Skip to main content

Advertisement

Log in

Interaction Between AT1 Receptor and NF-κB in Hypothalamic Paraventricular Nucleus Contributes to Oxidative Stress and Sympathoexcitation by Modulating Neurotransmitters in Heart Failure

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Angiotensin II type 1 receptor (AT1-R) and nuclear factor-kappaB (NF-κB) in the paraventricular nucleus (PVN) play important roles in heart failure (HF); however, the central mechanisms by which AT1-R and NF-κB contribute to sympathoexcitation in HF are yet unclear. In this study, we determined whether interaction between AT1-R and NF-κB in the PVN modulates neurotransmitters and contributes to NAD(P)H oxidase-dependent oxidative stress and sympathoexcitation in HF. Rats were implanted with bilateral PVN cannulae and subjected to coronary artery ligation or sham surgery (SHAM). Subsequently, animals were treated for 4 weeks through bilateral PVN infusion with either vehicle or losartan (LOS, 10 μg/h), an AT1-R antagonist; or pyrrolidine dithiocarbamate (PDTC, 5 μg/h), a NF-κB inhibitor via osmotic minipump. Myocardial infarction (MI) rats had higher levels of glutamate (Glu), norepinephrine (NE) and NF-κB p65 activity, lower levels of gamma-aminobutyric acid (GABA), and more positive neurons for phosphorylated IKKβ and gp91phox (a subunit of NAD(P)H oxidase) in the PVN when compared to SHAM rats. MI rats also had higher levels of renal sympathetic nerve activity (RSNA) and plasma proinflammatory cytokines (PICs), NE and epinephrine. PVN infusions of LOS or PDTC attenuated the decreases in GABA and the increases in gp91phox, NF-κB activity, Glu and NE, in the PVN of HF rats. PVN infusions of LOS or PDTC also attenuated the increases in RSNA and plasma PICs, NE and epinephrine in MI rats. These findings suggest that interaction between AT1 receptor and NF-κB in the PVN contributes to oxidative stress and sympathoexcitation by modulating neurotransmitters in heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dampney, R. A., Fontes, M. A., Hirooka, Y., Horiuchi, J., Potts, P. D., & Tagawa, T. (2002). Role of angiotensin II receptors in the regulation of vasomotor neurons in the ventrolateral medulla. Clinical and Experimental Pharmacology and Physiology, 29, 467–472.

    Article  PubMed  CAS  Google Scholar 

  2. Zhu, G. Q., Gao, L., Li, Y., Patel, K. P., Zucker, I. H., & Wang, W. (2004). AT1 receptor mRNA antisense normalizes enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 287, H1828–H1835.

    Article  PubMed  CAS  Google Scholar 

  3. Francis, J., Wei, S. G., Weiss, R. M., & Felder, R. B. (2004). Brain angiotensin-converting enzyme activity and autonomic regulation in heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 287, H2138–H2146.

    Article  PubMed  CAS  Google Scholar 

  4. Wang, H., Huang, B. S., Ganten, D., & Leenen, F. H. (2004). Prevention of sympathetic and cardiac dysfunction after myocardial infarction in transgenic rats deficient in brain angiotensinogen. Circulation Research, 94, 843–849.

    Article  PubMed  CAS  Google Scholar 

  5. Zhang, Z. H., Wei, S. G., Francis, J., & Felder, R. B. (2003). Cardiovascular and renal sympathetic activation by blood-borne TNF-alpha in rat: The role of central prostaglandins. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 284, R916–R927.

    PubMed  CAS  Google Scholar 

  6. Agarwal, D., Welsch, M. A., Keller, J. N., & Francis, J. (2011). Chronic exercise modulates RAS components and improves balance between pro- and anti-inflammatory cytokines in the brain of SHR. Basic Research in Cardiology, 106, 1069–1085.

