Skip to main content

Advertisement

Log in

Aerosolised Mesenchymal Stem Cells Expressing Angiopoietin-1 Enhances Airway Repair

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to investigate the effects of MSCs and MSC-expressing ANGPT1 (MSC-pANGPT1) treatment via aerosolisation in alleviating the asthma-related airway inflammation in the rabbit model.

Methods

Rabbits were sensitised and challenged with both intraperitoneal injection and inhalation of ovalbumin (Ova). MSCs and MSC-pANGPT1 cells were aerosolised into rabbit lungs using the MicroSprayer® Aerosolizer Model IA-1B 48 h after injury. The post mortem was performed 3 days following cell delivery. Histopathological assessments of the lung tissues and inflammatory response were quantitatively scored following treatments.

Result(S)

Administration of aerosolised MSCs and MSC-pANGPT1 were significantly reduced inflammation of the airways (p < 0.001), as reflected by improved of structural changes such as thickness of the basement membrane, epithelium, mucosa and sub-mucosa regions. The airway inflammation score of both treatment groups revealed a significant reduction of inflammation and granulocyte infiltration at the peribronchiale and perivascular regions (p < 0.05). Administration of aerosolised MSCs alone was resulted in significant reduction in the levels of pro-inflammatory genes (IL-4 and TGF-β) while treatment with aerosolised MSC-pANGPT1 led to further reduction of various pro-inflammatory genes to the base-line values (IL4, TNF, MMP9 and TGF-β). Treatment with both aerosolised MSCs and MSC-pANGPT1 cells was also alleviated the number of airway inflammatory cells in the bronchoalveolar lavage (BAL) fluid and goblet cell hyperplasia.

Conclusion(S)

Our findings suggest that treatment with MSCs alone attenuated airway inflammation and structural changes of the airway. Treatment with MSC-pANGPT1 provided an additional effect in reducing the expression levels of various pro-inflammatory genes. Both of these treatment enhancing airway repair and therefore may provide a basis for the development of an innovative approach for the treatment and prevention of airway inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. WHO. World Health Organization. (2007). Global surveillance, prevention and control of chronic respiratory diseases: a comprehensive approach. Geneva, Switzerland. Chronic Respiratory Disease, 1–146.

  2. Croisant, S. (2014). Epidemiology of asthma: prevalence and burden of disease. Advances in Experimental Medicine and Biology, 795, 17–29.

    Article  CAS  PubMed  Google Scholar 

  3. Bonfield, T. L., Koloze, M., Lennon, D. P., Zuchowski, B., Yang, S. E., & Caplan, A. I. (2010). Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. American Journal of Physiology. Lung Cellular and Molecular Physiology [Internet], 299(6), L760–L770 [cited 2014 Nov 21] Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4116401&tool=pmcentrez&rendertype=abstract.

    Article  CAS  Google Scholar 

  4. Martínez-González, I., Cruz, M.-J., Moreno, R., Morell, F., Muñoz, X., & Aran, J. M. (2014). Human mesenchymal stem cells resolve airway inflammation, hyperreactivity, and histopathology in a mouse model of occupational asthma. Stem Cells and Development [Internet], 23(19), 2352–2363 Available from: http://online.liebertpub.com/doi/abs/10.1089/scd.2013.0616.

    Article  CAS  Google Scholar 

  5. Lambrecht, B. N., & Hammad, H. (2012). The airway epithelium in asthma. Natural Medicines [Internet]., 18(5), 684–692 Available from: http://www.nature.com/doifinder/10.1038/nm.2737.

  6. Lee, M. Y., Seo, C. S., Lee, J. A., Lee, N. H., Kim, J. H., Ha, H., Zheng, M. S., Son, J. K., & Shin, H. K. (2011). Anti-asthmatic effects of Angelica dahurica against ovalbumin-induced airway inflammation via upregulation of heme oxygenase-1. Food and Chemical Toxicology, 49(4), 829–837.

