Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 319))

Abstract

Pathogenesis of infectious disease is not only determined by the virulence of the microbe but also by the immune status of the host. Vaccination is the most effective means to control infectious diseases. A hallmark of the adaptive immune system is the generation of B cell memory, which provides a long-lasting protective antibody response that is central to the concept of vaccination. Recent studies revealed a distinct function for B1b lymphocytes, a minor subset of mature B cells that closely resembles that of memory B cells in a number of aspects. In contrast to the development of conventional B cell memory, which requires the formation of germinal centers and T cells, the development of B1b cell-mediated long-lasting antibody responses occurs independent of T cell help. T cell-independent (TI) antigens are important virulence factors expressed by a number of bacterial pathogens, including those associated with biological threats. TI antigens cannot be processed and presented to T cells and therefore are known to possess restricted T cell-dependent (TD) immunogenicity. Nevertheless, specific recognition of TI antigens by B1b cells and the highly protective antibody responses mounted by them clearly indicate a crucial role for this subset of B cells. Understanding the mechanisms of long-term immunity conferred by B1b cells may lead to improved vaccine efficacy for a variety of TI antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AID:

Activation-induced cytidinedeaminase

BCR:

B cell antigen receptor

Btk:

Bruton’s tyrosine kinase

CSR:

Class switch-recombination

FO:

Follicular

LPS:

Lipopolysaccharide

NP:

4-Hydroxy-3-Nitrophenyl-Acetyl

PerC:

Peritoneal cavity

PS:

Polysaccharide

Rag1:

Recombination-activating gene 1

SHM:

Somatic hypermutation

TD:

T cell-dependent

TI:

T cell-independent

TI-1:

T cell-independent type 1

TI-2:

T cell-independent type 2

TLR:

Toll-like receptor

Xid:

X-linked immunodeficiency

XLA:

X-linked agammaglobulinemia

References

  • Alugupalli KR, Michelson AD, Barnard MR, Leong JM (2001a) Serial determinations of platelet counts in mice by flow cytometry. Thromb Haemost 86:668–671.

    PubMed  CAS  Google Scholar 

  • Alugupalli KR, Michelson AD, Barnard MR, Robbins D, Coburn J, Baker EK, Ginsberg MH, Schwan TG, Leong JM (2001b) Platelet activation by a relapsing fever spirochete results in enhanced bacterium-platelet interaction via integrin tIIbI3 activation. Mol Microbiol 39:330–340.

    PubMed  CAS  Google Scholar 

  • Alugupalli KR, Gerstein RM, Chen J, Szomolanyi-Tsuda E, Woodland RT, Leong JM (2003a) The resolution of relapsing fever Borreliosis requires IgM and is concurrent with expansion of B1b lymphocytes. J Immunol 170:3819–3827.

    PubMed  CAS  Google Scholar 

  • Alugupalli KR, Michelson AD, Joris I, Schwan TG, Hodivala-Dilke K, Hynes RO, Leong JM (2003b) Spirochete-platelet attachment and thrombocytopenia in murine relapsing fever borreliosis. Blood 102:2843–2850.

    PubMed  CAS  Google Scholar 

  • Alugupalli KR, Leong JM, Woodland RT, Muramatsu M, Honjo T, Gerstein RM (2004) B1b Lymphocytes confer T cell-independent long-lasting immunity. Immunity 21:379–390.

    PubMed  CAS  Google Scholar 

  • Alugupalli KR, Akira S, Lien E, Leong JM (2007) MyD88- and Bruton’s tyrosine kinase-mediated signals are essential for T cell-independent pathogen-specific IgM responses. J Immunol 178:3740–3749.

    PubMed  CAS  Google Scholar 

  • Amsbaugh DF, Hansen CT, Prescott B, Stashak PW, Barthold DR, Baker PJ (1972) Genetic control of the antibody response to type 3 pneumococcal polysaccharide in mice. I. Evidence that an X-linked gene plays a decisive role in determining responsiveness. J Exp Med 136:931–949.

    PubMed  CAS  Google Scholar 

  • Andersson J, Sjoberg O, Moller G (1972) Induction of immunoglobulin and antibody synthesis in vitro by lipopolysaccharides. Eur J Immunol 2:349–353.

