Skip to main content

Human B-Cell Development in a Mouse Environment

  • Chapter
  • First Online:
Humanized Mice for HIV Research
  • 945 Accesses

Abstract

B lymphocytes are the source of pathogen-specific and neutralizing antibodies (Abs), and they also regulate the development of lymphoid tissue and the activity of T cells and other hematopoietic cell types. Hematopoietic humanized mice (hu-mice) represent a relevant experimental tool to explore basic and translational mechanisms of human B-cell development, B-cell activation, and B-cell function. These animals readily generate human B cells in high proportion relative to other hematopoietic lineages. All stages of B-cell maturation can be found in hu-mice, including naïve, activated, IgM memory, and class-switched B cells, and furthermore these mice produce significant amounts of secreted immunoglobulin. However, the majority of B cells only progress to the immature/transitional stage suggesting that only some of the factors necessary for human B-cell maturation are present and functional in the mouse environment. Thus, in addition to providing a model for understanding human B-cell responses to infections and vaccines and for testing B-cell-specific therapies, the hu-mouse also affords a great opportunity to learn which cell types and molecules are critical for B-cell maturation and function. Here, we review the kinetics, characteristics, and limitations of human B-cell development in hu-mice and summarize what these uniquely translational animal models have taught us about human B-cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burton DR, Ahmed R, Barouch DH, Butera ST, Crotty S, Godzik A, et al. A blueprint for HIV vaccine discovery. Cell Host Microbe. 2012;12(4):396–407.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Kwong PD, Mascola JR. Human antibodies that neutralize HIV-1: identification, structures, and B cell ontogenies. Immunity. 2012;37(3):412–25.

    Article  CAS  PubMed  Google Scholar 

  3. Corti D, Lanzavecchia A. Broadly neutralizing antiviral antibodies. Annu Rev Immunol. 2013;31:705–42.

    Article  CAS  PubMed  Google Scholar 

  4. Choi B, Chun E, Kim M, Kim ST, Yoon K, Lee KY, et al. Human B cell development and antibody production in humanized NOD/SCID/IL-2Rgamma(null) (NSG) mice conditioned by busulfan. J Clin Immunol. 2011;31(2):253–64.

    Article  CAS  PubMed  Google Scholar 

  5. Gimeno R, Weijer K, Voordouw A, Uittenbogaart CH, Legrand N, Alves NL, et al. Monitoring the effect of gene silencing by RNA interference in human CD34+ cells injected into newborn RAG2/ gammac/ mice: functional inactivation of p53 in developing T cells. Blood. 2004;104(13):3886–93.

    Article  CAS  PubMed  Google Scholar 

  6. Hiramatsu H, Nishikomori R, Heike T, Ito M, Kobayashi K, Katamura K, et al. Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/gammacnull mice model. Blood. 2003;102(3):873–80.

    Article  CAS  PubMed  Google Scholar 

  7. Lang J, Kelly M, Freed BM, McCarter MD, Kedl RM, Torres RM, et al. Studies of lymphocyte reconstitution in a humanized mouse model reveal a requirement of T cells for human B cell maturation. J Immunol. 2013;190(5):2090–101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Watanabe Y, Takahashi T, Okajima A, Shiokawa M, Ishii N, Katano I, et al. The analysis of the functions of human B and T cells in humanized NOD/shi-scid/gammac(null) (NOG) mice (hu-HSC NOG mice). Int Immunol. 2009;21(7):843–58.

    Article  CAS  PubMed  Google Scholar 

  9. Matsumura T, Kametani Y, Ando K, Hirano Y, Katano I, Ito R, et al. Functional CD5+ B cells develop predominantly in the spleen of NOD/SCID/gammac(null) (NOG) mice transplanted either with human umbilical cord blood, bone marrow, or mobilized peripheral blood CD34+ cells. Exp Hematol. 2003;31(9):789–97.

    Article  PubMed  Google Scholar 

  10. Perez-Andres M, Paiva B, Nieto WG, Caraux A, Schmitz A, Almeida J, et al. Human peripheral blood B-cell compartments: a crossroad in B-cell traffic. Cytometry B Clin Cytom. 2010;78(Suppl 1):S47–60.

    Article  PubMed  Google Scholar 

  11. Blom B, Spits H. Development of human lymphoid cells. Annu Rev Immunol. 2006;24:287–320.

    Article  CAS  PubMed  Google Scholar 

  12. Carsetti R, Rosado MM, Wardmann H. Peripheral development of B cells in mouse and man. Immunol Rev. 2004;197:179–91.

    Article  PubMed  Google Scholar 

  13. Cuss AK, Avery DT, Cannons JL, Yu LJ, Nichols KE, Shaw PJ, et al. Expansion of functionally immature transitional B cells is associated with human-immunodeficient states characterized by impaired humoral immunity. J Immunol. 2006;176(3):1506–16.