    Article  CAS  PubMed  Google Scholar 

  7. Lee, S. H., Jang, A. S., Kwon, J. H., Park, S. K., Won, J. H., & Park, C. S. (2011). Mesenchymal stem cell transfer suppresses airway remodeling in a toluene diisocyanate-induced murine asthma model. Allergy, Asthma & Immunology Research, 3(3), 205–211.

    Article  CAS  Google Scholar 

  8. Durrani, S. R., Viswanathan, R. K., & Busse, W. W. (2011). What effect does asthma treatment have on airway remodeling? Current perspectives. The Journal of Allergy and Clinical Immunology, 128(3), 439–448.

    Article  PubMed  Google Scholar 

  9. Shifren, A., Witt, C., Christie, C., & Castro, M. (2012). Mechanisms of remodeling in asthmatic airways. The Journal of Allergy [Internet], 2012, 1–12 [cited 2015 Apr 13]Available from: http://www.hindawi.com/journals/ja/2012/316049/abs/.

    Article  Google Scholar 

  10. Royce, S. G., & Tang, M. L. K. (2009). The effects of current therapies on airway remodeling in asthma and new possibilities for treatment and prevention. Current Molecular Pharmacology [Internet], 2(2), 169–181 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20021456.

    Article  CAS  Google Scholar 

  11. Kim, D. Y., & Yang, W. M. (2011). Panax ginseng ameliorates airway inflammation in an ovalbumin-sensitized mouse allergic asthma model. Journal of Ethnopharmacology, 136(1), 230–235.

    Article  CAS  PubMed  Google Scholar 

  12. Dong, F., Wang, C., Duan, J., Zhang, W., Xiang, D., & Li, M. (2014). Puerarin attenuates ovalbumin-induced lung inflammation and hemostatic unbalance in rat asthma model. Evidence-based Complementary and Alternative Medicine, 2014, 1–9.

    Google Scholar 

  13. Park, H.-K., Cho, K.-S., Park, H.-Y., et al. (2010). Adipose-derived stromal cells inhibit allergic airway inflammation in mice. Stem Cells and Development [Internet], 19(11), 1811–1818 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20225940.

    Article  CAS  Google Scholar 

  14. Goodwin, M., Sueblinvong, V., Eisenhauer, P., et al. (2011). Bone marrow-derived mesenchymal stromal cells inhibit Th2-mediated allergic airways inflammation in mice. Stem Cells [Internet], 29(7), 1137–1148 [cited 2014 Nov 24] Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4201366&tool=pmcentrez&rendertype=abstract.

    Article  CAS  Google Scholar 

  15. Bieback, K., Wuchter, P., Besser, D., et al. (2012). Mesenchymal stromal cells (MSCs): Science and f (r)iction. Journal of Molecular Medicine, 90(7), 773–782.

    Article  PubMed  Google Scholar 

  16. Kyurkchiev, D. (2014). Secretion of immunoregulatory cytokines by mesenchymal stem cells. World Journal of Stem Cells, 6(5), 552. Available from: http://www.wjgnet.com/1948-0210/full/v6/i5/552.htm.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang, Y., Chen, X., Cao, W., & Shi, Y. (2014). Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nature Immunology, 15(11), 1009–1016.

    Article  CAS  PubMed  Google Scholar 

  18. Sharma, R. R., Pollock, K., Hubel, A., & McKenna, D. (2014). Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion, 54(5), 1418–1437.

    Article  CAS  PubMed  Google Scholar 

  19. Kim, I., Moon, S.-O., Park, S. K., Chae, S. W., & Koh, G. Y. (2001). Angiopoietin-1 reduces VEGF-stimulated leukocyte adhesion to endothelial cells by reducing ICAM-1, VCAM-1, and E-selectin expression. Circulation Research [Internet], 89(6), 477–479 Available from: http://circres.ahajournals.org/cgi/doi/10.1161/hh1801.097034.