    PubMed  CAS  Google Scholar 

  • Ansel KM, Harris RB, Cyster JG (2002) CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunity 16:67–76.

    PubMed  CAS  Google Scholar 

  • Arimitsu Y, Akama K (1973) Characterization of protective antibodies produced in mice infected with Borrelia duttonii. Jpn J Med Sci Biol 26:229–237.

    PubMed  CAS  Google Scholar 

  • Balasz M, Martin F, Zhou T, Kearney JF (2002) Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity 17:341–352.

    Google Scholar 

  • Barbour AG (1990) Antigenic variation of a relapsing feverBorrelia species. Annu Rev Microbiol 44:155–171.

    PubMed  CAS  Google Scholar 

  • Barbour AG, Bundoc V (2001) In vitro and in vivo neutralization of the relapsing fever agentBorrelia hermsii with serotype-specific immunoglobulin M antibodies. Infect Immun 69:1009–1015.

    PubMed  CAS  Google Scholar 

  • Belperron AA, Dailey CM, Bockenstedt LK (2005) Infection-induced marginal zone B cell production ofBorrelia hermsii-specific antibody is impaired in the absence of CD1d. J Immunol 174:5681–5686.

    PubMed  CAS  Google Scholar 

  • Berland R, Wortis HH (2002) Origins and functions of B-1 cells with notes on the role of CD5. Annu Rev Immunol 20:253–300.

    PubMed  CAS  Google Scholar 

  • Bernasconi NL, Traggiai E, Lanzavecchia A (2002) Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298:2199–2202.

    PubMed  CAS  Google Scholar 

  • Boes M (2000) Role of natural and immune IgM antibodies in immune responses. Mol Immunol 37:1141–1149.

    PubMed  CAS  Google Scholar 

  • Bondada S, Wu H, Robertson DA, Chelvarajan RL (2000) Accessory cell defect in unresponsiveness of neonates and aged to polysaccharide vaccines. Vaccine 19:557–565.

    PubMed  CAS  Google Scholar 

  • Breukels MA, Zandvoort A, Rijkers GT, Lodewijk ME, Klok PA, Harms G, Timens W (2005) Complement dependency of splenic localization of pneumococcal polysaccharide and conjugate vaccines. Scand J Immunol 61:322–328.

    PubMed  CAS  Google Scholar 

  • Briles DE, Nahm M, Schroer K, Davie J, Baker P, Kearney J, Barletta R (1981) Anti-phosphocholine antibodies found in normal mouse serum are protective against intravenous infection with type 3 Streptococcus pneumoniae. J Exp Med 153:694–705.

    PubMed  CAS  Google Scholar 

  • Cabatingan MS, Schmidt MR, Sen R, Woodland RT (2002) Naive B lymphocytes undergo homeostatic proliferation in response to B cell deficit. J Immunol 169:6795–6805.

    PubMed  CAS  Google Scholar 

  • Cadavid D, Thomas DD, Crawley R, Barbour AG (1994) Variability of a bacterial surface protein and disease expression in a possible mouse model of systemic Lyme borreliosis. J Exp Med 179:631–642.

    PubMed  CAS  Google Scholar 

  • Carter RH, Fearon DT (1989) Polymeric C3dg primes human B lymphocytes for proliferation induced by anti-IgM. J Immunol 143:1755–1760.

    PubMed  CAS  Google Scholar 

  • Carter RH, Spycher MO, Ng YC, Hoffman R, Fearon DT (1988) Synergistic interaction between complement receptor type 2 and membrane IgM on B lymphocytes. J Immunol 141:457–463.

    PubMed  CAS  Google Scholar 

  • Carvalho TL, Mota-Santos T, Cumano A, Demengeot J, Vieira P (2001) Arrested B lymphopoiesis and persistence of activated B cells in adult interleukin 7–/– mice. J Exp Med 194:1141–1150.

    PubMed  CAS  Google Scholar 

  • Chelvarajan RL, Gilbert NL, Bondada S (1998) Neonatal murine B lymphocytes respond to polysaccharide antigens in the presence of IL-1 and IL-6. J Immunol 161:3315–3324.

    PubMed  CAS  Google Scholar 

  • Chelvarajan RL, Raithatha R, Venkataraman C, Kaul R, Han SS, Robertson DA, Bondada S (1999) CpG oligodeoxynucleotides overcome the unresponsiveness of neonatal B cells to stimulation with the thymus-independent stimuli anti-IgM and TNP-Ficoll. Eur J Immunol 29:2808–2818.

    PubMed  CAS  Google Scholar 

  • Chelvarajan RL, Collins SM, Doubinskaia IE, Goes S, Van Willigen J, Flanagan D, De Villiers WJ, Bryson JS, Bondada S (2004) Defective macrophage function in neonates and its impact on unresponsiveness of neonates to polysaccharide antigens. J Leukoc Biol 75:982–994.

    PubMed  CAS  Google Scholar 

  • Chelvarajan RL, Collins SM, Van Willigen JM, Bondada S (2005) The unresponsiveness of aged mice to polysaccharide antigens is a result of a defect in macrophage function. J Leukoc Biol 77:503–512.

    PubMed  CAS  Google Scholar 

  • Chelvarajan RL, Liu Y, Popa D, Getchell ML, Getchell TV, Stromberg AJ, Bondada S (2006) Molecular basis of age-associated cytokine dysregulation in LPS-stimulated macrophages. J Leukoc Biol 79:1314–1327.

    PubMed  CAS  Google Scholar 

  • Chinen J, Shearer WT (2002) Molecular virology and immunology of HIV infection. J Allergy Clin Immunol 110:189–198.

    PubMed  CAS  Google Scholar 

  • Chong Y, Ikematsu H, Kikuchi K, Yamamoto M, Murata M, Nishimura M, Nabeshima S, Kashiwagi S, Hayashi J (2004) Selective CD27+ (memory) B cell reduction and characteristic B cell alteration in drug-naive and HAART-treated HIV type 1-infected patients. AIDS Res Hum Retroviruses 20:219–226.

    PubMed  Google Scholar 

  • Connolly SE, Benach JL (2001) The spirochetemia of murine relapsing fever is cleared by complement-independent bactericidal antibodies. J Immunol 167:3029–3032.

    PubMed  CAS  Google Scholar 

  • Connolly SE, Thanassi DG, Benach JL (2004) Generation of a complement-independent bactericidal IgM against a relapsing fever Borrelia. J Immunol 172:1191–1197.

    PubMed  CAS  Google Scholar 

  • Corley RB, Morehouse EM, Ferguson AR (2005) IgM accelerates affinity maturation. Scand J Immunol 62 [Suppl 1]:55–61.

    PubMed  CAS  Google Scholar 

  • Couderc J, Fevrier M, Duquenne C, Sourbier P, Liacopoulos P (1987) Xid mouse lymphocytes respond to TI-2 antigens when co-stimulated by TI-1 antigens or lymphokines. Immunology 61:71–76.

    PubMed  CAS  Google Scholar 

  • de Vinuesa CG, Cook MC, Ball J, Drew M, Sunners Y, Cascalho M, Wabl M, Klaus GG, MacLennan IC (2000) Germinal centers without T cells. J Exp Med 191:485–494.

    PubMed  Google Scholar 

  • Dullforce P, Sutton DC, Heath AW (1998) Enhancement of T cell-independent immune responses in vivo by CD40 antibodies. Nat Med 4:88–91.

    PubMed  CAS  Google Scholar 

  • Ellmeier W, Jung S, Sunshine MJ, Hatam F, Xu Y, Baltimore D, Mano H, Littman DR (2000) Severe B cell deficiency in mice lacking the Tec kinase family members Tec and Btk. J Exp Med 192:1611–1624.

    PubMed  CAS  Google Scholar 

  • Fagarasan S, Honjo T (2000) T-Independent immune response: new aspects of B cell biology. Science 290:89–92.

    PubMed  CAS  Google Scholar 

  • Faili A, Aoufouchi S, Gueranger Q, Zober C, Leon A, Bertocci B, Weill JC, Reynaud CA (2002) AID-dependent somatic hypermutation occurs as a DNA single-strand event in the BL2 cell line. Nat Immunol 3:815–821.

    PubMed  CAS  Google Scholar 

  • Fehr T, Naim HY, Bachmann MF, Ochsenbein AF, Spielhofer P, Bucher E, Hengartner H, Billeter MA, Zinkernagel RM (1998) T-cell independent IgM and enduring protective IgG antibodies induced by chimeric measles viruses. Nat Med 4:945–948.