    Article  PubMed  CAS  Google Scholar 

  7. Chappell, D., Hofmann-Kiefer, K., Jacob, M., Rehm, M., Briegel, J., Welsch, U., et al. (2009). TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Research in Cardiology, 104, 78–89.

    Article  PubMed  CAS  Google Scholar 

  8. Chorianopoulos, E., Heger, T., Lutz, M., Frank, D., Bea, F., Katus, H. A., et al. (2010). FGF-inducible 14-kDa protein (Fn14) is regulated via the RhoA/ROCK kinase pathway in cardiomyocytes and mediates nuclear factor-kappaB activation by TWEAK. Basic Research in Cardiology, 105, 301–313.

    Article  PubMed  CAS  Google Scholar 

  9. Lacerda, L., McCarthy, J., Mungly, S. F., Lynn, E. G., Sack, M. N., Opie, L. H., et al. (2010). TNFα protects cardiac mitochondria independently of its cell surface receptors. Basic Research in Cardiology, 105, 751–762.

    Article  PubMed  CAS  Google Scholar 

  10. Li, S., Zhong, S., Zeng, K., Luo, Y., Zhang, F., Sun, X., et al. (2010). Blockade of NF-kappaB by pyrrolidine dithiocarbamate attenuates myocardial inflammatory response and ventricular dysfunction following coronary microembolization induced by homologous microthrombi in rats. Basic Research in Cardiology, 105, 139–150.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang, C., Wu, J., Xu, X., Potter, B. J., & Gao, X. (2010). Direct relationship between levels of TNF-alpha expression and endothelial dysfunction in reperfusion injury. Basic Research in Cardiology, 105, 453–464.

    Article  PubMed  CAS  Google Scholar 

  12. Valen, G., Yan, Z. Q., & Hansson, G. K. (2001). Nuclear factor kappa-B and the heart. Journal of the American College of Cardiology, 38, 307–314.

    Article  PubMed  CAS  Google Scholar 

  13. Bhakar, A. L., Tannis, L. L., Zeindler, C., Russo, M. P., Jobin, C., Park, D. S., et al. (2002). Constitutive NF-κB activity is required for central neuron survival. Journal of Neuroscience, 22, 8466–8475.

    PubMed  CAS  Google Scholar 

  14. Gloire, G., Legrand-Poels, S., & Piette, J. (2006). NF-kappaB activation by reactive oxygen species: Fifteen years later. Biochemical Pharmacology, 72, 1493–1505.

    Article  PubMed  CAS  Google Scholar 

  15. Kang, Y. M., Ma, Y., Elks, C., Zheng, J. P., Yang, Z. M., & Francis, J. (2008). Cross-talk between cytokines and renin-angiotensin in hypothalamic paraventricular nucleus in heart failure: Role of nuclear factor-kappaB. Cardiovascular Research, 79, 671–678.

    Article  PubMed  CAS  Google Scholar 

  16. Kang, Y. M., He, R. L., Yang, L. M., Qin, D. N., Guggilam, A., Elks, C., et al. (2009). Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovascular Research, 83, 737–746.

    Article  PubMed  CAS  Google Scholar 

  17. Francis, J., MohanKumar, S. M., & MohanKumar, P. S. (2000). Correlations of norepinephrine release in the paraventricular nucleus with plasma corticosterone and leptin after systemic lipopolysaccharide: Blockade by soluble IL-1 receptor. Brain Research, 867, 180–187.

    Article  PubMed  CAS  Google Scholar 

  18. Paxinos, G., Watson, C. R., & Emson, P. C. (1986). The rat brain in stereotaxic coordinates. San Diego, CA: Academic.

    Google Scholar 

  19. Kang, Y. M., Zhang, Z. H., Johnson, R. F., Yu, Y., Beltz, T., Johnson, A. K., et al. (2006). Novel effect of mineralocorticoid receptor antagonism to reduce proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart failure. Circulation Research, 99, 758–766.

