Skip to main content

Advertisement

Log in

FGF-inducible 14-kDa protein (Fn14) is regulated via the RhoA/ROCK kinase pathway in cardiomyocytes and mediates nuclear factor-kappaB activation by TWEAK

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Proinflammatory cytokines, including TNF family members, have been shown to play a critical role in cardiac remodeling. FGF-inducible 14-kDa protein (Fn14, TNFrsf12a or TWEAKR) is the smallest member of the TNF-receptor family. Currently, little is known about the functional role of Fn14 and its only known ligand TNF-like weak inducer of apoptosis (TWEAK) in the heart. We therefore evaluated the expression and regulation of Fn14 in cardiomyocytes and in experimental myocardial infarction. In order to study the regulation of Fn14, myocardial infarction was induced in CD-1 mice and neonatal rat cardiomyocytes were used for in vitro studies. TWEAK and Fn14 were markedly upregulated in the remodeling myocardium after experimental myocardial infarction in vivo. Likewise, fibroblast growth factor 1, norepinephrine and angiotensin II as well as mechanical stretch were able to strongly induce Fn14 expression in cardiomyocytes. This induction is mediated via the Rho/ROCK pathway, since the known inhibitors C3 exoenzyme for RhoA and Y27632 for ROCK prevented the upregulation of Fn14 in cardiomyocytes. Consistently, pretreatment of cardiomyocytes with siRNA against Rho A and ROCK also abolished Fn14 induction. Moreover, stimulation of cardiomyocytes with TWEAK promoted nuclear translocation of NF-κB and subsequent induction of NF-κB dependent genes such as RANTES and MCP-1. Conversely, when cells were pretreated with siRNA against Fn14, NF-κB activation by TWEAK was inhibited. We here provide the first evidence of a stress-induced regulation of the TWEAK/Fn14 axis in cardiomyocytes implying a role of the TWEAK/Fn14 pathway in cardiac remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aikawa R, Komuro I, Nagai R, Yazaki Y (2000) Rho plays an important role in angiotensin II-induced hypertrophic responses in cardiac myocytes. Mol Cell Biochem 212:177–182

    Article  CAS  PubMed  Google Scholar 

  2. Anker SD, Coats AJ (2002) How to RECOVER from RENAISSANCE? The significance of the results of RECOVER, RENAISSANCE, RENEWAL and ATTACH. Int J Cardiol 86:123–130

    Article  PubMed  Google Scholar 

  3. Aukrust P, Ueland T, Müller F, Andreassen AK, Nordøy I, Aas H, Kjekshus J, Simonsen S, Frøland SS, Gullestad L (1998) Elevated circulating levels of C-C chemokines in patients with congestive heart failure. Circulation 97:1136–1143

    CAS  PubMed  Google Scholar 

  4. Behr TM, Wang X, Aiyar N, Coatney RW, Li X, Koster P, Angermann CE, Ohlstein E, Feuerstein GZ, Winaver J (2000) Monocyte chemoattractant protein-1 is upregulated in rats with volume-overload congestive heart failure. Circulation 102:1315–1322

    CAS  PubMed  Google Scholar 

  5. Bover LC, Cardó-Vila M, Kuniyasu A, Sun J, Rangel R, Takeya M, Aggarwal BB, Arap W, Pasqualini R (2007) A previously unrecognized protein–protein interaction between TWEAK and CD163: potential biological implications. J Immunol 178:8183–8194

    CAS  PubMed  Google Scholar 

  6. Brown SAN, Richards CM, Hanscom HN, Feng SL, Winkles JA (2003) The Fn14 cytoplasmic tail binds tumour-necrosis-factor-receptor-associated factors 1, 2, 3 and 5 and mediates nuclear factor-kB activation. Biochem J 371:395–403

    Article  CAS  PubMed  Google Scholar 

  7. Campbell S, Burkly LC, Gao HX, Berman JW, Su L, Browning B, Zheng T, Schiffer L, Michaelson JS, Putterman C (2006) Proinflammatory effects of TWEAK/Fn14 interactions in glomerular mesangial cells. J Immunol 176:1889–1898

    CAS  PubMed  Google Scholar 

  8. Celis R, Torre-Martinez G, Torre-Amione G (2008) Evidence for activation of immune system in heart failure: is there a role for anti-inflammatory therapy? Curr Opin Cardiol 23:254–260

    Article  PubMed  Google Scholar 

  9. Chen D, Assad-Kottner C, Orrego C, Torre-Amione G (2008) Cytokines and acute heart failure. Crit Care Med 36:S9–S16

    Article  CAS  PubMed  Google Scholar 

  10. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT (2003) Randomized, double-blind, placebo controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF therapy against congestive heart failure (ATTACH) trial. Circulation 107:3133–3140