    Article  CAS  Google Scholar 

  20. Ismail, H., Mofarrahi, M., Echavarria, R., Harel, S., Verdin, E., Lim, H. W., Jin, Z. G., Sun, J., Zeng, H., & Hussain, S. N. A. (2012). Angiopoietin-1 and vascular endothelial growth factor regulation of leukocyte adhesion to endothelial cells: role of nuclear receptor-77. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(7), 1707–1716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Simoes, D. C. M., Vassilakopoulos, T., Toumpanakis, D., Petrochilou, K., Roussos, C., & Papapetropoulos, A. (2008). Angiopoietin-1 protects against airway inflammation and hyperreactivity in asthma. American Journal of Respiratory and Critical Care Medicine [Internet], 177(12), 1314–1321 [cited 2014 Oct 31] Available from: http://www.ncbi.nlm.nih.gov/pubmed/18356565.

    Article  CAS  Google Scholar 

  22. Mei, S. H. J., McCarter, S. D., Deng, Y., Parker, C. H., Liles, W. C., & Stewart, D. J. (2007). Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med [Internet], 4(9), e269 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1961632&tool=pmcentrez&rendertype=abstract.

    Article  CAS  Google Scholar 

  23. McCarter, S. D., Mei, S. H., Lai, P. F., et al. Cell-based angiopoietin-1 gene therapy for acute lung injury. American Journal of Respiratory and Critical Care Medicine, 2007(175), 1014–1026 (1073–449X (Print)).

  24. Xu, J., Qu, J., Cao, L., Sai, Y., & Chen, C. (2008). Mesenchymal stem cell-based angiopoietin-1 gene therapy for acute lung injury induced by lipopolysaccharide in mice. The Journal of Pathology [Internet], 214(December 2007), 472–481 [cited 2014 Oct 31] Available from: http://onlinelibrary.wiley.com/doi/10.1002/path.2302/full.

    CAS  Google Scholar 

  25. Chen, S., Zhu, C., Liu, Y., & Tang, L. (2009). Mesenchymal stem cells genetically modified with the angiopoietin-1 gene enhanced arteriogenesis in a porcine model of chronic myocardial ischaemia. The Journal of International Medical Research [Internet], 37, 68–78 [cited 2014 Oct 31] Available from: http://imr.sagepub.com/content/37/1/68.short.

    Article  CAS  Google Scholar 

  26. Kardia, E., Yusoff, N. M., Zakaria, Z., & Yahaya, B. (2014). Aerosol-based delivery of fibroblast cells for treatment of lung diseases. Journal of Aerosol Medicine and Pulmonary Drug Delivery [Internet], 27(1), 30–34 [cited 2014 Oct 31] Available from: http://www.ncbi.nlm.nih.gov/pubmed/23409833.

    Article  CAS  Google Scholar 

  27. Kardia, E., Ch’ng, E. S., & Yahaya, B. H. (2017). Aerosol-based airway epithelial cell delivery improves airway regeneration and repair. Journal of Tissue Engineering and Regenerative Medicine [Internet] [cited 2017 Aug 10] Available from: http://www.ncbi.nlm.nih.gov/pubmed/28105760.

  28. Halim, N., Fakiruddin, K., Ali, S., & Yahaya, B. (2014). A comparative study of non-viral gene delivery techniques to human adipose-derived mesenchymal stem cell. International Journal of Molecular Sciences [Internet], 15, 15044–15060 Available from: http://www.mdpi.com/1422-0067/15/9/15044/.

    Article  CAS  Google Scholar 

  29. Kamaruzaman, N. A., Kardia, E., Kamaldin, N., Latahir, A. Z., & Yahaya, B. H. (2013). The rabbit as a model for studying lung disease and stem cell therapy. BioMed Research International [Internet], 2013, 1–12. Available from: http://www.hindawi.com/journals/bmri/2013/691830/%5Cn, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3638694&tool=pmcentrez&rendertype=abstract.