    PubMed  CAS  Google Scholar 

  • Feng SH, Stein KE (1991) VH gene family expression in mice with thexid defect. J Exp Med 174:45–51.

    PubMed  CAS  Google Scholar 

  • Fikrig E, Barthold SW, Chen M, Grewal IS, Craft J, Flavell RA (1996) Protective antibodies in murine Lyme disease arise independently of CD40 ligand. J Immunol 157:1–3.

    PubMed  CAS  Google Scholar 

  • Garcia-Monco JC, Miller NS, Backenson PB, Anda P, Benach JL (1997) A mouse model ofBorrelia meningitis after intradermal injection. J Infect Dis 175:1243–1245.

    PubMed  CAS  Google Scholar 

  • Gebbia JA, Monco JC, Degen JL, Bugge TH, Benach JL (1999) The plasminogen activation system enhances brain and heart invasion in murine relapsing fever borreliosis. J Clin Invest 103:81–87.

    PubMed  CAS  Google Scholar 

  • Guinamard R, Okigaki M, Schlessinger J, Ravetch JV (2000) Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nat Immunol 1:31–36.

    PubMed  CAS  Google Scholar 

  • Ha SA, Tsuji M, Suzuki K, Meek B, Yasuda N, Kaisho T, Fagarasan S (2006) Regulation of B1 cell migration by signals through Toll-like receptors. J Exp Med 203:2541–2550.

    PubMed  CAS  Google Scholar 

  • Haas KM, Poe JC, Steeber DA, Tedder TF (2005) B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity 23:7–18.

    PubMed  CAS  Google Scholar 

  • Hiernaux JR, Jones JM, Rudbach JA, Rollwagen F, Baker PJ (1983) Antibody response of immunodeficient (xid) CBA/N mice toEscherichia coli 0113 lipopolysaccharide, a thymus-independent antigen. J Exp Med 157:1197–1207.

    PubMed  CAS  Google Scholar 

  • Hopken UE, Achtman AH, Kruger K, Lipp M (2004) Distinct and overlapping roles of CXCR5 and CCR7 in B-1 cell homing and early immunity against bacterial pathogens. J Leukoc Biol 76:709–718.

    PubMed  Google Scholar 

  • Hsu MC, Toellner KM, Vinuesa CG, Maclennan IC (2006) B cell clones that sustain long-term plasmablast growth in T-independent extrafollicular antibody responses. Proc Natl Acad Sci U S A 103:5905–5910.

    PubMed  CAS  Google Scholar 

  • Janeway C, Travers P, Walport M, Shlomchik M (2004) Immunobiology: The immune system in health and disease, 6th edn. Garland Publishing, New York.

    Google Scholar 

  • Jefferies CA, O’Neill LA (2004) Bruton’s tyrosine kinase (Btk)–the critical tyrosine kinase in LPS signalling? Immunol Lett 92:15–22.

    PubMed  CAS  Google Scholar 

  • Jefferies CA, Doyle S, Brunner C, Dunne A, Brint E, Wietek C, Walch E, Wirth T, O’Neill LA (2003) Bruton’s tyrosine kinase is a Toll/interleukin-1 receptor domain-binding protein that participates in nuclear factor kappaB activation by Toll-like receptor 4. J Biol Chem 278:26258–26264.

    PubMed  CAS  Google Scholar 

  • Kantor AB, Stall AM, Adams S, Watanabe K, Herzenberg LA (1995) De novo development and self-replenishment of B cells. Int Immunol 7:55–68.

    PubMed  CAS  Google Scholar 

  • Kantor AB, Merrill CE, Herzenberg LA, Hillson JL (1997) An unbiased analysis of V(H)-D-J(H) sequences from B-1a B-1b, and conventional B cells. J Immunol 158:1175–1186.

    PubMed  CAS  Google Scholar 

  • Kawai T, Adachi O, Ogawa T, Takeda K, Akira S (1999) Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11:115–122.

    PubMed  CAS  Google Scholar 

  • Kelly DF, Moxon ER, Pollard AJ (2004)Haemophilus influenzae type b conjugate vaccines. Immunology 113:163–174.