    Article  CAS  PubMed  Google Scholar 

  11. Cuenca J, Goren N, Prieto P, Martín-Sanz P, Boscá L (2007) Selective impairment of nuclear factor-kappaB-dependent gene transcription in adult cardiomyocytes: relevance for the regulation of the inflammatory response in the heart. Am J Pathol 171:820–828

    Article  CAS  PubMed  Google Scholar 

  12. Damås JK, Eiken HG, Oie E, Bjerkeli V, Yndestad A, Ueland T, Tonnessen T, Geiran OR, Aass H, Simonsen S, Christensen G, Froland SS, Attramadal H, Gullestad L, Aukrust P (2000) Myocardial expression of CC- and CXC-chemokines and their receptors in human end-stage heart failure. Cardiovasc Res 47:778–787

    Article  PubMed  Google Scholar 

  13. Deswal A, Bozkurt B, Seta Y, Parilti-Eiswirth S, Hayes FA, Blosch C, Mann DL (1999) Safety and efficacy of a soluble P75 tumor necrosis factor receptor (Enbrel, etanercept) in patients with advanced heart failure. Circulation 99:3224–3226

    CAS  PubMed  Google Scholar 

  14. Dogra C, Changotra H, Mohan S, Kumar A (2006) Tumor necrosis factor-like weak inducer of apoptosis inhibits skeletal myogenesis through sustained activation of nuclear factor-kappaB and degradation of MyoD protein. J Biol Chem 281:10327–10336

    Article  CAS  PubMed  Google Scholar 

  15. Dogra C, Changotra H, Wedhas N, Qin X, Wergedal JE, Kumar A (2007) TNF-related weak inducer of apoptosis (TWEAK) is a potent skeletal muscle-wasting cytokine. FASEB J 21:1857–1869

    Article  CAS  PubMed  Google Scholar 

  16. Dogra C, Hall SL, Wedhas N, Linkhart TA, Kumar A (2007) Fibroblast growth factor inducible 14 (Fn14) is required for the expression of myogenic regulatory factors and differentiation of myoblasts into myotubes. Evidence for TWEAK-independent functions of Fn14 during myogenesis. J Biol Chem 282:15000–15010

    Article  CAS  PubMed  Google Scholar 

  17. Feng SL, Guo Y, Factor VM, Thorgeirsson SS, Bell DW, Testa JR, Peifley KA, Winkles JA (2000) The Fn14 immediate-early response gene is induced during liver regeneration and highly expressed in both human and murine hepatocellular carcinomas. Am J Pathol 156:1253–1261

    CAS  PubMed  Google Scholar 

  18. Ferrari R, Bachetti T, Confortini R, Opasich C, Febo O, Corti A, Cassani G, Visioli O (1995) Tumour necrosis factor soluble receptors in patients with various degrees of congestive heart failure. Circulation 92:1479–1486

    CAS  PubMed  Google Scholar 

  19. Frank D, Kuhn C, Brors B, Hanselmann C, Lüdde M, Katus HA, Frey N (2008) Gene expression pattern in biomechanically stretched cardiomyocytes: evidence for a stretch-specific gene program. Hypertension 51:309–318

    Article  CAS  PubMed  Google Scholar 

  20. Frantz S, Hu K, Adamek A, Wolf J, Sallam A, Maier SK, Lonning S, Ling H, Ertl G, Bauersachs J (2008) Transforming growth factor beta inhibition increases mortality and left ventricular dilatation after myocardial infarction. Basic Res Cardiol 103:485–492

    Article  CAS  PubMed  Google Scholar 

  21. Gallagher G, Menzie S, Huang Y, Jackson C, Hunyor SN (2007) Regional cardiac dysfunction is associated with specific alterations in inflammatory cytokines and matrix metalloproteinases after acute myocardial infarction in sheep. Basic Res Cardiol 102:63–72

    Article  CAS  PubMed  Google Scholar 

  22. Grabellus F, Levkau B, Sokoll A, Welp H, Schmid C, Deng MC, Takeda A, Breithardt G, Baba HA (2002) Reversible activation of nuclear factor kappa B in human end-stage heart failure after left ventricular mechanical support. Cardiovasc Res 53:124–130

    Article  CAS  PubMed  Google Scholar 

  23. Hamid T, Gu Y, Ortines RV, Bhattacharya C, Wang G, Xuan YT, Prabhu SD (2009) Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kappaB and inflammatory activation. Circulation 119:1386–1397

    Article  CAS  PubMed  Google Scholar 

  24. Han S, Yoon K, Lee K, Kim K, Jang H, Lee NK, Hwang K, Young Lee S (2003) TNF related weak inducer of apoptosis receptor, a TNF receptor superfamily member, activates NF-kappa B through TNF receptor-associated factors. Biochem Biophys Res Commun 305:789–796

    Article  CAS  PubMed  Google Scholar 

  25. Hayashidani S, Tsutsui H, Shiomi T, Ikeuchi M, Matsusaka H, