Skip to main content
Log in

Accelerated Reactive Oxygen Scavenging System and Membrane Integrity of Two Panicum Species Varying in Salt Tolerance

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Plant exhibits various patterns of survival under salinity and their growth and development depend on their capacity to overcome the stress. Present investigation was focused on the response and regulation of the antioxidant defense system and the level of lipid peroxidation in Panicum miliacium and Panicum sumatrense under salt treatments. NaCl stress was imposed for 20 days after sowing of two Panicum species. The changes in the antioxidant enzyme activity like superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase and the rate of lipid peroxidation level in terms of malondialdehyde (MDA) were recorded in both Panicum species. A great correlation exists between the antioxidant enzymes and lipid peroxidation. The defense mechanism activated in Panicum species studied was confirmed by the increased antioxidant enzyme activities under progressive NaCl stress. MDA content remained close to control at moderate NaCl concentrations and increased at higher salinities. Although lipid peroxidation increased in both Panicum species under salt stress the percent of increase was low in P. sumatrense indicating its salt-tolerant nature. Another possible conclusion is that improved tolerance to salt stress may be accomplished by increased capacity of antioxidative system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chamnongpol, S., Willekens, H., Moeder, W., Langebartels, C., Sandermann, H., Jr, Van Montagu, M., et al. (1998). Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proceedings of the National Academy of Sciences of the United States of America, 95(10), 5818–5823.

    Article  PubMed  CAS  Google Scholar 

  2. Yordanov, I., Velikova, V., & Tsonev, T. (2000). Plant responses to drought acclimation and stress tolerance. Photosynthetica Journal, 38(2), 171–186.

    Article  CAS  Google Scholar 

  3. Lee, K. P., Kim, C., Landgraf, F., & Apel, K. (2007). EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 104, 10270–10275.

    Article  PubMed  CAS  Google Scholar 

  4. Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53, 247–273.

    Article  PubMed  CAS  Google Scholar 

  5. Leshem, Y., Melamed-Book, N., Cagnac, O., Ronen, G., Nishri, Y., Solomon, M., et al. (2006). Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance. Proceedings of the National Academy of Sciences of the United States of America, 103, 18008–18013.

    Article  PubMed  CAS  Google Scholar 

  6. Mallick, N., & Mohn, F. H. (2000). Reactive oxygen species: Response of algal cells. Journal of Plant Physiology, 157, 83–93.

    Google Scholar 

  7. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410.

    Article  PubMed  CAS  Google Scholar 

  8. Bernardi, R., Nali, C., Ginestri, P., Pugliesi, C., Lorenzini, G., & Durante, M. (2004). Antioxidant enzyme isoforms on gels in two poplar clones differing in sensitivity after exposure to ozone. Biologia Plantarum, 48, 41–48.

    Article  CAS  Google Scholar 

  9. Gossett, D. R., Millhollon, E. P., & Lucas, M. C. (1994). Antioxidant response to NaCl stress salt-tolerant and salt-sensitive cultivars of cotton. Crop Science, 34, 706–714.

    Article  CAS  Google Scholar 

  10. Hernandez, J. A., Campillo, A., Jimenez, A. A., Alarcon, J. J., & Sevilla, F. (1999). Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. New Phytolology, 141, 241–251.

    Article  CAS  Google Scholar 

  11. Bowler, C., Montagu, M. V., & Inzè, D. (1992). Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 83–116.

    Article  CAS  Google Scholar 

  12. Foyer, C. H., & Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta, 133, 21–25.

    Article  Google Scholar 

  13. Halliwell, B. (1987). Oxidative damage, lipid peroxidation, and antioxidant protection in chloroplasts. Chemistry and Physics of Lipids, 44, 27–340.

    Article  Google Scholar 

  14. Bandeoglu, E., Eyidogan, F., Yucel, M., & Oktem, H. A. (2004). Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regulation, 42, 69–77.

    Article  CAS  Google Scholar 

  15. Mittova, V., Guy, M., Tal, M., & Volokita, M. (2004). Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. Journal of Experimental Botany, 55, 1105–1113.

    Article  PubMed  CAS  Google Scholar 

  16. Cavalcanti, F. R., Santos-Lima, J. P. M., Ferreira-Silva, S. L., Viegas, R. A., & Gomes-Silveira, J. A. (2007). Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. Journal of Plant Physiology, 164, 591–600.

    Article  PubMed  CAS  Google Scholar 

  17. Seckin, B., Sekmen, A. H., & Turkan, I. (2009). An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. Journal of Plant Growth Regulation, 28, 12–20.