    Article  PubMed  CAS  Google Scholar 

  20. Francis, J., Weiss, R. M., Wei, S. G., Johnson, A. K., Beltz, T. G., Zimmerman, K., et al. (2001). Central mineralocorticoid receptor blockade improves volume regulation and reduces sympathetic drive in heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 281, H2241–H2251.

    PubMed  CAS  Google Scholar 

  21. Nagura, S., Sakagami, T., Kakiichi, A., Yoshimoto, M., & Miki, K. (2004). Acute shifts in baroreflex control of renal sympathetic nerve activity induced by REM sleep and grooming in rats. Journal of Physiology, 558, 975–983.

    Article  PubMed  CAS  Google Scholar 

  22. Guggilam, A., Haque, M., Kerut, E. K., McIlwain, E., Lucchesi, P., Seghal, I., et al. (2007). TNF-alpha blockade decreases oxidative stress in the paraventricular nucleus and attenuates sympathoexcitation in heart failure rats. American Journal of Physiology-Heart and Circulatory Physiology, 293, H599–H609.

    Article  PubMed  CAS  Google Scholar 

  23. Liu, J. L., Irvine, S., Reid, I. A., Patel, K. P., & Zucker, I. H. (2000). Chronic exercise reduces sympathetic nerve activity in rabbits with pacing-induced heart failure: A role for angiotensin II. Circulation, 102, 1854–1862.

    Article  PubMed  CAS  Google Scholar 

  24. Kang, Y. M., Wang, Y., Yang, L. M., Elks, C., Cardinale, J., Yu, X. J., et al. (2010). TNF-α in hypothalamic paraventricular nucleus contributes to sympathoexcitation in heart failure by modulating AT1 receptor and neurotransmitters. Tohoku Journal of Experimental Medicine, 222, 251–263.

    Article  PubMed  CAS  Google Scholar 

  25. MohanKumar, S. M., MohanKumar, P. S., & Quadri, S. K. (1998). Specificity of interleukin-1beta-induced changes in monoamine concentrations in hypothalamic nuclei: Blockade by interleukin-1 receptor antagonist. Brain Research Bulletin, 47, 29–34.

    Article  PubMed  CAS  Google Scholar 

  26. Barber, M., Kasturi, B. S., Austin, M. E., Patel, K. P., MohanKumar, S. M., & MohanKumar, P. S. (2003). Diabetes-induced neuroendocrine changes in rats: Role of brain monoamines, insulin and leptin. Brain Research, 964, 128–135.

    Article  PubMed  CAS  Google Scholar 

  27. Yang, L. M., Hu, B., Xia, Y. H., Zhang, B. L., & Zhao, H. (2008). Lateral habenula lesions improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus. Behavioural Brain Research, 188, 84–90.

    Article  PubMed  Google Scholar 

  28. Guggilam, A., Patel, K. P., Haque, M., Ebenezer, P. J., Kapusta, D. R., & Francis, J. (2008). Cytokine blockade attenuates sympathoexcitation in heart failure: Cross-talk between nNOS, AT-1R and cytokines in the hypothalamic paraventricular nucleus. European Journal of Heart Failure, 10, 625–634.

    Article  PubMed  CAS  Google Scholar 

  29. Kang, Y. M., Zhang, A. Q., Zhao, X. F., Cardinale, J. P., Elks, C., Cao, X. M., et al. (2011). Paraventricular nucleus corticotrophin releasing hormone contributes to sympathoexcitation via interaction with neurotransmitters in heart failure. Basic Research in Cardiology, 106, 473–483.

    Article  PubMed  CAS  Google Scholar 

  30. Qi, J., Zhang, D. M., Suo, Y. P., Song, X. A., Yu, X. J., Elks, C., et al. (2013). Renin-Angiotensin System Modulates Neurotransmitters in the Paraventricular Nucleus and Contributes to Angiotensin II-Induced Hypertensive Response. Cardiovascular Toxicology, 13, 48–54.