    PubMed  CAS  Google Scholar 

  • Kelly DF, Pollard AJ, Moxon ER (2005) Immunological memory: the role of B cells in long-term protection against invasive bacterial pathogens. JAMA 294:3019–3023.

    PubMed  CAS  Google Scholar 

  • Khan WN, Alt FW, Gerstein RM, Malynn BA, Larsson I, Rathbun G, Davidson L, Muller S, Kantor AB, Herzenberg LA et al (1995) Defective B cell development and function in Btk-deficient mice. Immunity 3:283–299.

    PubMed  CAS  Google Scholar 

  • Khan WN, Nilsson A, Mizoguchi E, Castigli E, Forsell J, Bhan AK, Geha R, Sideras P, Alt FW (1997) Impaired B cell maturation in mice lacking Bruton’s tyrosine kinase (Btk) and CD40. Int Immunol 9:395–405.

    PubMed  CAS  Google Scholar 

  • Knoops L, Louahed J, Renauld JC (2004) IL-9-induced expansion of B-1b cells restores numbers but not function of B-1 lymphocytes in xid mice. J Immunol 172:6101–6106.

    PubMed  CAS  Google Scholar 

  • Kruetzmann S, Manuela Rosado M, Weber H, Germing U, Tournilhac O, Peter HH, Berner R, Peters A, Boehm T, Plebani A et al (2003) Human immunoglobulin M memory B cells controllingStreptococcus pneumoniae infections are generated in the spleen. J Exp Med 197:939–945.

    PubMed  CAS  Google Scholar 

  • Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA, Walsh EE, Freeman MW, Golenbock DT, Anderson LJ, Finberg RW (2000) Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1:398–401.

    PubMed  CAS  Google Scholar 

  • Landers CD, Chelvarajan RL, Bondada S (2005) The role of B cells and accessory cells in the neonatal response to TI-2 antigens. Immunol Res 31:25–36.

    PubMed  CAS  Google Scholar 

  • Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416:603–607.

    PubMed  CAS  Google Scholar 

  • Lesinski GB, Westerink MA (2001) Novel vaccine strategies to T-independent antigens. J Microbiol Methods 47:135–149.

    PubMed  CAS  Google Scholar 

  • MacLennan IC, Garcia de Vinuesa C, Casamayor-Palleja M (2000) B-cell memory and the persistence of antibody responses. Philos Trans R Soc Lond Biol Sci 355:345–350.

    CAS  Google Scholar 

  • Maizels N, Bothwell A (1985) The T-cell-independent immune response to the hapten NP uses a large repertoire of heavy chain genes. Cell 43:715–720.

    PubMed  CAS  Google Scholar 

  • Maizels N, Lau JC, Blier PR, Bothwell A (1988) The T-cell independent antigen NP-Ficoll, primes for a high-affinity IgM anti-NP response. Mol Immunol 25:1277–1282.

    PubMed  CAS  Google Scholar 

  • Malley R, Henneke P, Morse SC, Cieslewicz MJ, Lipsitch M, Thompson CM, Kurt-Jones E, Paton JC, Wessels MR, Golenbock DT (2003) Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci U S A 100:1966–1971.

    PubMed  CAS  Google Scholar 

  • Martin F, Kearney JF (2000) B-cell subsets and the mature preimmune repertoire. Marginal zone and B1 B cells as part of a “natural immune memory”. Immunol Rev 175:70–79.

    PubMed  CAS  Google Scholar 

  • Martin F, Kearney JF (2001) B1 cells: similarities and differences with other B cell subsets. Curr Opin Immunol 13:195–201.

    PubMed  CAS  Google Scholar 

  • Martin F, Oliver AM, Kearney JF (2001) Marginal zone and B1 B cells unite in the early response against T- independent blood-borne particulate antigens. Immunity 14:617–629.

    PubMed  CAS  Google Scholar 

  • McHeyzer-Williams LJ, Driver DJ, McHeyzer-Williams MG (2001) Germinal center reaction. Curr Opin Hematol 8:52–59.

    PubMed  CAS  Google Scholar 

  • McHeyzer-Williams MG (2003) B cells as effectors. Curr Opin Immunol 15:354–361.

