Skip to main content

Advertisement

Log in

Human immune system mice: current potential and limitations for translational research on human antibody responses

  • Current Immunology Research at Jefferson
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

It has recently become possible to generate chimeric mice durably engrafted with many components of the human immune system (HIS mice). We have characterized the maturation and function of the B cell compartment of HIS mice. The antibody response of HIS mice to T cell-dependent B cell antigens is limited, and contributing factors may be the general immaturity of the B cell compartment, infrequent helper T cells selected on human MHC class II antigens, and incomplete reconstitution of secondary lymphoid organs and their microenvironments. In contrast, HIS mice generate protective antibody responses to the bacterium Borrelia hermsii, which acts as a T cell-independent antigen in mice, but do not respond to purified polysaccharide antigens (PPS). We speculate that the anti-B. hermsii response of HIS mice is derived from an abundant B cell subset that may be analogous to B1 B cells in mice. We suggest that failure of HIS mice to respond to PPS is due to the lack of a B cell subset that may originate from adult bone marrow and is highly dependent on human interleukin-7 for development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature. 1983;301(5900):527–30.

    Article  PubMed  CAS  Google Scholar 

  2. McCune JM, Kaneshima H, Lieberman M, Weissman IL, Namikawa R. The scid-hu mouse: current status and potential applications. Curr Top Microbiol Immunol. 1989;152:183–93.

    Article  PubMed  CAS  Google Scholar 

  3. Torbett BE, Picchio G, Mosier DE. hu-PBL-SCID mice: a model for human immune function, AIDS, and lymphomagenesis. Immunol Rev. 1991;124:139–64.

    Article  PubMed  CAS  Google Scholar 

  4. Kraft DL, Weissman IL, Waller EK. Differentiation of CD3–4-8- human fetal thymocytes in vivo: characterization of a CD3–4 + 8- intermediate. J Exp Med. 1993;178(1):265–77.

    Article  PubMed  CAS  Google Scholar 

  5. Weissman IL, Shizuru JA. The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood. 2008;112(9):3543–53.

    Article  PubMed  CAS  Google Scholar 

  6. Greiner DL, Hesselton RA, Shultz LD. SCID mouse models of human stem cell engraftment. Stem Cells. 1998;16(3):166–77.

    Article  PubMed  CAS  Google Scholar 

  7. Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science. 1992;255(5048):1137–41.

    Article  PubMed  CAS  Google Scholar 

  8. Dick JE, Bhatia M, Gan O, Kapp U, Wang JC. Assay of human stem cells by repopulation of NOD/SCID mice. Stem Cells. 1997;15(Suppl 1):199–203. discussion 4–7.

    Article  PubMed  Google Scholar 

  9. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, McKenna S, Mobraaten L, Rajan TV, Greiner DL, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol. 1995;154(1):180–91.

    PubMed  CAS  Google Scholar 

  10. Christianson SW, Greiner DL, Schweitzer IB, Gott B, Beamer GL, Schweitzer PA, Hesselton RM, Shultz LD. Role of natural killer cells on engraftment of human lymphoid cells and on metastasis of human T-lymphoblastoid leukemia cells in C57BL/6 J-scid mice and in C57BL/6 J-scid bg mice. Cell Immunol. 1996;171(2):186–99.

    Article  PubMed  CAS  Google Scholar 

  11. DiSanto JP, Muller W, Guy-Grand D, Fischer A, Rajewsky K. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc Natl Acad Sci USA. 1995;92(2):377–81.

    Article  PubMed  CAS  Google Scholar 

  12. Cao X, Shores EW, Hu-Li J, Anver MR, Kelsall BL, Russell SM, Drago J, Noguchi M, Grinberg A, Bloom ET, et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity. 1995;2(3):223–38.

    Article  PubMed  CAS  Google Scholar 

  13. Manz MG. Human-hemato-lymphoid-system mice: opportunities and challenges. Immunity. 2007;26(5):537–41.

    Article  PubMed  CAS  Google Scholar 

  14. Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007;7(2):118–30.

    Article  PubMed  CAS  Google Scholar 

  15. Legrand N, Weijer K, Spits H. Experimental models to study development and function of the human immune system in vivo. J Immunol. 2006;176(4):2053–8.

    PubMed  CAS  Google Scholar 

  16. Yokoyama WM, Kim S, French AR. The dynamic life of natural killer cells. Annu Rev Immunol. 2004;22:405–29.

    Article  PubMed  CAS  Google Scholar 

  17. Loza MJ, Perussia B. Final steps of natural killer cell maturation: a model for type 1-type 2 differentiation? Nat Immunol. 2001;2(10):917–24.