    Article  CAS  PubMed  Google Scholar 

  14. Sims GP, Ettinger R, Shirota Y, Yarboro CH, Illei GG, Lipsky PE. Identification and characterization of circulating human transitional B cells. Blood. 2005;105(11):4390–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Lee J, Kuchen S, Fischer R, Chang S, Lipsky PE. Identification and characterization of a human CD5 + pre-naive B cell population. J Immunol. 2009;182(7):4116–26.

    Article  CAS  PubMed  Google Scholar 

  16. Hoffkes HG, Schmidtke G, Schmucker U, Uppenkamp M, Brittinger G. Immunophenotyping of B lymphocytes by multiparametric flow cytometry in bone marrow aspirates of healthy adults. Ann Hematol. 1995;71(3):123–8.

    Article  CAS  PubMed  Google Scholar 

  17. Veneri D, Ortolani R, Franchini M, Tridente G, Pizzolo G, Vella A. Expression of CD27 and CD23 on peripheral blood B lymphocytes in humans of different ages. Blood Transfus. 2009;7(1):29–34.

    PubMed Central  PubMed  Google Scholar 

  18. Palanichamy A, Barnard J, Zheng B, Owen T, Quach T, Wei C, et al. Novel human transitional B cell populations revealed by B cell depletion therapy. J Immunol. 2009;182(10):5982–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Caraux A, Klein B, Paiva B, Bret C, Schmitz A, Fuhler GM, et al. Circulating human B and plasma cells. Age-associated changes in counts and detailed characterization of circulating normal CD138- and CD138 + plasma cells. Haematologica. 2010;95(6):1016–20.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Lang J, Weiss N, Freed BM, Torres RM, Pelanda R. Generation of hematopoietic humanized mice in the newborn BALB/c-Rag2null Il2rgammanull mouse model: a multivariable optimization approach. Clin Immunol. 2011;140(1):102–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Pelanda R, Torres RM. Central B-cell tolerance: where selection begins. Cold Spring Harb Perspect Biol. 2012;4(4):a007146.

    Article  Google Scholar 

  22. Shlomchik MJ. Activating systemic autoimmunity: B’s, T’s, and tolls. Curr Opin Immunol. 2009;21(6):626–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Meffre E, Wardemann H. B-cell tolerance checkpoints in health and autoimmunity. Curr Opin Immunol. 2008;20(6):632–8.

    Article  CAS  PubMed  Google Scholar 

  24. Chang H, Biswas S, Tallarico AS, Sarkis PT, Geng S, Panditrao MM, et al. Human B-cell ontogeny in humanized NOD/SCID gammac(null) mice generates a diverse yet auto/poly- and HIV-1-reactive antibody repertoire. Genes Immun. 2012;13(5):399–410.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Ippolito GC, Hoi KH, Reddy ST, Carroll SM, Ge X, Rogosch T, et al. Antibody repertoires in humanized NOD-scid-IL2Rgamma(null) mice and human B cells reveals human-like diversification and tolerance checkpoints in the mouse. PLoS ONE. 2012;7(4):e35497.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B cell precursors. Science. 2003;301(5638):1374–7.

    Article  CAS  PubMed  Google Scholar 

  27. Vuyyuru R, Patton J, Manser T. Human immune system mice: current potential and limitations for translational research on human antibody responses. Immunol Res. 2011;51(2–3):257–66.

    Article  CAS  PubMed  Google Scholar 

  28. Kim M, Choi B, Kim SY, Yang JH, Roh CR, Lee KY, et al. Co-transplantation of fetal bone tissue facilitates the development and reconstitution in human B cells in humanized NOD/SCID/IL-2Rgammanull (NSG) mice. J Clin Immunol. 2011;31(4):699–709.

    Article  PubMed  Google Scholar 

  29. Biswas S, Chang H, Sarkis PT, Fikrig E, Zhu Q, Marasco WA. Humoral immune responses in humanized BLT mice immunized with West Nile virus and HIV-1 envelope proteins are largely mediated via human CD5 + B cells. Immunology. 2011;134(4):419–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Wang X, Qi Z, Wei H, Tian Z, Sun R. Characterization of human B cells in umbilical cord blood-transplanted NOD/SCID mice. Transpl Immunol. 2012;26(2–3):156–62.

