stein H, Gerdes J, Mason DY. The normal and malignant germinal centre. Clin Haematol. 1982;11:531–59.

    CAS  PubMed  Google Scholar 

  5. Oriol A, Ribera JM, Bergua J, Giménez Mesa E, Grande C, Esteve J, Brunet S, Moreno MJ, Escoda L, Hernandez-Rivas JM, Hoelzer D. High-dose chemotherapy and immunotherapy in adult Burkitt lymphoma: comparison of results in human immunodeficiency virus-infected and noninfected patients. Cancer. 2008;113:117–25.

    Article  CAS  PubMed  Google Scholar 

  6. Alwan F, He A, Montoto S, Kassam S, Mee M, Burns F, Edwards S, Wilson A, Tenant-Flowers M, Marcus R, Ardeshna KM, Bower M, Cwynarski K. Adding rituximab to CODOX-M/IVAC chemotherapy in the treatment of HIV-associated Burkitt lymphoma is safe when used with concurrent combination antiretroviral therapy. AIDS. 2015;29:903–10.

    Article  CAS  PubMed  Google Scholar 

  7. Geisberger R, Königsberger S, Achatz G. Membrane IgM influences membrane IgD mediated antigen internalization in the B cell line Bcl1. Immunol Lett. 2006;102(2):169–76.

    Article  CAS  PubMed  Google Scholar 

  8. Bergh AC, Evaldsson C, Pedersen LB, Geisler C, Stamatopoulos K, Rosenquist R, Rosén A. Silenced B-cell receptor response to autoantigen in a poor-prognostic subset of chronic lymphocytic leukemia. Haematologica. 2014;99:1722–30.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Goding JW. Allotypes of IgM and IgD receptors in the mouse: a probe for lymphocyte differentiation. Contemp Top Immunobiol. 1978;8:203–43.

    Article  CAS  PubMed  Google Scholar 

  10. Jelinek DF, Splawski JB, Lipsky PE. Human peripheral blood B lymphocyte subpopulations: functional and phenotypic analysis of surface IgD positive and negative subsets. J Immunol. 1986;136:83–92.

    CAS  PubMed  Google Scholar 

  11. Nguyen TG, Little CB, Yenson VM, Jackson CJ, McCracken SA, Warning J, Stevens V, Gallery EG, Morris JM. Anti-IgD antibody attenuates collagen-induced arthritis by selectively depleting mature B-cells and promoting immune tolerance. J Autoimmun. 2010;35:86–97.

    Article  CAS  PubMed  Google Scholar 

  12. Preud’homme JL, Brouet JC, Clauvel JP, Seligmann M. Surface IgD in immunoproliferative disorders. Scand J Immunol. 1974;3:853–8.

    Article  PubMed  Google Scholar 

  13. Walzer PD, Armstrong D, Weisman P, Tan C. Serum immunoglobulin levels in childhood Hodgkin’s disease. Effect of splenectomy and long-term follow-up. Cancer. 1980;45:2084–9.

    Article  CAS  PubMed  Google Scholar 

  14. Biggar RJ, Christiansen M, Rostgaard K, Smedby KE, Adami HO, Glimelius B, Hjalgrim H, Melbye M. Immunoglobulin subclass levels in patients with non-Hodgkin lymphoma. Int J Cancer. 2009;124:2616–20.

    Article  CAS  PubMed  Google Scholar 

  15. Brezniak N, Shtrasburg S, Langevitz P, Livneh A, Drenth JP, Shtrasburg S, Langevitz P. Serum IgD as a discriminator between the two periodic febrile syndromes hyperimmunoglobulinaemia D syndrome and Behçet’s disease. Ann Rheum Dis. 1998;57:255–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kholmogorova GT, Stefani DV. Levels of IgD in patients with rheumatoid arthritis. Allergol Immunopathol (Madr). 1982;10:211–4.