    PubMed  CAS  Google Scholar 

  • Mizuno T, Rothstein TL (2003) Cutting edge: CD40 engagement eliminates the need for Bruton’s tyrosine kinase in B cell receptor signaling for NF-kappa B. J Immunol 170:2806–2810.

    PubMed  CAS  Google Scholar 

  • Mizuno T, Rothstein TL (2005) B cell receptor (BCR) cross-talk: CD40 engagement creates an alternate pathway for BCR signaling that activates I kappa B kinase/I kappa B alpha/NF-kappa B without the need for PI3 K and phospholipase C gamma. J Immunol 174:6062–6070.

    PubMed  CAS  Google Scholar 

  • Montecino-Rodriguez E, Dorshkind K (2006) New perspectives in B-1 B cell development and function. Trends Immunol 27:428–433.

    PubMed  CAS  Google Scholar 

  • Montecino-Rodriguez E, Leathers H, Dorshkind K (2006) Identification of a B-1 B cell-specified progenitor. Nat Immunol 7:293–301.

    PubMed  CAS  Google Scholar 

  • Mosier DE, Scher I, Paul WE (1976) In vitro responses of CBA/N mice: spleen cells of mice with an X-linked defect that precludes immune responses to several thymus-independent antigens can respond to TNP-lipopolysaccharide. J Immunol 117:1363–1369.

    PubMed  CAS  Google Scholar 

  • Mosier DE, Zaldivar NM, Goldings E, Mond J, Scher I, Paul WE (1977) Formation of antibody in the newborn mouse: study of T-cell-independent antibody response. J Infect Dis Suppl 136:S14–S19.

    PubMed  Google Scholar 

  • Muller G, Hopken UE, Lipp M (2003) The impact of CCR7 and CXCR5 on lymphoid organ development and systemic immunity. Immunol Rev 195:117–135.

    PubMed  Google Scholar 

  • Muramatsu M, Kinoshita S, Fagarasan S, Yamada Y, Shinkai Y, Honjo T (2000) Class switch recombination and hypermutation require Activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–563.

    PubMed  CAS  Google Scholar 

  • Nagai Y, Akashi S, Nagafuku M, Ogata M, Iwakura Y, Akira S, Kitamura T, Kosugi A, Kimoto M, Miyake K (2002) Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 3:667–672.

    PubMed  CAS  Google Scholar 

  • Obukhanych TV, Nussenzweig MC (2006) T-independent type II immune responses generate memory B cells. J Exp Med 203:305–310.

    PubMed  Google Scholar 

  • Ochsenbein AF, Pinschewer DD, Odermatt B, Carroll MC, Hengartner H, Zinkernagel RM (1999) Protective T cell-independent antiviral antibody responses are dependent on complement. J Exp Med 190:1165–1174.

    PubMed  CAS  Google Scholar 

  • Pinschewer DD, Ochsenbein AF, Satterthwaite AB, Witte ON, Hengartner H, Zinkernagel RM (1999) A Btk transgene restores the antiviral TI-2 antibody responses of xid mice in a dose-dependent fashion. Eur J Immunol 29:2981–2987.

    PubMed  CAS  Google Scholar 

  • Satterthwaite AB, Cheroutre H, Khan WN, Sideras P, Witte ON (1997) Btk dosage determines sensitivity to B cell antigen receptor cross-linking. Proc Natl Acad Sci U S A 94:13152–13157.

    PubMed  CAS  Google Scholar 

  • Scher I, Steinberg AD, Berning AK, Paul WE (1975) X-linked B-lymphocyte immune defect in CBA/N mice. II. Studies of the mechanisms underlying the immune defect. J Exp Med 142:637–650.

    PubMed  CAS  Google Scholar 

  • Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R (2001) Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2:947–950.

    PubMed  CAS  Google Scholar 

  • Schroder NW, Opitz B, Lamping N, Michelsen KS, Zahringer U, Gobel UB, Schumann RR (2000) Involvement of lipopolysaccharide binding protein CD14, and Toll-like receptors in the initiation of innate immune responses by Treponema glycolipids. J Immunol 165:2683–2693.

    PubMed  CAS  Google Scholar 

  • Scorpio A, Chabot DJ, Day WA, O’Brien D, K, Vietri NJ, Itoh Y, Mohamadzadeh M, Friedlander AM (2007) Poly-gamma-glutamate capsule-degrading enzyme treatment enhances phagocytosis and killing of encapsulated Bacillus anthracis. Antimicrob Agents Chemother 51:215–222.