    Article  CAS  PubMed  Google Scholar 

  31. Strowig T, Rongvaux A, Rathinam C, Takizawa H, Borsotti C, Philbrick W, et al. Transgenic expression of human signal regulatory protein alpha in Rag2/gamma(c)/ mice improves engraftment of human hematopoietic cells in humanized mice. Proc Natl Acad Sci U S A. 2011;108(32):13218–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Brehm MA, Cuthbert A, Yang C, Miller DM, DiIorio P, Laning J, et al. Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rgamma(null) mutation. Clin Immunol. 2010;135(1):84–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Lepus CM, Gibson TF, Gerber SA, Kawikova I, Szczepanik M, Hossain J, et al. Comparison of human fetal liver, umbilical cord blood, and adult blood hematopoietic stem cell engraftment in NOD-scid/gammac/, Balb/c-Rag1/gammac/, and C.B-17-scid/bg immunodeficient mice. Hum Immunol. 2009;70(10):790–802.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Ito M, Kobayashi K, Nakahata T. NOD/Shi-scid IL2rgamma(null) (NOG) mice more appropriate for humanized mouse models. Curr Top Microbiol Immunol. 2008;324:53–76.

    CAS  PubMed  Google Scholar 

  35. Giassi LJ, Pearson T, Shultz LD, Laning J, Biber K, Kraus M, et al. Expanded CD34 + human umbilical cord blood cells generate multiple lymphohematopoietic lineages in NOD-scid IL2rgamma(null) mice. Exp Biol Med (Maywood). 2008;233(8):997–1012.

    Article  CAS  Google Scholar 

  36. Rongvaux A, Willinger T, Takizawa H, Rathinam C, Auerbach W, Murphy AJ, et al. Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proc Natl Acad Sci U S A. 2011;108(6):2378–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Willinger T, Rongvaux A, Strowig T, Manz MG, Flavell RA. Improving human hemato-lymphoid-system mice by cytokine knock-in gene replacement. Trends Immunol. 2011;32(7):321–7.

    Article  CAS  PubMed  Google Scholar 

  38. Rathinam C, Poueymirou WT, Rojas J, Murphy AJ, Valenzuela DM, Yancopoulos GD, et al. Efficient differentiation and function of human macrophages in humanized CSF-1 mice. Blood. 2011;118(11):3119–28.

    Article  CAS  PubMed  Google Scholar 

  39. van Lent AU, Dontje W, Nagasawa M, Siamari R, Bakker AQ, Pouw SM, et al. IL-7 enhances thymic human T cell development in “human immune system” Rag2/IL-2Rgammac/ mice without affecting peripheral T cell homeostasis. J Immunol. 2009;183(12):7645–55.

    Article  PubMed  Google Scholar 

  40. Mackay F, Figgett WA, Saulep D, Lepage M, Hibbs ML. B-cell stage and context-dependent requirements for survival signals from BAFF and the B-cell receptor. Immunol Rev. 2010;237(1):205–25.

    Article  CAS  PubMed  Google Scholar 

  41. Mackay F, Browning JL. BAFF: a fundamental survival factor for B cells. Nat Rev Immunol. 2002;2(7):465–75.

    Article  CAS  PubMed  Google Scholar 

  42. Rowland SL, Leahy KF, Halverson R, Torres RM, Pelanda R. BAFF receptor signaling aids the differentiation of immature B cells into transitional B cells following tonic BCR signaling. J Immunol. 2010;185(8):4570–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Schmidt MR, Appel MC, Giassi LJ, Greiner DL, Shultz LD, Woodland RT. Human BLyS facilitates engraftment of human PBL derived B cells in immunodeficient mice. PLoS ONE. 2008;3(9):e3192.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science. 2004;304(5667):104–7.

    Article  CAS  PubMed  Google Scholar 

  45. Gorantla S, Sneller H, Walters L, Sharp JG, Pirruccello SJ, West JT, et al. Human immunodeficiency virus type 1 pathobiology studied in humanized BALB/c-Rag2/gammac/ mice. J Virol. 2007;81(6):2700–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Small TN, Keever C, Collins N, Dupont B, O’Reilly RJ, Flomenberg N. Characterization of B cells in severe combined immunodeficiency disease. Hum Immunol. 1989;25(3):181–93.

    Article  CAS  PubMed  Google Scholar 

  47. Roifman CM, Zhang J, Chitayat D, Sharfe N. A partial deficiency of interleukin-7R alpha is sufficient to abrogate T-cell development and cause severe combined immunodeficiency. Blood. 2000;96(8):2803–7.