    Article  CAS  Google Scholar 

  30. Keir, S., & Page, C. (2008). The rabbit as a model to study asthma and other lung diseases. Pulmonary Pharmacology & Therapeutics, 21(5), 721–730.

    Article  CAS  Google Scholar 

  31. El Gazzar, M., El Mezayen, R., Marecki, J. C., Nicolls, M. R., Canastar, A., & Dreskin, S. C. (2006). Anti-inflammatory effect of thymoquinone in a mouse model of allergic lung inflammation. International Immunopharmacology, 6(7), 1135–1142.

    Article  CAS  PubMed  Google Scholar 

  32. Peták, F., Hantos, Z., Adamicza, Á., Gálity, H., & Habre, W. (2006). Development of bronchoconstriction after administration of muscle relaxants in rabbits with normal or hyperreactive airways. Anesthesia and Analgesia, 103(1), 103–109.

    Article  CAS  PubMed  Google Scholar 

  33. Nemeth, K., Keane-Myers, A., Brown, J. M., et al. (2010). Bone marrow stromal cells use TGF-beta to suppress allergic responses in a mouse model of ragweed-induced asthma. Proceedings of the National Academy of Sciences of the United States of America [Internet], 107(12), 5652–5657 [cited 2014 Nov 14] Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2851758&tool=pmcentrez&rendertype=abstract.

    Article  Google Scholar 

  34. Abreu, S. C., Antunes, M., de Castro, J. C., et al. (2013). Bone marrow-derived mononuclear cells vs. mesenchymal stromal cells in experimental allergic asthma. Respiratory Physiology & Neurobiology [Internet], 187(2), 190–198 [cited 2014 Nov 14] Available from: http://www.ncbi.nlm.nih.gov/pubmed/23548824.

    Article  Google Scholar 

  35. Raza, K., Larsen, T., Samaratunga, N., et al. (2014). MSC therapy attenuates obliterative bronchiolitis after murine bone marrow transplant. PLoS One, 9(10).

  36. Duong, K. M., Arikkatt, J., Ullah, M. A., Lynch, J. P., Zhang, V., Atkinson, K., Sly, P. D., & Phipps, S. (2015). Immunomodulation of airway epithelium cell activation by mesenchymal stromal cells ameliorates house dust mite-induced airway inflammation in mice. American Journal of Respiratory Cell and Molecular Biology, 53(5), 615–624.

    Article  CAS  PubMed  Google Scholar 

  37. Gu, W., Song, L., Li, X.-M., Wang, D., Guo, X.-J., & Xu, W.-G. (2015). Mesenchymal stem cells alleviate airway inflammation and emphysema in COPD through down-regulation of cyclooxygenase-2 via p38 and ERK MAPK pathways. Science Reporter [Internet], 5, 8733 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25736434%5Cn, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4348625.

    CAS  Google Scholar 

  38. Balaha, M. F., Tanaka, H., Yamashita, H., Abdel Rahman, M. N., & Inagaki, N. (2012). Oral Nigella sativa oil ameliorates ovalbumin-induced bronchial asthma in mice. International Immunopharmacology, 14(2), 224–231.

    Article  CAS  PubMed  Google Scholar 

  39. Wills-Karp, M., & Finkelman, F. D. (2008). Untangling the complex web of IL-4- and IL-13-mediated signaling pathways. Science Signaling [Internet], 1(51), pe55–pe55 Available from: http://stke.sciencemag.org/cgi/doi/10.1126/scisignal.1.51.pe55.

    Google Scholar 

  40. Bottoms, S. E., Howell, J. E., Reinhardt, A. K., Evans, I. C., & McAnulty, R. J. (2010). Tgf-Beta isoform specific regulation of airway inflammation and remodelling in a murine model of asthma. PLoS One, 5(3), e9674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Prockop, D. J. (2009). Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Molecular Therapy [Internet], 17(6), 939–946 Available from: http://linkinghub.elsevier.com/retrieve/pii/S1525001616317993.