    Article  CAS  Google Scholar 

  18. Acar, O., Türkan, I., & Özdemir, F. (2001). Superoxide dismutase and peroxidase activities in drought sensitive and resistant barley (Hordeum vulgare L.) cultivars. Acta Physiologiae Plantarum, 23(3), 351–356.

    Article  CAS  Google Scholar 

  19. Sato, Y., Murakami, T., Funatsuki, H., Matsuba, S., Saruyama, H., & Tanida, M. (2001). Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings. Journal of Experimental Botany, 52(354), 145–151.

    Article  PubMed  CAS  Google Scholar 

  20. Bor, M., Özdemir, F., & Türkan, I. (2003). The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Science, 164, 77–84.

    Article  CAS  Google Scholar 

  21. Shalata, A., Mittova, V., Volokita, M., Guy, M., & Tal, M. (2001). Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: The root antioxidative system. Physiologia Plantarum, 112, 487–494.

    Article  PubMed  CAS  Google Scholar 

  22. Demiral, T., & Türkan, I. (2005). Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53, 247–257.

    Article  CAS  Google Scholar 

  23. Foolad, M. R., Zhang, L., & Subbiah, P. (2003). Genetics of drought tolerance during seed germination in tomato: Inheritance and QTL mapping. Genome, 46, 536–545.

    Article  PubMed  CAS  Google Scholar 

  24. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

    Article  PubMed  CAS  Google Scholar 

  25. Grewal, H. S. (2010). Response of wheat to subsoil salinity and temporary water stress at different stages of the reproductive phase. Plant and Soil, 330, 103–113.

    Article  Google Scholar 

  26. Sreenivasulu, N., Grimm, B., Wobus, U., & Weschke, W. (2000). Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedling of foxtail millet (Setaria italica). Physiologia Plantarum, 109, 435–442.

    Article  CAS  Google Scholar 

  27. Guo, Z., Ou, W., Lu, S., & Zhong, Q. (2006). Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiology and Biochemistry, 44, 828–836.

    Article  PubMed  CAS  Google Scholar 

  28. Khanna-Chopra, R., & Selote, D. S. (2007). Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than susceptible wheat cultivar under field conditions. Environmental and Experimental Botany, 60, 276–283.

    Article  CAS  Google Scholar 

  29. Beauchamp, C. O., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287.

    Article  PubMed  CAS  Google Scholar 

  30. Chandlee, J. M., & Scandalios, J. G. (1984). Analysis of variants affecting the catalase developmental program in maize scutellum. Theoretical and Applied Genetics, 69, 71–77.

    Article  PubMed  CAS  Google Scholar 

  31. Reddy, K. P., Subhani, S. M., Khan, P. A., & Kumar, K. B. (1995). Effect of light and benzyl adenine on dark-treated growing rice leaves. II. Changes in peroxidase activity. Plant and Cell Physiology, 24, 987–994.

    Google Scholar 

  32. Asada, K., & Takahashi, M. (1987). Production and scavenging of active oxygen in photosynthesis. In D. J. Kyle, B. Osmond, & C. J. Arntzen (Eds.), Photoinhibition (pp. 227–287). Amsterdam: Elsevier.

    Google Scholar 

  33. Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives in Biochemistry and Biophysics, 125, 189–198.

    Article  CAS  Google Scholar 

  34. Hernandez, J. A., & Almansa, M. S. (2002). Short-term effects salt stress on antioxidant systems and leaf water relations of pea leaves. Physiolgia Plantarum, 115, 251–257.

    Article  CAS  Google Scholar 

  35. Sairam, R. K., & Srivastava, G. C. (2002). Changes in antioxidant activity in subcellular fractions of tolerant and susceptible wheat genotypes in response to long-term salt stress. Plant Science, 162, 897–904.

    Article  CAS  Google Scholar 

  36. Doğan, M., Tıpırdamaz, R., & Demir, Y. (2010). Salt resistance of tomato species grown in sand culture. Plant Soil Environment, 56(11), 499–507.

    Google Scholar 

  37. Jiang, Y., Yang, B., Harris, N. S., & Deyholos, M. K. (2007). Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. Journal of Experimental Botany, 58, 3591–3607.

    Article  PubMed  CAS  Google Scholar 

  38. Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.

    Article  PubMed  CAS  Google Scholar 

  39. Tsang, E. W. T., Bowler, C., Herouart, D., Van Camp, W., Villarroel, R., Genetello, C., et al. (1991). Differential regulation of superoxide dismutases in plants exposed to environmental stress. The Plant Cell, 3, 783–792.

    PubMed  CAS  Google Scholar 

  40. Mallik, S., Nayak, M., Sahu, B. B., Panigrahi, A. K., & Shaw, B. P. (2011). Response of antioxidant enzymes to high NaCl concentration in different salt-tolerant plants. Biologia Pantarum, 55(1), 191–195.