    CAS  PubMed  Google Scholar 

  48. Chen Q, He F, Kwang J, Chan JK, Chen J. GM-CSF and IL-4 stimulate antibody responses in humanized mice by promoting T, B, and dendritic cell maturation. J Immunol. 2012;189(11):5223–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Bunin N, Small T, Szabolcs P, Baker KS, Pulsipher MA, Torgerson T. NCI, NHLBI/PBMTC first international conference on late effects after pediatric hematopoietic cell transplantation: persistent immune deficiency in pediatric transplant survivors. Biol Blood Marrow Transplant. 2012;18(1):6–15.

    Google Scholar 

  50. Chiesa R, Gilmour K, Qasim W, Adams S, Worth AJ, Zhan H, et al. Omission of in vivo T-cell depletion promotes rapid expansion of naive CD4+ cord blood lymphocytes and restores adaptive immunity within 2 months after unrelated cord blood transplant. Br J Haematol. 2012;156(5):656–66.

    Article  CAS  PubMed  Google Scholar 

  51. Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007;7(2):118–30.

    Article  CAS  PubMed  Google Scholar 

  52. Legrand N, Weijer K, Spits H. Experimental models to study development and function of the human immune system in vivo. J Immunol. 2006;176(4):2053–8.

    Article  CAS  PubMed  Google Scholar 

  53. Danner R, Chaudhari SN, Rosenberger J, Surls J, Richie TL, Brumeanu TD, et al. Expression of HLA class II molecules in humanized NOD. Rag1KO.IL2RgcKO mice is critical for development and function of human T and B cells. PLoS ONE. 2011;6(5):e19826.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Tonomura N, Habiro K, Shimizu A, Sykes M, Yang YG. Antigen-specific human T-cell responses and T cell-dependent production of human antibodies in a humanized mouse model. Blood. 2008;111(8):4293–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Kalscheuer H, Danzl N, Onoe T, Faust T, Winchester R, Goland R, et al. A model for personalized in vivo analysis of human immune responsiveness. Sci Transl Med. 2012;4(125):125ra30.

    Article  Google Scholar 

  56. Becker PD, Legrand N, van Geelen CM, Noerder M, Huntington ND, Lim A, et al. Generation of human antigen-specific monoclonal IgM antibodies using vaccinated “human immune system” mice. PLoS ONE. 2010;5(10):e13137.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Sato K, Misawa N, Nie C, Satou Y, Iwakiri D, Matsuoka M, et al. A novel animal model of Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in humanized mice. Blood. 2011;117(21):5663–73.

    Article  CAS  PubMed  Google Scholar 

  58. Wahl A, Linnstaedt SD, Esoda C, Krisko JF, Martinez-Torres F, Delecluse HJ, et al. A cluster of virus-encoded microRNAs accelerates acute systemic Epstein-Barr virus infection but does not significantly enhance virus-induced oncogenesis in vivo. J Virol. 2013;87(10):5437–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. White RE, Ramer PC, Naresh KN, Meixlsperger S, Pinaud L, Rooney C, et al. EBNA3B-deficient EBV promotes B cell lymphomagenesis in humanized mice and is found in human tumors. J Clin Invest. 2012;122(4):1487–502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Akkina R. Human immune responses and potential for vaccine assessment in humanized mice. Curr Opin Immunol. 2013;25(3):403–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Hur EM, Patel SN, Shimizu S, Rao DS, Gnanapragasam PN, An DS, et al. Inhibitory effect of HIV-specific neutralizing IgA on mucosal transmission of HIV in humanized mice. Blood. 2012;120(23):4571–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Glorius P, Baerenwaldt A, Kellner C, Staudinger M, Dechant M, Stauch M, et al. The novel tribody [(CD20)(2)xCD16] efficiently triggers effector cell-mediated lysis of malignant B cells. Leukemia. 2013;27(1):190–201.

    Article  CAS  PubMed  Google Scholar 

  63. Heider KH, Kiefer K, Zenz T, Volden M, Stilgenbauer S, Ostermann E, et al. A novel Fc-engineered monoclonal antibody to CD37 with enhanced ADCC and high proapoptotic activity for treatment of B-cell malignancies. Blood. 2011;118(15):4159–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Pelanda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lang, J., Pelanda, R. (2014). Human B-Cell Development in a Mouse Environment. In: Poluektova, L., Garcia, J., Koyanagi, Y., Manz, M., Tager, A. (eds) Humanized Mice for HIV Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1655-9_12

Download citation

Publish with us

Policies and ethics