Skip to main content

Roles of PD-1/PD-L1 Pathway: Signaling, Cancer, and Beyond

  • Chapter
  • First Online:
Regulation of Cancer Immune Checkpoints

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1248))

Abstract

Immunotherapies that target PD-1/PD-L1 axis have shown unprecedented success in a wide variety of human cancers. PD-1 is one of the key coinhibitory receptors expressed on T cells upon T cell activation. After engagement with its ligands, mainly PD-L1, PD-1 is activated and recruits the phosphatase SHP-2 in proximity to T cell receptor (TCR) and CD28 signaling. This event results in dephosphorylation and attenuation of key molecules in TCR and CD28 pathway, leading to inhibition of T cell proliferation, activation, cytokine production, altered metabolism and cytotoxic T lymphocytes (CTLs) killer functions, and eventual death of activated T cells. Bodies evolve coinhibitory pathways controlling T cell response magnitude and duration to limit tissue damage and maintain self-tolerance. However, tumor cells hijack these inhibitory pathways to escape host immune surveillance by overexpression of PD-L1. This provides the scientific rationale for clinical application of immune checkpoint inhibitors in oncology. The aberrantly high expression of PD-L1 in tumor microenvironment (TME) can be attributable to the “primary” activation of multiple oncogenic signaling and the “secondary” induction by inflammatory factors such as IFN-γ. Clinically, antibodies targeting PD-1/PD-L1 reinvigorate the “exhausted” T cells in TME and show remarkable objective response and durable remission with acceptable toxicity profile in large numbers of tumors such as melanoma, lymphoma, and mismatch-repair deficient tumors. Nevertheless, most patients are still refractory to anti-PD-1/PD-L1 therapy. Identifying the predictive biomarkers and design rational PD-1-based combination therapy become the priorities in cancer immunotherapy. PD-L1 expression, cytotoxic T lymphocytes infiltration, and tumor mutation burden (TMB) are generally considered as the most important factors affecting the effectiveness of PD-1/PD-L1 blockade. The revolution in cancer immunotherapy achieved by PD-1/PD-L1 blockade offers the paradigm for scientific translation from bench to bedside. The next decades will without doubt witness the renaissance of immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, Yagita H et al (1996) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 8:765–772

    Article  CAS  PubMed  Google Scholar 

  • Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL et al (2013) Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov 3:1355–1363

    Article  CAS  PubMed  Google Scholar 

  • Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M et al (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372:311–319

    Article  CAS  PubMed  Google Scholar 

  • Armand P, Shipp MA, Ribrag V, Michot JM, Zinzani PL, Kuruvilla J et al (2016) Programmed death-1 blockade with pembrolizumab in patients with classical hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol: Off J Am Soc Clin Oncol 34:3733–3739

    Article  CAS  Google Scholar 

  • Atefi M, Avramis E, Lassen A, Wong DJ, Robert L, Foulad D et al (2014) Effects of MAPK and PI3K pathways on PD-L1 expression in melanoma. Clin Cancer Res 20:3446–3457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atsaves V, Tsesmetzis N, Chioureas D, Kis L, Leventaki V, Drakos E et al (2017) PD-L1 is commonly expressed and transcriptionally regulated by STAT3 and MYC in ALK-negative anaplastic large-cell lymphoma. Leukemia 31:1633–1637

    Article  CAS  PubMed  Google Scholar 

  • Azuma T, Yao S, Zhu G, Flies AS, Flies SJ, Chen L (2008) B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood 111:3635–3643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baas M, Besancon A, Goncalves T, Valette F, Yagita H, Sawitzki B et al (2016) TGFbeta-dependent expression of PD-1 and PD-L1 controls CD8(+) T cell anergy in transplant tolerance. Elife 5:e08133

    Article  PubMed  PubMed Central  Google Scholar 

  • Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH et al (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–687

    Article  CAS  PubMed  Google Scholar 

  • Barsoum IB, Smallwood CA, Siemens DR, Graham CH (2014) A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res 74:665–674

    Article  CAS  PubMed  Google Scholar 

  • Baumeister SH, Freeman GJ, Dranoff G, Sharpe AH (2016) Coinhibitory pathways in immunotherapy for cancer. Annu Rev Immunol 34:539–573

    Article  CAS  PubMed  Google Scholar 

  • Bensch F, van der Veen EL, Lub-de Hooge MN, Jorritsma-Smit A, Boellaard R, Kok IC et al (2018) (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med 24:1852–1858

    Article  CAS  PubMed  Google Scholar 

  • Benson DM Jr, Bakan CE, Mishra A, Hofmeister CC, Efebera Y, Becknell B et al (2010) The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood 116:2286–2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blank CU, Rozeman EA, Fanchi LF, Sikorska K, van de Wiel B, Kvistborg P et al (2018) Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat Med 24:1655–1661