    PubMed  CAS  Google Scholar 

  • Selinka HC, Bosing-Schneider R (1988) Xid mice fail to express an anti-dextran immune response but carry alpha(1–3) dextran-specific lymphocytes in their potential repertoire. Eur J Immunol 18:1727–1732.

    PubMed  CAS  Google Scholar 

  • Shang ES, Skare JT, Exner MM, Blanco DR, Kagan BL, Miller JN, Lovett MA (1998) Isolation and characterization of the outer membrane of Borrelia hermsii. Infect Immun 66:1082–1091.

    PubMed  CAS  Google Scholar 

  • Snapper CM, Rosas FR, Moorman MA, Mond JJ (1997) Restoration of T cell-independent type 2 induction of Ig secretion by neonatal B cells in vitro. J Immunol 158:2731–2735.

    PubMed  CAS  Google Scholar 

  • Southern PM Jr, Sanford JP (1969) Relapsing fever–a clinical and microbiological review. Medicine 48:129–149.

    Google Scholar 

  • Stall AM, Adams S, Herzenberg LA, Kantor AB (1992) Characteristics and development of the murine B-1b (Ly-1 B sister) cell population. Ann N Y Acad Sci 651:33–43.

    PubMed  CAS  Google Scholar 

  • Szomolanyi-Tsuda E, Welsh RM (1998) T-cell-independent antiviral antibody responses. Curr Opin Immunol 10:431–435.

    PubMed  CAS  Google Scholar 

  • Szomolanyi-Tsuda E, Brien JD, Dorgan JE, Garcea RL, Woodland RT, Welsh RM (2001) Antiviral T-cell-independent type 2 antibody responses induced in vivo in the absence of T and NK cells. Virology 280:160–168.

    PubMed  CAS  Google Scholar 

  • Szomolanyi-Tsuda E, Seedhom MO, Carroll MC, Garcea RL (2006) T cell-independent and T cell-dependent immunoglobulin G responses to polyomavirus infection are impaired in complement receptor 2-deficient mice. Virology 352:52–60.

    PubMed  CAS  Google Scholar 

  • Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14.

    PubMed  CAS  Google Scholar 

  • Tarlinton D (2006) B-cell memory: are subsets necessary? Nat Rev Immunol 6:785–790.

    PubMed  CAS  Google Scholar 

  • Thomas JD, Sideras P, Smith CIE, Vorechovsky I, Chapman V, Paul WE (1993) Colocalization of X-linked agammaglobulinemia and X-linked Immunodeficiency genes. Science 261:355–358.

    PubMed  CAS  Google Scholar 

  • Toellner KM, Jenkinson WE, Taylor DR, Khan M, Sze DM, Sansom DM, Vinuesa CG, MacLennan IC (2002) Low-level hypermutation in T cell-independent germinal centers compared with high mutation rates associated with T cell-dependent germinal centers. J Exp Med 195:383–389.

    PubMed  CAS  Google Scholar 

  • Tornberg UC, Holmberg D (1995) B-1a B-1b and B-2 B cells display unique VHDJH repertoires formed at different stages of ontogeny and under different selection pressures. EMBO J 14:1680–1689.

    PubMed  CAS  Google Scholar 

  • Toyama H, Okada S, Hatano M, Takahashi Y, Takeda N, Ichii H, Takemori T, Kuroda Y, Tokuhisa T (2002) Memory B cells without somatic hypermutation are generated from Bcl6-deficient B cells. Immunity 17:329–339.

    PubMed  CAS  Google Scholar 

  • Tung JW, Mrazek MD, Yang Y, Herzenberg LA, Herzenberg LA (2006) Phenotypically distinct B cell development pathways map to the three B cell lineages in the mouse. Proc Natl Acad Sci U S A 103:6293–6298.

    PubMed  CAS  Google Scholar 

  • Vink A, Warnier G, Brombacher F, Renauld JC (1999) Interleukin 9-induced in vivo expansion of the B-1 lymphocyte population. J Exp Med 189:1413–1423.

    PubMed  CAS  Google Scholar 

  • Vinuesa CG, Sunners Y, Pongracz J, Ball J, Toellner KM, Taylor D, MacLennan IC, Cook MC (2001) Tracking the response of Xid B cells in vivo: TI-2 antigen induces migration and proliferation but Btk is essential for terminal differentiation. Eur J Immunol 31:1340–1350.

    PubMed  CAS  Google Scholar 

  • Vos Q, Lees A, Wu Z, Snapper CM, Mond JJ (2000) B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunol Rev 176:154–170.

    PubMed  CAS  Google Scholar 

  • Wang TT, Lucas AH (2004) The capsule ofBacillus anthracis behaves as a thymus-independent type 2 antigen. Infect Immun 72:5460–5463.

    PubMed  CAS  Google Scholar 

  • Watanabe N, Ikuta K, Fagarasan S, Yazumi S, Chiba T, Honjo T (2000) Migration and differentiation of autoreactive B-1 cells induced by activated gamma/delta T cells in anti-erythrocyte immunoglobulin transgenic mice. J Exp Med 192:1577–1586.

    PubMed  CAS  Google Scholar 

  • Weller S, Faili A, Garcia C, Braun MC, Le Deist FF, de Saint Basile GG, Hermine O, Fischer A, Reynaud CA, Weill JC (2001) CD40-CD40L independent Ig gene hypermutation suggests a second B cell diversification pathway in humans. Proc Natl Acad Sci U S A 98:1166–1170.

    PubMed  CAS  Google Scholar 

  • Woodland RT, Schmidt MR (2005) Homeostatic proliferation of B cells. Semin Immunol 17:209–217.

    PubMed  CAS  Google Scholar 

  • Woodland RT, Schmidt MR, Korsmeyer SJ, Gravel KA (1996) Regulation of B cell survival in xid mice by the proto-oncogene bcl-2. J Immunol 156:2143–2154.

    PubMed  CAS  Google Scholar 

  • Yan SR, Byers DM, Bortolussi R (2004a) Role of protein tyrosine kinase p53/56lyn in diminished lipopolysaccharide priming of formylmethionylleucyl-phenylalanine-induced superoxide production in human newborn neutrophils. Infect Immun 72:6455–6462.

    PubMed  CAS  Google Scholar 

  • Yan SR, Qing G, Byers DM, Stadnyk AW, Al-Hertani W, Bortolussi R (2004b) Role of MyD88 in diminished tumor necrosis factor alpha production by newborn mononuclear cells in response to lipopolysaccharide. Infect Immun 72:1223–1229.

    PubMed  CAS  Google Scholar 

  • Yokota M, Morshed MG, Nakazawa T, Konishi H (1997) Protective activity ofBorrelia duttonii-specific immunoglobulin subclasses in mice. J Med Microbiol 46:675–680.

    PubMed  CAS  Google Scholar 

  • Yu PW, Tabuchi RS, Kato RM, Astrakhan A, Humblet-Baron S, Kipp K, Chae K, Ellmeier W, Witte ON, Rawlings DJ (2004) Sustained correction of B-cell development and function in a murine model of X-linked agammaglobulinemia (XLA) using retroviral-mediated gene transfer. Blood 104:1281–1290.

    PubMed  CAS  Google Scholar 

  • Zandvoort A, Timens W (2002) The dual function of the splenic marginal zone: essential for initiation of anti-TI-2 responses but also vital in the general first-line defense against blood-borne antigens. Clin Exp Immunol 130:4–11.

    PubMed  CAS  Google Scholar 

  • Zandvoort A, Lodewijk ME, de Boer NK, Dammers PM, Kroese FG, Timens W (2001) CD27 expression in the human splenic marginal zone: the infant marginal zone is populated by naive B cells. Tissue Antigens 58:234–242.

    PubMed  CAS  Google Scholar 

  • Zinkernagel RM (2000) What is missing in immunology to understand immunity? Nat Immunol 1:181–185.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alugupalli, K.R. (2008). A Distinct Role for B1b Lymphocytes in T Cell-Independent Immunity. In: Manser, T. (eds) Specialization and Complementation of Humoral Immune Responses to Infection. Current Topics in Microbiology and Immunology, vol 319. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73900-5_5

Download citation

Publish with us

Policies and ethics