    Article  CAS  Google Scholar 

  42. Kardia, E., Zakaria, N., Sarmiza Abdul Halim, N. S., Widera, D., & Yahaya, B. H. (2017). The use of mesenchymal stromal cells in treatment of lung disorders. Regenerative Medicine [Internet], 12(2), 203–216 [cited 2018 Jan 15] Available from: http://www.ncbi.nlm.nih.gov/pubmed/28244823.

    Article  CAS  Google Scholar 

  43. Hiratsuka, S., Nakamura, K., Iwai, S., Murakami, M., Itoh, T., Kijima, H., Shipley, J. M., Senior, R. M., & Shibuya, M. (2002). MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell, 2(4), 289–300.

    Article  CAS  PubMed  Google Scholar 

  44. Lebeche, D., Malpel, S., & Cardoso, W. V. (1999). Fibroblast growth factor interactions in the developing lung. Mechanisms of Development, 86(1–2), 125–136.

    Article  CAS  PubMed  Google Scholar 

  45. Ware, L. B., & Matthay, M. A. (2002). Keratinocyte and hepatocyte growth factors in the lung: roles in lung development, inflammation, and repair. AJP Lung Cell Mol Physiol [Internet], 282(5), L924–L940 Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=11943656&retmode=ref&cmd=prlinks%5Cnpapers3://publication/doi/10.1152/ajplung.00439.2001.

    Article  CAS  Google Scholar 

  46. Srisuma, S., Bhattacharya, S., Simon, D. M., Solleti, S. K., Tyagi, S., Starcher, B., & Mariani, T. J. (2010). Fibroblast growth factor receptors control epithelial-mesenchymal interactions necessary for alveolar elastogenesis. American Journal of Respiratory and Critical Care Medicine, 181(8), 838–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Han, L., & Gotlieb, A. I. (2011). Fibroblast growth factor-2 promotes in vitro mitral valve interstitial cell repair through transforming growth factor-β/smad signaling. The American Journal of Pathology, 178(1), 119–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, J., Crawford, R., Chen, C., & Xiao, Y. (2013). The key regulatory roles of the PI3K/Akt signaling pathway in the functionalities of mesenchymal stem cells and applications in tissue regeneration. Tissue Engineering. Part B, Reviews [Internet], 19(6), 516–528 [cited 2018 Feb 10] Available from: http://www.ncbi.nlm.nih.gov/pubmed/23651329.

    Article  CAS  Google Scholar 

  49. Gnecchi, M., He, H., Noiseux, N., et al. (2006). Evidence supporting paracrine hypothesis for Akt- modified mesenchymal stem cell-mediated cardiac protection and functional improvement. ResearchGate [Internet], 20, 661–669 Available from: https://www.researchgate.net/profile/Massimiliano_Gnecchi/publication/7197841_Evidence_supporting_paracrine_hypothesis_for_Akt-modified_mesenchymal_stem_cell-mediated_cardiac_protection_and_functional_improvement/links/0deec52309ef326baf000000/Evidence-su.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Universiti Sains Malaysia (USM) Research University Grant Scheme (1001/CIPPT/813059). We thank all staff and members in Animal Research Facilities and Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), USM for their assistance with the animal experiments. We also thank all Advanced Diagnostic Lab staff members for helping with some parts of the histology work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. H. Yahaya.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halim, N.S.S., Ch’ng, E.S., Kardia, E. et al. Aerosolised Mesenchymal Stem Cells Expressing Angiopoietin-1 Enhances Airway Repair. Stem Cell Rev and Rep 15, 112–125 (2019). https://doi.org/10.1007/s12015-018-9844-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-018-9844-7

Keywords

Navigation