    Article  CAS  PubMed  Google Scholar 

  • Boes M, Meyer-Wentrup F (2015) TLR3 triggering regulates PD-L1 (CD274) expression in human neuroblastoma cells. Cancer Lett 361:49–56

    Article  CAS  PubMed  Google Scholar 

  • Bouillez A, Rajabi H, Jin C, Samur M, Tagde A, Alam M et al (2017) MUC1-C integrates PD-L1 induction with repression of immune effectors in non-small-cell lung cancer. Oncogene 36:4037–4046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boussiotis VA (2016) Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med 375:1767–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bretscher PA (1999) A two-step, two-signal model for the primary activation of precursor helper T cells. Proc Natl Acad Sci USA 96:185–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4:437–447

    Article  CAS  PubMed  Google Scholar 

  • Brown JA, Dorfman DM, Ma FR, Sullivan EL, Munoz O, Wood CR et al (2003) Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. Journal of immunology 170:1257–1266. Baltimore, Md: 1950

    Google Scholar 

  • Bu LL, Yu GT, Wu L, Mao L, Deng WW, Liu JF et al (2017) STAT3 induces immunosuppression by upregulating PD-1/PD-L1 in HNSCC. J Dent Res 96:1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burr ML, Sparbier CE, Chan YC, Williamson JC, Woods K, Beavis PA et al (2017) CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549:101–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ (2007) Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27:111–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cancer Genome Atlas Research Network (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513:202–209

    Google Scholar 

  • Casey SC, Tong L, Li Y, Do R, Walz S, Fitzgerald KN et al (2016) MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352:227–231. New York, NY

    Google Scholar 

  • Cerezo M, Guemiri R, Druillennec S, Girault I, Malka-Mahieu H, Shen S et al (2018) Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma. Nat Med 24:1877–1886

    Article  CAS  PubMed  Google Scholar 

  • Cha JH, Yang WH, Xia W, Wei Y, Chan LC, Lim SO et al (2018) Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol Cell 71(606–620):e7

    Google Scholar 

  • Chang TT, Jabs C, Sobel RA, Kuchroo VK, Sharpe AH (1999) Studies in B7-deficient mice reveal a critical role for B7 costimulation in both induction and effector phases of experimental autoimmune encephalomyelitis. J Exp Med 190:733–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O’Sullivan D et al (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153:1239–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD et al (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162:1229–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL (2004) SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol 173:945–954. Baltimore, Md: 1950

    Google Scholar 

  • Chen L, Gibbons DL, Goswami S, Cortez MA, Ahn YH, Byers LA et al (2014) Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat Commun 5:5241

    Article  CAS  PubMed  Google Scholar 

  • Chen N, Fang W, Zhan J, Hong S, Tang Y, Kang S et al (2015) Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC: implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. J Thorac Oncol: Off Publ Int Assoc Study Lung Cancer 10:910–923

    Article  CAS  Google Scholar 

  • Chen N, Fang W, Lin Z, Peng P, Wang J, Zhan J et al (2017) KRAS mutation-induced upregulation of PD-L1 mediates immune escape in human lung adenocarcinoma. Cancer Immunol Immunother 66:1175–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W et al (2018) Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560:382–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cioffi M, Trabulo SM, Vallespinos M, Raj D, Kheir TB, Lin ML et al (2017) The miR-25-93-106b cluster regulates tumor metastasis and immune evasion via modulation of CXCL12 and PD-L1. Oncotarget 8:21609–21625

    Article  PubMed  PubMed Central  Google Scholar 

  • Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB et al (2019) Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med 25:477–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coelho MA, de Carne TS, Rana S, Zecchin D, Moore C, Molina-Arcas M et al (2017) Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity 47(1083–1099):e6

    Google Scholar 

  • Cole JE, Navin TJ, Cross AJ, Goddard ME, Alexopoulou L, Mitra AT et al (2011) Unexpected protective role for toll-like receptor 3 in the arterial wall. Proc Natl Acad Sci USA 108:2372–2377

    Article  PubMed  PubMed Central  Google Scholar 

  • Concha-Benavente F, Srivastava RM, Trivedi S, Lei Y, Chandran U, Seethala RR et al (2016) Identification of the cell-intrinsic and -extrinsic pathways downstream of EGFR and IFNgamma that induce PD-L1 expression in head and neck cancer. Cancer Res 76:1031–1043

    Article  CAS  PubMed  Google Scholar 

  • Cortez MA, Ivan C, Valdecanas D, Wang X, Peltier HJ, Ye Y et al (2016) PDL1 Regulation by p53 via miR-34. J Natl Cancer Inst 108