    CAS  Google Scholar 

  17. Coico RF, Tamma SL, Bessler M, Wei CF, Thorbecke GJ. IgD-receptor-positive human T lymphocytes. I. Modulation of receptor expression by oligomeric IgD and lymphokines. J Immunol. 1990;145:3556–61.

    CAS  PubMed  Google Scholar 

  18. Coico RF, Xue B, Wallace D, Pernis B, Siskind GW, Thorbecke GJ. T cells with receptors for IgD. Nature. 1985;316:744–6.

    Article  CAS  PubMed  Google Scholar 

  19. Coico RF, Siskind GW, Thorbecke GJ. Role of IgD and T delta cells in the regulation of the humoral immune response. Immunol Rev. 1988;105:45–67.

    Article  CAS  PubMed  Google Scholar 

  20. Amin AR, Swenson CD, Xue B, Ishida Y, Nair BG, Patel TB, Chused TM, Thorbecke GJ. Regulation of IgD-receptor expression on murine T cells. II. Upregulation of IgD receptors is obtained after activation of various intracellular second-messenger systems; tyrosine kinase activity is required for the effect of IgD. Cell Immunol. 1993;152:422–39.

    Article  CAS  PubMed  Google Scholar 

  21. Lakshmi Tamma SM, Wu Y, Toporovsky I, Lima V, Coico RF. IgD receptor-mediated signal transduction in T cells. Cell Immunol. 2001;207:110–7.

    Article  PubMed  Google Scholar 

  22. Rudders RA, Andersen J. IgD-Fc receptors on normal and neoplastic human B lymphocytes. Clin Exp Immunol. 1982;50:579–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lisanti MP, Sargiacomo M. Biotinylation and analysis of membrane-bound and soluble proteins. Curr Protoc Immunol. 2001;Chapter 8:Unit 8.16.

  24. Peng Z, Fisher R, Adkinson NF Jr. Total serum IgD is increased in atopic subjects. Allergy. 1991;46:436–44.

    Article  CAS  PubMed  Google Scholar 

  25. Mulders-Manders CM, Simon A. Hyper-IgD syndrome/mevalonate kinase deficiency: what is new? Semin Immunopathol. 2015;37:371–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carey GB, Scott DW. Role of phosphatidylinositol 3-kinase in anti-IgM and anti-IgD-induced apoptosis in B cell lymphomas. J Immunol. 2001;166:1618–26.

    Article  CAS  PubMed  Google Scholar 

  27. Tavolaro S, Peragine N, Chiaretti S, Ricciardi MR, Raponi S, Messina M, Santangelo S, Marinelli M, Di Maio V, Mauro FR, Del Giudice I, Foà R, Guarini A. IgD cross-linking induces gene expression profiling changes and enhances apoptosis in chronic lymphocytic leukemia cells. Leuk Res. 2013;37:455–62.

    Article  CAS  PubMed  Google Scholar 

  28. Wu Y, Lakshmi Tamma SM, Lima V, Coico R. Facilitated antigen presentation by B cells expressing IgD when responding T cells express IgD-receptors. Cell Immunol. 1999;192:194–202.

    Article  CAS  PubMed  Google Scholar 

  29. Sánchez-Beato M, Camacho FI, Martínez-Montero JC, Sáez AI, Villuendas R, Sánchez-Verde L, García JF, Piris MA. Anomalous high p27/KIP1 expression in a subset of aggressive B-cell lymphomas is associated with cyclin D3 overexpression. p27/KIP1-cyclin D3 colocalization in tumor cells. Blood. 1999;94:765–72.

    PubMed  Google Scholar 

  30. Doglioni C, Chiarelli C, Macrí E, Dei Tos AP, Meggiolaro E, Dalla Palma P, Barbareschi M. Cyclin D3 expression in normal, reactive and neoplastic tissues. J Pathol. 1998;185:159–66.

    Article  CAS  PubMed  Google Scholar 

  31. Filipits M, Jaeger U, Pohl G, Stranzl T, Simonitsch I, Kaider A, Skrabs C, Pirker R. Cyclin D3 is a predictive and prognostic factor in diffuse large B-cell lymphoma. Clin Cancer Res. 2002;8:729–33.