    Article  PubMed  CAS  Google Scholar 

  18. Takenaka K, Prasolava TK, Wang JC, Mortin-Toth SM, Khalouei S, Gan OI, Dick JE, Danska JS. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol. 2007;8(12):1313–23.

    Article  PubMed  CAS  Google Scholar 

  19. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, Manz MG. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science. 2004;304(5667):104–7.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang L, Kovalev GI, Su L. HIV-1 infection and pathogenesis in a novel humanized mouse model. Blood. 2007;109(7):2978–81.

    PubMed  CAS  Google Scholar 

  21. Baenziger S, Tussiwand R, Schlaepfer E, Mazzucchelli L, Heikenwalder M, Kurrer MO, Behnke S, Frey J, Oxenius A, Joller H, Aguzzi A, Manz MG, Speck RF. Disseminated and sustained HIV infection in CD34 + cord blood cell-transplanted Rag2−/−gamma c−/−mice. Proc Natl Acad Sci USA. 2006;103(43):15951–6.

    Article  PubMed  CAS  Google Scholar 

  22. Jaiswal S, Pearson T, Friberg H, Shultz LD, Greiner DL, Rothman AL, Mathew A. Dengue virus infection and virus-specific HLA-A2 restricted immune responses in humanized NOD-scid IL2rgammanull mice. PLoS One. 2009;4(10):e7251.

    Article  PubMed  Google Scholar 

  23. Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA, Wege AK, Haase AT, Garcia JV. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med. 2006;12(11):1316–22.

    Article  PubMed  CAS  Google Scholar 

  24. Washburn ML, Bility MT, Zhang L, Kovalev GI, Buntzman A, Frelinger JA, Barry W, Ploss A, Rice CM, Su L. A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease. Gastroenterology. 2011;140(4):1334–44.

    Article  PubMed  CAS  Google Scholar 

  25. Libby SJ, Brehm MA, Greiner DL, Shultz LD, McClelland M, Smith KD, Cookson BT, Karlinsey JE, Kinkel TL, Porwollik S, Canals R, Cummings LA, Fang FC. Humanized nonobese diabetic-scid IL2rgammanull mice are susceptible to lethal Salmonella Typhi infection. Proc Natl Acad Sci USA. 2010;107(35):15589–94.

    Article  PubMed  CAS  Google Scholar 

  26. Palanichamy A, Barnard J, Zheng B, Owen T, Quach T, Wei C, Looney RJ, Sanz I, Anolik JH. Novel human transitional B cell populations revealed by B cell depletion therapy. J Immunol. 2009;182(10):5982–93.

    Article  PubMed  CAS  Google Scholar 

  27. Chen Q, Khoury M, Chen J. Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci USA. 2009;106(51):21783–8.

    Article  PubMed  CAS  Google Scholar 

  28. von Freeden-Jeffry U, Vieira P, Lucian LA, McNeil T, Burdach SE, Murray R. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med. 1995;181:1519–26.

    Article  Google Scholar 

  29. van Lent AU, Dontje W, Nagasawa M, Siamari R, Bakker AQ, Pouw SM, Maijoor KA, Weijer K, Cornelissen JJ, Blom B, Di Santo JP, Spits H, Legrand N. IL-7 enhances thymic human T cell development in “human immune system” Rag2-/-IL-2Rgammac−/−mice without affecting peripheral T cell homeostasis. J Immunol. 2009;183(12):7645–55.

    Article  PubMed  Google Scholar 

  30. O’Connell RM, Balazs AB, Rao DS, Kivork C, Yang L, Baltimore D. Lentiviral vector delivery of human interleukin-7 (hIL-7) to human immune system (HIS) mice expands T lymphocyte populations. PLoS One. 2010;5(8):e12009.

    Article  PubMed  Google Scholar 

  31. Griffin DO, Holodick NE, Rothstein TL. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20 + CD27 + CD43 + CD70. J Exp Med. 2011;208(1):67–80.

    Article  PubMed  CAS  Google Scholar 

  32. Hardy RR, Hayakawa K. B cell development pathways. Annu Rev Immunol. 2001;19:595–621.

    Article  PubMed  CAS  Google Scholar 

  33. Tornberg UC, Holmberg D. B-1a, B-1b and B-2 B cells display unique VHDJH repertoires formed at different stages of ontogeny and under different selection pressures. EMBO J. 1995;14(8):1680–9.

    PubMed  CAS  Google Scholar 

  34. Martin F, Kearney JF. B-cell subsets and the mature preimmune repertoire. Marginal zone and B1 B cells as part of a “natural immune memory”. Immunol Rev. 2000;175:70–9.

    Article  PubMed  CAS  Google Scholar 

  35. Jeong HD, Teale JM. Comparison of the fetal and adult functional B cell repertoires by analysis of VH gene family expression. J Exp Med. 1988;168(2):589–603.

    Article  PubMed  CAS  Google Scholar 

  36. Malynn BA, Yancopoulos GD, Barth JE, Bona CA, Alt FW. Biased expression of JH-proximal VH genes occurs in the newly generated repertoire of neonatal and adult mice. J Exp Med. 1990;171(3):843–59.

    Article  PubMed  CAS  Google Scholar 

  37. Cyster JG. Lymphoid organ development and cell migration. Immunol Rev. 2003;195:5–14.

    Article  PubMed  CAS  Google Scholar 

  38. Germain RN. The art of the probable: system control in the adaptive immune system. Science. 2001;293(5528):240–5.

    Article  PubMed  CAS  Google Scholar 

  39. Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol. 2005;5(8):606–16.

    Article  PubMed  CAS  Google Scholar 

  40. Vondenhoff MF, Kraal G, Mebius RE. Lymphoid organogenesis in brief. Eur J Immunol. 2007;37(Suppl 1):S46–52.

    Article  PubMed  CAS  Google Scholar 

  41. Ruddle NH, Akirav EM. Secondary lymphoid organs: responding to genetic and environmental cues in ontogeny and the immune response. J Immunol. 2009;183(4):2205–12.

    Article  PubMed  CAS  Google Scholar 

  42. Ngo VN, Cornall RJ, Cyster JG. Splenic T zone development is B cell dependent. J Exp Med. 2001;194(11):1649–60.

    Article  PubMed  CAS  Google Scholar 

  43. Koni PA, Sacca R, Lawton P, Browning JL, Ruddle NH, Flavell RA. Distinct roles in lymphoid organogenesis for lymphotoxins alpha and beta revealed in lymphotoxin beta-deficient mice. Immunity. 1997;6(4):491–500.

    Article  PubMed  CAS  Google Scholar 

  44. Ansel KM, Ngo VN, Hyman PL, Luther SA, Forster R, Sedgwick JD, Browning JL, Lipp M, Cyster JG. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature. 2000;406(6793):309–14.

    Article  PubMed  CAS  Google Scholar 

  45. Forster R, Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell. 1996;87(6):1037–47.

    Article  PubMed  CAS  Google Scholar 

  46. Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G, Watanabe T, Akashi K, Shultz LD, Harada M. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor gamma chain(null) mice. Blood. 2005;106(5):1565–73.

    Article  PubMed  CAS  Google Scholar 

  47. Monroe JG, Bannish G, Fuentes-Panana EM, King LB, Sandel PC, Chung J, Sater R. Positive and negative selection during B lymphocyte development. Immunol Res. 2003;27(2–3):427–42.

    Article  PubMed  CAS  Google Scholar 

  48. Cambier JC, Gauld SB, Merrell KT, Vilen BJ. B-cell anergy: from transgenic models to naturally occurring anergic B cells? Nat Rev Immunol. 2007;7(8):633–43.

    Article  PubMed  CAS  Google Scholar 

  49. Andrews SF, Wilson PC. The anergic B cell. Blood. 2010;115(24):4976–8.

    Article  PubMed  CAS  Google Scholar 

  50. Danner R, Chaudhari SN, Rosenberger J, Surls J, Richie TL, Brumeanu TD, Casares S. Expression of HLA class II molecules in humanized NOD.Rag1KO.IL2RgcKO mice is critical for development and function of human T and B cells. PLoS One. 2011;6(5):e19826.

    Article  PubMed  CAS  Google Scholar 

  51. Szakal AK, Kapasi ZF, Haley ST, Tew JG. A theory of follicular dendritic cell origin. Curr Top Microbiol Immunol. 1995;201:1–13.

    Article  PubMed  CAS  Google Scholar 

  52. Gommerman JL, Mackay F, Donskoy E, Meier W, Martin P, Browning JL. Manipulation of lymphoid microenvironments in nonhuman primates by an inhibitor of the lymphotoxin pathway. J Clin Invest. 2002;110(9):1359–69.