    Google Scholar 

  • Crawford A, Angelosanto JM, Kao C, Doering TA, Odorizzi PM, Barnett BE et al (2014) Molecular and transcriptional basis of CD4(+) T cell dysfunction during chronic infection. Immunity 40:289–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cristescu R, Mogg R, Ayers M, Albright A, Murphy E, Yearley J et al (2018) Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362. New York, NY

    Google Scholar 

  • Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P et al (2003) Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9:562–567

    Article  CAS  PubMed  Google Scholar 

  • Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S et al (2006) PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443:350–354

    Article  CAS  PubMed  Google Scholar 

  • de Kleijn S, Langereis JD, Leentjens J, Kox M, Netea MG, Koenderman L et al (2013) IFN-gamma-stimulated neutrophils suppress lymphocyte proliferation through expression of PD-L1. PLoS ONE 8:e72249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong H, Zhu G, Tamada K, Chen L (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5:1365–1369

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Strome SE, Matteson EL, Moder KG, Flies DB, Zhu G et al (2003) Costimulating aberrant T cell responses by B7-H1 autoantibodies in rheumatoid arthritis. J Clin Invest 111:363–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eppihimer MJ, Gunn J, Freeman GJ, Greenfield EA, Chernova T, Erickson J et al (2002) Expression and regulation of the PD-L1 immunoinhibitory molecule on microvascular endothelial cells. Microcirculation 9:133–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G (2015) Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28:690–714

    Article  CAS  PubMed  Google Scholar 

  • Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964. New York, NY

    Google Scholar 

  • Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA et al (2017) Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep 19:1189–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gato-Canas M, Zuazo M, Arasanz H, Ibanez-Vea M, Lorenzo L, Fernandez-Hinojal G et al (2017) PDL1 signals through conserved sequence motifs to overcome interferon-mediated cytotoxicity. Cell Rep 20:1818–1829

    Article  CAS  PubMed  Google Scholar 

  • Gauen LK, Zhu Y, Letourneur F, Hu Q, Bolen JB, Matis LA et al (1994) Interactions of p59fyn and ZAP-70 with T-cell receptor activation motifs: defining the nature of a signalling motif. Mol Cell Biol 14:3729–3741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George J, Saito M, Tsuta K, Iwakawa R, Shiraishi K, Scheel AH et al (2017) Genomic amplification of CD274 (PD-L1) in small-cell lung cancer. Clin Cancer Res 23:1220–1226

    Article  CAS  PubMed  Google Scholar 

  • Gong AY, Zhou R, Hu G, Li X, Splinter PL, O’Hara SP et al (2009) MicroRNA-513 regulates B7-H1 translation and is involved in IFN-gamma-induced B7-H1 expression in cholangiocytes. J Immunol 182:1325–1333. Baltimore, Md: 1950

    Google Scholar 

  • Gong AY, Zhou R, Hu G, Liu J, Sosnowska D, Drescher KM et al (2010) Cryptosporidium parvum induces B7-H1 expression in cholangiocytes by down-regulating microRNA-513. J Infect Dis 201:160–169

    Article  CAS  PubMed  Google Scholar 

  • Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN et al (2017) PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545:495–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O’Donnell E et al (2010) Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116:3268-3277

    Google Scholar 

  • Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R et al (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369:134–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honda T, Egen JG, Lammermann T, Kastenmuller W, Torabi-Parizi P, Germain RN (2014) Tuning of antigen sensitivity by T cell receptor-dependent negative feedback controls T cell effector function in inflamed tissues. Immunity 40:235–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang G, Wen Q, Zhao Y, Gao Q, Bai Y (2013) NF-kappaB plays a key role in inducing CD274 expression in human monocytes after lipopolysaccharide treatment. PLoS ONE 8:e61602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang AC, Orlowski RJ, Xu X, Mick R, George SM, Yan PK et al (2019) A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma. Nat Med 25:454–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA et al (2017) T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355:1428–1433. New York, NY

    Google Scholar 

  • Ishida Y, Agata Y, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11:3887–3895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99:12293–12297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James ES, Harney S, Wordsworth BP, Cookson WO, Davis SJ, Moffatt MF (2005) PDCD1: a tissue-specific susceptibility locus for inherited inflammatory disorders. Genes Immun 6:430–437

    Article  CAS  PubMed  Google Scholar 

  • Jia L, Xi Q, Wang H, Zhang Z, Liu H, Cheng Y et al (2017) miR-142-5p regulates tumor cell PD-L1 expression and enhances anti-tumor immunity. Biochem Biophys Res Commun 488:425–431

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Zhou J, Giobbie-Hurder A, Wargo J, Hodi FS (2013) The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clin Cancer Res 19:598–609

    Article  CAS  PubMed  Google Scholar 

  • Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501:346–354

    Article  CAS  PubMed  Google Scholar 

  • Kamphorst AO, Wieland A, Nasti T, Yang S, Zhang R, Barber DL et al (2017) Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 355:1423–1427. New York, NY

    Google Scholar 

  • Kao SC, Cheng YY, Williams M, Kirschner MB, Madore J, Lum T et al (2017) Tumor suppressor microRNAs contribute to the regulation of PD-L1 Expression in malignant pleural mesothelioma. J Thorac Oncol: Off Publ Int Assoc Study Lung Cancer 12:1421–1433

    Article  Google Scholar 

  • Karakhanova S, Meisel S, Ring S, Mahnke K, Enk AH (2010) ERK/p38 MAP-kinases and PI3K are involved in the differential regulation of B7-H1 expression in DC subsets. Eur J Immunol 40:254–266

    Article  CAS  PubMed  Google Scholar 

  • Karakhanova S, Bedke T, Enk AH, Mahnke K (2011) IL-27 renders DC immunosuppressive by induction of B7-H1. J Leukoc Biol 89:837–845

    Article  CAS  PubMed  Google Scholar 

  • Kataoka K, Shiraishi Y, Takeda Y, Sakata S, Matsumoto M, Nagano S et al (2016) Aberrant PD-L1 expression through 3’-UTR disruption in multiple cancers. Nature 534:402–406

    Article  CAS  PubMed  Google Scholar 

  • Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA et al (2006) Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 203:883–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    Article  CAS  PubMed  Google Scholar 

  • Kim EY, Kim A, Kim SK, Chang YS (2017) MYC expression correlates with PD-L1 expression in non-small cell lung cancer. Lung Cancer 110:63–67

    Article  PubMed  Google Scholar 

  • Koh J, Jang JY, Keam B, Kim S, Kim MY, Go H et al (2016) EML4-ALK enhances programmed cell death-ligand 1 expression in pulmonary adenocarcinoma via hypoxia-inducible factor (HIF)-1alpha and STAT3. Oncoimmunology 5:e1108514

    Article  CAS  PubMed  Google Scholar 

  • Kondo A, Yamashita T, Tamura H, Zhao W, Tsuji T, Shimizu M et al (2010) Interferon-gamma and tumor necrosis factor-alpha induce an immunoinhibitory molecule, B7-H1, via nuclear factor-kappaB activation in blasts in myelodysplastic syndromes. Blood 116:1124–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroemer G, Galluzzi L, Zitvogel L, Fridman WH (2015) Colorectal cancer: the first neoplasia found to be under immunosurveillance and the last one to respond to immunotherapy? Oncoimmunology 4:e1058597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lastwika KJ, Wilson W 3rd, Li QK, Norris J, Xu H, Ghazarian SR et al (2016) Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res 76:227–238

    Article  CAS  PubMed  Google Scholar 

  • Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268

    Article  CAS  PubMed  Google Scholar 

  • Latchman YE, Liang SC, Wu Y, Chernova T, Sobel RA, Klemm M et al (2004) PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc Natl Acad Sci USA 101:10691–10696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372:2509–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357:409–413. New York, NY

    Google Scholar 

  • Lee SJ, Jang BC, Lee SW, Yang YI, Suh SI, Park YM et al (2006) Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-gamma-induced upregulation of B7-H1 (CD274). FEBS Lett 580:755–762

    Article  CAS  PubMed  Google Scholar 

  • Li CW, Lim SO, Xia W, Lee HH, Chan LC, Kuo CW et al (2016) Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun 7:12632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CW, Lim SO, Chung EM, Kim YS, Park AH, Yao J et al (2018) Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Cell 33(187–201):e10

    Google Scholar 

  • Lim SO, Li CW, Xia W, Cha JH, Chan LC, Wu Y et al (2016) Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell 30:925–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin DY, Tanaka Y, Iwasaki M, Gittis AG, Su HP, Mikami B et al (2008) The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors. Proc Natl Acad Sci USA 105:3011–3016

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D et al (2007) Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 110:296–304

    Article  CAS  PubMed  Google Scholar 

  • Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, Taube JM et al (2015) The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov 5:43–51

    Article  CAS  PubMed  Google Scholar 

  • Loi S, Dushyanthen S, Beavis PA, Salgado R, Denkert C, Savas P et al (2016) RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin Cancer Res 22:1499–1509

    Article  CAS  PubMed  Google Scholar 

  • Loke P, Allison JP (2003) PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc Natl Acad Sci USA 100:5336–5341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal R, Samstein RM, Lee KW, Havel JJ, Wang H, Krishna C et al (2019) Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science 364:485–491. New York, NY