    CAS  PubMed  Google Scholar 

  32. Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M, Wright G, Shaffer AL, Hodson DJ, Buras E, Liu X, Powell J, Yang Y, Xu W, Zhao H, Kohlhammer H, Rosenwald A, Kluin P, Müller-Hermelink HK, Ott G, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Ogwang MD, Reynolds SJ, Fisher RI, Braziel RM, Tubbs RR, Cook JR, Weisenburger DD, Chan WC, Pittaluga S, Wilson W, Waldmann TA, Rowe M, Mbulaiteye SM, Rickinson AB, Staudt LM. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature. 2012;490:116–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Klangby U, Okan I, Magnusson KP, Wendland M, Lind P, Wiman KG. p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt’s lymphoma. Blood. 1998;91:1680–7.

    CAS  PubMed  Google Scholar 

  34. Guan H, Xie L, Klapproth K, Weitzer CD, Wirth T, Ushmorov A. Decitabine represses translocated MYC oncogene in Burkitt lymphoma. J Pathol. 2013;229:775–83.

    Article  CAS  PubMed  Google Scholar 

  35. Cavalheiro GR, Matos-Rodrigues GE, Gomes AL, Rodrigues PM, Martins RA. c-myc regulates cell proliferation during lens development. PLoS ONE. 2014;9:e87182.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schuhmacher M, Eick D. Dose-dependent regulation of target gene expression and cell proliferation by c-myc levels. Transcription. 2013;4:192–7.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jaso-Friedmann L, Leary JH, Evans DL. Monoclonal antibody binding to a receptor on nonspecific cytotoxic cells (NCC) increases the expression of proto-oncogene kinases and protein kinase C. Cell Signal. 1995;7:463–70.

    Article  CAS  PubMed  Google Scholar 

  38. Tamma SM, Coico RF. IgD-receptor-positive human T lymphocytes. II. Identification and partial characterization of human IgD-binding factor. J Immunol. 1992;148:2050–7.

    CAS  PubMed  Google Scholar 

  39. Gross AJ, Proekt I, DeFranco AL. Elevated BCR signaling and decreased survival of Lyn-deficient transitional and follicular B cells. Eur J Immunol. 2011;41:3645–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Scapini P, Pereira S, Zhang H, Lowell CA. Multiple roles of Lyn kinase in myeloid cell signaling and function. Immunol Rev. 2009;228:23–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ingley E. Functions of the Lyn tyrosine kinase in health and disease. Cell Commun Signal. 2012;10:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Je DW, O YM, Ji YG, Cho Y, Lee DH. The inhibition of SRC family kinase suppresses pancreatic cancer cell proliferation, migration, and invasion. Pancreas. 2014;43:768–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (Nos. 81330081, 81302784, 81302845, and 31200675), Specialized Research Fund for the Doctoral Program of Higher Education (Nos. 20113420120006 and 20123420110003), Program for Tackling Key Problems in Science and Technology by Anhui Province (No. 1301042098), Anhui Provincial Natural Science Foundation (No. 1408085QH173), and Anhui Medical University Foundation (No. 2015xkj012).

Authors’ contributions

XD designed and performed experiments and wrote the manuscript. YJW participated in experiments, performed the statistical analysis, and revised the manuscript. XYJ participated in the design of the study and revised the manuscript. HSC and WSC carried out the flow cytometry, PCR, and western blot assays. CW and YC performed the statistical analysis and helped to revise the manuscript. HXW and QH interpreted data and helped to revise the manuscript. WW conceived of the study and revised the manuscript. All authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wei.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Xing Dai and YuJing Wu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, X., Wu, Y., Jia, X. et al. hIgD promotes human Burkitt lymphoma Daudi cell proliferation by accelerated G1/S transition via IgD receptor activity. Immunol Res 64, 978–987 (2016). https://doi.org/10.1007/s12026-015-8777-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8777-3

Keywords

Navigation