    Article  PubMed  CAS  Google Scholar 

  31. Zheng, M., Kang, Y. M., Liu, W., Zang, W. J., Bao, C. Y., & Qin, D. N. (2012). Inhibition of cyclooxygenase-2 reduces hypothalamic excitation in rats with adriamycin-induced heart failure. PLoS ONE, 7, e48771.

    Article  PubMed  CAS  Google Scholar 

  32. Kang, Y. M., Ma, Y., Zheng, J. P., Elks, C., Sriramula, S., Yang, Z. M., et al. (2009). Brain nuclear factor-kappa B activation contributes to neurohumoral excitation in angiotensin II-induced hypertension. Cardiovascular Research, 82, 503–512.

    Article  PubMed  CAS  Google Scholar 

  33. Kang, Y. M., Zhang, Z. H., Xue, B., Weiss, R. M., & Felder, R. B. (2008). Inhibition of brain proinflammatory cytokine synthesis reduces hypothalamic excitation in rats with ischemia-induced heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 295, H227–H236.

    Article  PubMed  CAS  Google Scholar 

  34. Aguilera, G., Young, W. S., Kiss, A., & Bathia, A. (1995). Direct regulation of hypothalamic corticotropin-releasing-hormone neurons by angiotensin II. Neuroendocrinology, 61, 437–444.

    Article  PubMed  CAS  Google Scholar 

  35. Jezova, D., Ochedalski, T., Kiss, A., & Aguilera, G. (1998). Brain angiotensin II modulates sympathoadrenal and hypothalamic pituitary adrenocortical activation during stress. Journal of Neuroendocrinology, 10, 67–72.

    Article  PubMed  CAS  Google Scholar 

  36. Schwarz, M., Schmitt, T., Pergande, G., & Block, F. (1995). N-methyl-D-aspartate and alpha 2-adrenergic mechanisms are involved in the depressant action of flupirtine on spinal reflexes in rats. European Journal of Pharmacology, 276, 247–255.

    Article  PubMed  CAS  Google Scholar 

  37. Swanson, L. W., & Sawchenko, P. E. (1983). Hypothalamic integration: Organization of the paraventricular and supraoptic nuclei. Annual Review of Neuroscience, 6, 269–324.

    Article  PubMed  CAS  Google Scholar 

  38. Zucker, I. H. (2006). Novel mechanisms of sympathetic regulation in chronic heart failure. Hypertension, 48, 1005–1011.

    Article  PubMed  CAS  Google Scholar 

  39. Cowling, R. T., Gurantz, D., Peng, J., Dillmann, W. H., & Greenberg, B. H. (2002). Transcription factor NF-kappa B is necessary for up-regulation of type 1 angiotensin II receptor mRNA in rat cardiac fibroblasts treated with tumor necrosis factor-alpha or interleukin-1 beta. Journal of Biological Chemistry, 277, 5719–5724.

    Article  PubMed  CAS  Google Scholar 

  40. Chen, Z. J., Parent, L., & Maniatis, T. (1996). Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity. Cell, 84, 853–862.

    Article  PubMed  CAS  Google Scholar 

  41. van den, B. R., Haenen, G. R., van den, B. H., & Bast, A. (2001). Transcription factor NF-κB as a potential biomarker for oxidative stress. British Journal of Nutrition, 86, S121–S127.

    Article  Google Scholar 

  42. Swanson, L. W., & Sawchenko, P. E. (1980). Paraventricular nucleus: A site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology, 31, 410–417.

    Article  PubMed  CAS  Google Scholar 

  43. Hermes, M. L., Coderre, E. M., Buijs, R. M., & Renaud, L. P. (1996). GABA and glutamate mediate rapid neurotransmission from suprachiasmatic nucleus to hypothalamic paraventricular nucleus in rat. Journal of Physiology, 496, 749–757.

    PubMed  CAS  Google Scholar 

  44. Tasker, J. G., Boudaba, C., & Schrader, L. A. (1998). Local glutamatergic and GABAergic synaptic circuits and metabotropic glutamate receptors in the hypothalamic paraventricular and supraoptic nuclei. Advances in Experimental Medicine and Biology, 449, 117–121.

    Article  PubMed  CAS  Google Scholar 

  45. Antonaccio, M. J., Kerwin, L., & Taylor, D. G. (1978). Reductions in blood pressure, heart rate and renal sympathetic nerve discharge in cats after the central administration of muscimol, a GABA agonist. Neuropharmacology, 17, 783–791.

    Article  PubMed  CAS  Google Scholar 

  46. Brennan, T. J., Haywood, J. R., & Ticku, M. K. (1983). GABA receptor binding and hemodynamic responses to ICV GABA in adult spontaneously hypertensive rats. Life Sciences, 33, 701–709.

    Article  PubMed  CAS  Google Scholar 

  47. Arabia, A. M., Catapano, L., Storini, C., Perego, C., De Luigi, A., Head, G. A., et al. (2002). Impaired central stress-induced release of noradrenaline in rats with heart failure: A microdialysis study. Neuroscience, 114, 591–599.

    Article  PubMed  CAS  Google Scholar 

  48. Basu, S., Sinha, S. K., Shao, Q., Ganguly, P. K., & Dhalla, N. S. (1996). Neuropeptide Y modulation of sympathetic activity in myocardial infarction. Journal of the American College of Cardiology, 27, 1796–1803.

    Article  PubMed  CAS  Google Scholar 

  49. Chen, Q. H., Haywood, J. R., & Toney, G. M. (2003). Sympathoexcitation by PVN-injected bicuculline requires activation of excitatory amino acid receptors. Hypertension, 42, 725–731.

    Article  PubMed  CAS  Google Scholar 

  50. Cole, R. L., & Sawchenko, P. E. (2002). Neurotransmitter regulation of cellular activation and neuropeptide gene expression in the paraventricular nucleus of the hypothalamus. Journal of Neuroscience, 22, 959–969.

    PubMed  CAS  Google Scholar 

  51. Zhang, K., Li, Y. F., & Patel, K. P. (2002). Reduced endogenous GABA-mediated inhibition in the PVN on renal nerve discharge in rats with heart failure. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 282, R1006–R1015.

    PubMed  CAS  Google Scholar 

  52. Kleiber, A. C., Zheng, H., Schultz, H. D., Peuler, J. D., & Patel, K. P. (2008). Exercise training normalizes enhanced glutamate-mediated sympathetic activation from the PVN in heart failure. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 294, R1863–R1872.

    Article  PubMed  CAS  Google Scholar 

  53. Patel, K. P. (2000). Role of paraventricular nucleus in mediating sympathetic outflow in heart failure. Heart Failure Reviews, 5, 73–86.

    Article  PubMed  CAS  Google Scholar 

  54. Dampney, R. A., Horiuchi, J., Killinger, S., Sheriff, M. J., Tan, P. S., & McDowall, L. M. (2005). Long-term regulation of arterial blood pressure by hypothalamic nuclei: Some critical questions. Clinical and Experimental Pharmacology and Physiology, 32, 419–425.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Basic Research Program of China (No. 2012CB517805), National Natural Science Foundation of China (Nos. 81170248, 81070199, 31171095) and Research Fund for the Doctoral Program of Higher Education of China (No. 20101417110002).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Ming Kang.

Additional information

Xiao-Jing Yu and Yu-Ping Suo have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, XJ., Suo, YP., Qi, J. et al. Interaction Between AT1 Receptor and NF-κB in Hypothalamic Paraventricular Nucleus Contributes to Oxidative Stress and Sympathoexcitation by Modulating Neurotransmitters in Heart Failure. Cardiovasc Toxicol 13, 381–390 (2013). https://doi.org/10.1007/s12012-013-9219-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-013-9219-x

Keywords

Navigation