    Google Scholar 

  • Marzec M, Zhang Q, Goradia A, Raghunath PN, Liu X, Paessler M et al (2008) Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc Natl Acad Sci USA 105:20852–20857

    Article  PubMed  PubMed Central  Google Scholar 

  • Matta BM, Raimondi G, Rosborough BR, Sumpter TL, Thomson AW (2012) IL-27 production and STAT3-dependent upregulation of B7-H1 mediate immune regulatory functions of liver plasmacytoid dendritic cells. J Immunol 188:5227–5237. Baltimore, Md: 1950

    Google Scholar 

  • Mazanet MM, Hughes CC (2002) B7-H1 is expressed by human endothelial cells and suppresses T cell cytokine synthesis. J Immunol 169:3581–3588. Baltimore, Md: 1950

    Google Scholar 

  • McLane LM, Abdel-Hakeem MS, Wherry EJ (2019) CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol 37:457–495

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Liu X, Guo X, Jiang S, Chen T, Hu Z, et al (2018) FBXO38 mediates PD-1 ubiquitination and regulates anti-tumour immunity of T cells. Nature 564:130–135

    Google Scholar 

  • Messai Y, Gad S, Noman MZ, Le Teuff G, Couve S, Janji B et al (2016) Renal cell carcinoma programmed death-ligand 1, a new direct target of hypoxia-inducible factor-2 alpha, is regulated by von Hippel-Lindau gene mutation status. Eur Urol 70:623–632

    Article  CAS  PubMed  Google Scholar 

  • Mezzadra R, Sun C, Jae LT, Gomez-Eerland R, de Vries E, Wu W et al (2017) Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature 549:106–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagarsheth N, Peng D, Kryczek I, Wu K, Li W, Zhao E et al (2016) PRC2 Epigenetically silences Th1-type chemokines to suppress effector T-cell trafficking in colon cancer. Cancer Res 76:275–282

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa A, Dotan I, Brimnes J, Allez M, Shao L, Tsushima F et al (2004) The expression and function of costimulatory molecules B7H and B7-H1 on colonic epithelial cells. Gastroenterology 126:1347–1357

    Article  CAS  PubMed  Google Scholar 

  • Ni XY, Sui HX, Liu Y, Ke SZ, Wang YN, Gao FG (2012) TGF-beta of lung cancer microenvironment upregulates B7H1 and GITRL expression in dendritic cells and is associated with regulatory T cell generation. Oncol Rep 28:615–621

    Article  CAS  PubMed  Google Scholar 

  • Nielsen C, Hansen D, Husby S, Jacobsen BB, Lillevang ST (2003) Association of a putative regulatory polymorphism in the PD-1 gene with susceptibility to type 1 diabetes. Tissue Antigens 62:492–497

    Article  CAS  PubMed  Google Scholar 

  • Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11:141–151

    Article  CAS  PubMed  Google Scholar 

  • Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A et al (2001) Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291:319–322. New York, NY

    Google Scholar 

  • Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P et al (2014) PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211:781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odorizzi PM, Pauken KE, Paley MA, Sharpe A, Wherry EJ (2015) Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J Exp Med 212:1125–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okazaki T, Honjo T (2007) PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 19:813–824

    Article  CAS  PubMed  Google Scholar 

  • Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T (2001) PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci USA 98:13866–13871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okazaki T, Tanaka Y, Nishio R, Mitsuiye T, Mizoguchi A, Wang J et al (2003) Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med 9:1477–1483

    Article  CAS  PubMed  Google Scholar 

  • Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T (2013) A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol 14:1212–1218

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan D, Pearce EL (2015) Targeting T cell metabolism for therapy. Trends Immunol 36:71–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ota K, Azuma K, Kawahara A, Hattori S, Iwama E, Tanizaki J et al (2015) Induction of PD-L1 expression by the EML4-ALK oncoprotein and downstream signaling pathways in non-small cell lung cancer. Clin Cancer Res 21:4014–4021

    Article  CAS  PubMed  Google Scholar 

  • Ou JN, Wiedeman AE, Stevens AM (2012) TNF-alpha and TGF-beta counter-regulate PD-L1 expression on monocytes in systemic lupus erythematosus. Sci Rep 2:295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park BV, Freeman ZT, Ghasemzadeh A, Chattergoon MA, Rutebemberwa A, Steigner J et al (2016) TGFbeta1-mediated SMAD3 enhances PD-1 expression on antigen-specific T cells in cancer. Cancer Discov 6:1366–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV et al (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25:9543–9553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ et al (2007) Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 13:84–88

    Article  CAS  PubMed  Google Scholar 

  • Patel SA, Minn AJ (2018) Combination cancer therapy with immune checkpoint blockade: mechanisms and strategies. Immunity 48:417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis VA (2012) Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci Signal 5:ra46

    Google Scholar 

  • Patsoukis N, Li L, Sari D, Petkova V, Boussiotis VA (2013) PD-1 increases PTEN phosphatase activity while decreasing PTEN protein stability by inhibiting casein kinase 2. Mol Cell Biol 33:3091–3098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN et al (2015) PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun 6:6692

    Article  CAS  PubMed  Google Scholar 

  • Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W et al (2015) Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527:249–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitt JM, Vetizou M, Daillere R, Roberti MP, Yamazaki T, Routy B et al (2016) Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity 44:1255–1269

    Article  CAS  PubMed  Google Scholar 

  • Poggio M, Hu T, Pai CC, Chu B, Belair CD, Chang A et al (2019) Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell 177(414–427):e13

    Google Scholar 

  • Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C et al (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–562

    Article  CAS  PubMed  Google Scholar 

  • Prokunina L, Castillejo-Lopez C, Oberg F, Gunnarsson I, Berg L, Magnusson V et al (2002) A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 32:666–669

    Article  CAS  PubMed  Google Scholar 

  • Qian Y, Deng J, Geng L, Xie H, Jiang G, Zhou L et al (2008) TLR4 signaling induces B7-H1 expression through MAPK pathways in bladder cancer cells. Cancer Invest 26:816–821

    Article  CAS  PubMed  Google Scholar 

  • Quandt D, Jasinski-Bergner S, Muller U, Schulze B, Seliger B (2014) Synergistic effects of IL-4 and TNFα on the induction of B7-H1 in renal cell carcinoma cells inhibiting allogeneic T cell proliferation. J Transl Med 12:151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359:1350–1355. New York, NY

    Google Scholar 

  • Riley JL (2009) PD-1 signaling in primary T cells. Immunol Rev 229:114–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128. New York, NY

    Google Scholar 

  • Robert C (2018) Is earlier better for melanoma checkpoint blockade? Nat Med 24:1645–1648

    Article  CAS  PubMed  Google Scholar 

  • Roemer MG, Advani RH, Ligon AH, Natkunam Y, Redd RA, Homer H et al (2016) PD-L1 and PD-L2 genetic alterations define classical hodgkin lymphoma and predict outcome. J Clin Oncol: Off J Am Soc Clin Oncol 34:2690–2697

    Article  CAS  Google Scholar 

  • Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160:48–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanmamed MF, Chen L (2018) A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell 175:313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F et al (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102:18538–18543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, Lopez-Janeiro A, Porciuncula A, Idoate MA et al (2019) Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat Med 25:470–476

    Article  CAS  PubMed  Google Scholar 

  • Scharping NE, Menk AV, Moreci RS, Whetstone RD, Dadey RE, Watkins SC et al (2016) The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45:374–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schildberg FA, Klein SR, Freeman GJ, Sharpe AH (2016) Coinhibitory pathways in the B7-CD28 ligand-receptor family. Immunity 44:955–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoop R, Wahl P, Le Hir M, Heemann U, Wang M, Wuthrich RP (2004) Suppressed T-cell activation by IFN-gamma-induced expression of PD-L1 on renal tubular epithelial cells. Nephrol Dial Transplant 19:2713–2720

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348:56–61. New York, NY

    Google Scholar 

  • Sharpe AH, Pauken KE (2018) The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol 18:153–167

    Article  CAS  PubMed  Google Scholar 

  • Sheppard KA, Fitz LJ, Lee JM, Benander C, George JA, Wooters J et al (2004) PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett 574:37–41

    Article  CAS  PubMed  Google Scholar 

  • Singal G, Miller PG, Agarwala V, Li G, Kaushik G, Backenroth D et al (2019) Association of patient characteristics and tumor genomics with clinical outcomes among patients with non-small cell lung cancer using a clinicogenomic database. JAMA 321:1391–1399

    Article  PubMed  PubMed Central  Google Scholar 

  • Song M, Chen D, Lu B, Wang C, Zhang J, Huang L et al (2013) PTEN loss increases PD-L1 protein expression and affects the correlation between PD-L1 expression and clinical parameters in colorectal cancer. PLoS ONE 8:e65821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song S, Yuan P, Wu H, Chen J, Fu J, Li P et al (2014) Dendritic cells with an increased PD-L1 by TGF-beta induce T cell anergy for the cytotoxicity of hepatocellular carcinoma cells. Int Immunopharmacol 20:117–123

    Article  CAS  PubMed  Google Scholar 

  • Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523:231–235

    Article  CAS  PubMed  Google Scholar 

  • Stamper CC, Zhang Y, Tobin JF, Erbe DV, Ikemizu S, Davis SJ et al (2001) Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature 410:608–611

    Article  CAS  PubMed  Google Scholar 

  • Starke A, Wuthrich RP, Waeckerle-Men Y (2007) TGF-beta treatment modulates PD-L1 and CD40 expression in proximal renal tubular epithelial cells and enhances CD8 cytotoxic T-cell responses. Nephron Exp Nephrol 107:e22–e29

    Article  CAS  PubMed  Google Scholar 

  • Straub M, Drecoll E, Pfarr N, Weichert W, Langer R, Hapfelmeier A et al (2016) CD274/PD-L1 gene amplification and PD-L1 protein expression are common events in squamous cell carcinoma of the oral cavity. Oncotarget 7:12024–12034

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugiura D, Maruhashi T, Okazaki IM, Shimizu K, Maeda TK, Takemoto T et al (2019) Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science 364:558–566. New York, NY

    Google Scholar 

  • Sumimoto H, Takano A, Teramoto K, Daigo Y (2016) RAS-mitogen-activated protein kinase signal is required for enhanced PD-L1 expression in human lung cancers. PLoS ONE 11:e0166626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Fourcade J, Pagliano O, Chauvin JM, Sander C, Kirkwood JM et al (2015) IL10 and PD-1 cooperate to limit the activity of tumor-specific CD8+ T cells. Can Res 75:1635–1644

    Article  CAS  Google Scholar 

  • Sun C, Mezzadra R, Schumacher TN (2018) Regulation and function of the PD-L1 checkpoint. Immunity 48:434–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor A, Harker JA, Chanthong K, Stevenson PG, Zuniga EI, Rudd CE (2016) Glycogen synthase kinase 3 inactivation drives T-bet-mediated downregulation of co-receptor PD-1 to enhance CD8(+) cytolytic T cell responses. Immunity 44:274–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terme M, Ullrich E, Aymeric L, Meinhardt K, Desbois M, Delahaye N et al (2011) IL-18 induces PD-1-dependent immunosuppression in cancer. Can Res 71:5393–5399

    Article  CAS  Google Scholar 

  • Thompson RH, Gillett MD, Cheville JC, Lohse CM, Dong H, Webster WS et al (2004) Costimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci USA 101:17174–17179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD, Sharfman WH et al (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol: Off J Am Soc Clin Oncol 32:1020–1030

    Article  CAS  Google Scholar 

  • Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Twa DD, Chan FC, Ben-Neriah S, Woolcock BW, Mottok A, Tan KL et al (2014) Genomic rearrangements involving programmed death ligands are recurrent in primary mediastinal large B-cell lymphoma. Blood 123:2062–2065

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Yoshida T, Nakaki F, Hiai H, Okazaki T, Honjo T (2005) Establishment of NOD-Pdcd1-/- mice as an efficient animal model of type I diabetes. Proc Natl Acad Sci USA 102:11823–11828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Okazaki IM, Yoshida T, Chikuma S, Kato Y, Nakaki F et al (2010) PD-1 deficiency results in the development of fatal myocarditis in MRL mice. Int Immunol 22:443–452

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Li F, Mao Y, Zhou H, Sun J, Li R et al (2013) A miR-570 binding site polymorphism in the B7-H1 gene is associated with the risk of gastric adenocarcinoma. Hum Genet 132:641–648

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Li J, Dong K, Lin F, Long M, Ouyang Y et al (2015) Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cell Signal 27:443–452

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Jia Y, Zhao S, Zhang X, Wang X, Han X et al (2017a) BIN1 reverses PD-L1-mediated immune escape by inactivating the c-MYC and EGFR/MAPK signaling pathways in non-small cell lung cancer. Oncogene 36:6235–6243

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yang L, Huang F, Zhang Q, Liu S, Ma L et al (2017b) Inflammatory cytokines IL-17 and TNF-alpha up-regulate PD-L1 expression in human prostate and colon cancer cells. Immunol Lett 184:7–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Yao H, Li C, Shi H, Lan J, Li Z et al (2018) HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity. Nat Chem Biol

    Google Scholar 

  • Wei F, Zhong S, Ma Z, Kong H, Medvec A, Ahmed R et al (2013) Strength of PD-1 signaling differentially affects T-cell effector functions. Proc Natl Acad Sci USA 110:E2480–E2489

    Article  PubMed  PubMed Central  Google Scholar 

  • Weichselbaum RR, Liang H, Deng L, Fu YX (2017) Radiotherapy and immunotherapy: a beneficial liaison? Nat Rev Clin Oncol 14:365–379

    Article  CAS  PubMed  Google Scholar 

  • Wintterle S, Schreiner B, Mitsdoerffer M, Schneider D, Chen L, Meyermann R et al (2003) Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res 63:7462–7467

    CAS  PubMed  Google Scholar 

  • Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM et al (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Yu S, Zhu B, Bedoret D, Bu X, Francisco LM et al (2014) RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance. J Exp Med 211:943–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie G, Li W, Li R, Wu K, Zhao E, Zhang Y et al (2017) Helicobacter pylori promote B7-H1 expression by suppressing miR-152 and miR-200b in gastric cancer cells. PLoS ONE 12:e0168822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong HY, Ma TT, Wu BT, Lin Y, Tu ZG (2014) IL-12 regulates B7-H1 expression in ovarian cancer-associated macrophages by effects on NF-kappaB signalling. Asian Pac J Cancer Prev: APJCP 15:5767–5772

    Article  PubMed  Google Scholar 

  • Xu C, Fillmore CM, Koyama S, Wu H, Zhao Y, Chen Z et al (2014) Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with elevated PD-L1 expression. Cancer Cell 25:590–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue J, Chen C, Qi M, Huang Y, Wang L, Gao Y et al (2017) Type Igamma phosphatidylinositol phosphate kinase regulates PD-L1 expression by activating NF-kappaB. Oncotarget 8:42414–42427

    PubMed  PubMed Central  Google Scholar 

  • Yamamoto R, Nishikori M, Tashima M, Sakai T, Ichinohe T, Takaori-Kondo A et al (2009) B7-H1 expression is regulated by MEK/ERK signaling pathway in anaplastic large cell lymphoma and Hodgkin lymphoma. Cancer Sci 100:2093–2100

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, Tanno Y et al (2002) Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 169:5538-5545. Baltimore, Md: 1950

    Google Scholar 

  • Yang Y, Hsu JM, Sun L, Chan LC, Li CW, Hsu JL et al (2019) Palmitoylation stabilizes PD-L1 to promote breast tumor growth. Cell Res 29:83–86

    Article  PubMed  Google Scholar 

  • Yao H, Lan J, Li C, Shi H, Brosseau JP, Wang H et al (2019) Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat Biomed Eng 3:306–317

    Article  CAS  PubMed  Google Scholar 

  • Yearley JH, Gibson C, Yu N, Moon C, Murphy E, Juco J et al (2017) PD-L2 expression in human tumors: relevance to anti-PD-1 therapy in cancer. Clin Cancer Res 23:3158–3167

    Article  CAS  PubMed  Google Scholar 

  • Yee D, Shah KM, Coles MC, Sharp TV, Lagos D (2017) MicroRNA-155 induction via TNF-alpha and IFN-gamma suppresses expression of programmed death ligand-1 (PD-L1) in human primary cells. J Biol Chem 292:20683–20693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T (2012) Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 209:1201–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Younes A, Santoro A, Shipp M, Zinzani PL, Timmerman JM, Ansell S et al (2016) Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol 17:1283–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youngblood B, Oestreich KJ, Ha SJ, Duraiswamy J, Akondy RS, West EE et al (2011) Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8(+) T cells. Immunity 35:400–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zak KM, Kitel R, Przetocka S, Golik P, Guzik K, Musielak B et al (2015) Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1. Structure 23:2341–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Schwartz JC, Guo X, Bhatia S, Cao E, Lorenz M et al (2004) Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity 20:337–347

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zeng Y, Qu Q, Zhu J, Liu Z, Ning W et al (2017) PD-L1 induced by IFN-gamma from tumor-associated macrophages via the JAK/STAT3 and PI3K/AKT signaling pathways promoted progression of lung cancer. Int J Clin Oncol 22:1026–1033

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira NT et al (2018) Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 553:91–95

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Xiao X, Wu Y, Wei Y, Zhu LY, Zhou J et al (2011) Interleukin-17-educated monocytes suppress cytotoxic T-cell function through B7-H1 in hepatocellular carcinoma patients. Eur J Immunol 41:2314–2322

    Article  CAS  PubMed  Google Scholar 

  • Zou W, Wolchok JD, Chen L (2016) PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med 8:328rv4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luoyan Ai or Jie Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ai, L., Xu, A., Xu, J. (2020). Roles of PD-1/PD-L1 Pathway: Signaling, Cancer, and Beyond. In: Xu, J. (eds) Regulation of Cancer Immune Checkpoints. Advances in Experimental Medicine and Biology, vol 1248. Springer, Singapore. https://doi.org/10.1007/978-981-15-3266-5_3

Download citation

Publish with us

Policies and ethics