    PubMed  CAS  Google Scholar 

  53. Mackay F, Browning JL. Turning off follicular dendritic cells. Nature. 1998;395(6697):26–7.

    Article  PubMed  CAS  Google Scholar 

  54. Alugupalli KR, Gerstein RM, Chen J, Szomolanyi-Tsuda E, Woodland RT, Leong JM. The resolution of relapsing fever borreliosis requires IgM and is concurrent with expansion of B1b lymphocytes. J Immunol. 2003;170(7):3819–27.

    PubMed  CAS  Google Scholar 

  55. Alugupalli KR, Michelson AD, Joris I, Schwan TG, Hodivala-Dilke K, Hynes RO, Leong JM. Spirochete-platelet attachment and thrombocytopenia in murine relapsing fever borreliosis. Blood. 2003;102(8):2843–50.

    Article  PubMed  CAS  Google Scholar 

  56. Barbour AG. Antigenic variation of a relapsing fever Borrelia species. Annu Rev Microbiol. 1990;44:155–71.

    Article  PubMed  CAS  Google Scholar 

  57. Barbour AG, Bundoc V. In vitro and in vivo neutralization of the relapsing fever agent Borrelia hermsii with serotype-specific immunoglobulin M antibodies. Infect Immun. 2001;69(2):1009–15.

    Article  PubMed  CAS  Google Scholar 

  58. Barbour AG, Bundoc V. In vitro and in vivo neutralization of the relapsing fever agent Borrelia hermsii with serotype-specific immunoglobulin M antibodies. Infect Immun. 2001;69:1009–15.

    Article  PubMed  CAS  Google Scholar 

  59. Alugupalli KR, Gerstein RM, Chen J, Szomolanyi-Tsuda E, Woodland RT, Leong JM. The resolution of relapsing fever Borreliosis requires IgM and is concurrent with expansion of B1b lymphocytes. J Immunol. 2003;170:3819–27.

    PubMed  CAS  Google Scholar 

  60. Alugupalli KR, Leong JM, Woodland RT, Muramatsu M, Honjo T, Gerstein RM. B1b Lymphocytes confer T cell-independent long-lasting immunity. Immunity. 2004;21:379–90.

    Article  PubMed  CAS  Google Scholar 

  61. Connolly SE, Benach JL. The versatile roles of antibodies in Borrelia infections. Nat Rev Microbiol. 2005;3(5):411–20.

    Article  PubMed  CAS  Google Scholar 

  62. Martin F, Kearney JF. B1 cells: similarities and differences with other B cell subsets. Curr Opin Immunol. 2001;13:195–201.

    Article  PubMed  CAS  Google Scholar 

  63. Alugupalli KR. A distinct role for B1b lymphocytes in T cell-independent immunity. Curr Top Microbiol Immunol. 2008;319:105–30.

    Article  PubMed  CAS  Google Scholar 

  64. Martin F, Oliver AM, Kearney JF. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity. 2001;14(5):617–29.

    Article  PubMed  CAS  Google Scholar 

  65. Vos Q, Lees A, Wu ZQ, Snapper CM, Mond JJ. B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunol Rev. 2000;176:154–70.

    Article  PubMed  CAS  Google Scholar 

  66. Gonzalez-Fernandez A, Faro J, Fernandez C. Immune responses to polysaccharides: lessons from humans and mice. Vaccine. 2008;26(3):292–300.

    Article  PubMed  CAS  Google Scholar 

  67. Landers CD, Chelvarajan RL, Bondada S. The role of B cells and accessory cells in the neonatal response to TI-2 antigens. Immunol Res. 2005;31(1):25–36.

    Article  PubMed  CAS  Google Scholar 

  68. Dickinson GS, Piccone H, Sun G, Lien E, Gatto L, Alugupalli KR. Toll-like receptor 2 deficiency results in impaired antibody responses and septic shock during Borrelia hermsii infection. Infect Immun. 2010;78(11):4579–88.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jason Baxter and the Department of Obstetrics and Gynecology for umbilical cord blood, Scot Fenn for technical assistance, Dr. Kishore Alugupalli for help with the Borrelia hermsii and polysaccharide antigen studies, and all other members of the Manser laboratory for indirect contributions to this work. This study was supported by a Pilot Grant to T.M. that is part of an Autoimmunity Center of Excellence Award (U19 AI056363-14, Dr. Mohammed Rostami, PI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Manser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vuyyuru, R., Patton, J. & Manser, T. Human immune system mice: current potential and limitations for translational research on human antibody responses. Immunol Res 51, 257–266 (2011). https://doi.org/10.1007/s12026-011-8243-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-011-8243-9

Keywords

Navigation