    Article  CAS  Google Scholar 

  41. Rahnama, H., & Ebrahimzadeh, H. (2005). The effect of NaCl on antioxidant enzyme activities in potato seedling. Biologia Plantarum, 49(1), 93–97.

    Article  CAS  Google Scholar 

  42. Kukreja, S., Nandwal, A. S., Kumar, N., Sharma, S. K., Unvi, V., & Sharma, P. K. (2005). Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biologia Plantarum, 49(2), 305–308.

    Article  CAS  Google Scholar 

  43. Sreenivasulu, N., Ramanjulu, S., Rmachandra-Kini, K., Prakash, H. S., Shekar-Shetty, H., Savithri, H. S., et al. (1999). Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Science, 141, 1–9.

    Article  CAS  Google Scholar 

  44. Ghorbanli, M., Ebrahimzadeh, H., & Sharifi, M. (2004). Effects of NaCl and mycorrhizal fungi on antioxidative enzymes in soybean. Biologia Plantarum, 48, 575–581.

    Article  CAS  Google Scholar 

  45. Kholova, J., Sairam, R. K., Meena, R. C., & Srivastava, G. C. (2009). Response of maize genotypes to salinity stress in relation to osmolytes and metal-ions contents, oxidative stress and antioxidant enzymes activity. Biologia Plantarum, 53(2), 249–256.

    Article  CAS  Google Scholar 

  46. Lopez, F., Vansuyt, G., Casse-Delbart, F., & Fourcroy, P. (1996). Ascorbate peroxidase activity, not the mRNA level, is enhanced in salt-stressed Raphanus sativus plants. Physiologia Plantarum, 97(1), 13–20.

    Article  CAS  Google Scholar 

  47. Turhan, E., Gulen, H., & Eris, A. (2008). The activity of antioxidative enzymes in three strawberry cultivars related to salt-stress tolerance. Acta Physiologiae Plantarum, 30, 201–208.

    Article  CAS  Google Scholar 

  48. Ashraf, M., & Ali, Q. (2008). Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environmental and Experimental Botany, 63(1–3), 266–273.

    Article  CAS  Google Scholar 

  49. Singha, S., & Choudhuri, M. A. (1990). Effect of salinity (NaCl) stress on H2O, metabolism in Vigna and Oryza seedlings. Biochemistry and Physiology Pflanz, 186, 69–74.

    Article  CAS  Google Scholar 

  50. Halliwel, l. B., & Gutteridge, J. M. C. (1989). Free radicals in biology and medicine (2nd ed.). Oxford: Clarendon Press.

    Google Scholar 

  51. Escobar, J. A., Rubio, M. A., & Lissi, E. A. (1996). SOD and catalase inactivation by singlet oxygen and peroxyl radicals. Free Radical Biology and Medicine, 20, 285–290.

    Article  PubMed  CAS  Google Scholar 

  52. Bailly, C., Benamar, A., Corbineau, F., & Dˆome, D. (1996). Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seed as related to deterioration during accelerated aging. Physiolgia Plantarum, 97, 104–110.

    Article  CAS  Google Scholar 

  53. Aghaleh, M., Niknam, V., Ebrahimzadeh, H., & Razavi, K. (2009). Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biologia Plantarum, 53(2), 243–248.

    Article  CAS  Google Scholar 

  54. Vasantha, S., Gururaja Rao, P. N., Venkataramana, S., & Gomathi, R. (2008). Salinity-induced changes in the antioxidant response of sugarcane genotypes. Journal of Plant Biology, 35, 115.

    CAS  Google Scholar 

  55. Devi, S., Angrish, R., Datta, K. S., & Kumar, B. (2008). Antioxidant defense system in wheat seedlings under sodium chloride stress: An oxidative role of hydrogen peroxide. Indian Journal of Plant Physiology, 13, 118.

    CAS  Google Scholar 

  56. Valentovic, P., Luxova, M., Kolarovic, L., & Gasparikova, O. (2006). Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil Environment, 52(4), 186–191.

    Google Scholar 

  57. Hernandez, M., Fernandez-Garcia, N., Diaz-Vivancos, P., & Olmos, E. (2009). A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. Journal of Experimental Botany, 61(2), 521–535.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors take this opportunity to thank UGC-BSR  for the financial support and the management of Annamalai university for providing the facility to carry out the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajaram Panneerselvam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhaskaran, J., Panneerselvam, R. Accelerated Reactive Oxygen Scavenging System and Membrane Integrity of Two Panicum Species Varying in Salt Tolerance. Cell Biochem Biophys 67, 885–892 (2013). https://doi.org/10.1007/s12013-013-9576-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9576-x

Keywords

Navigation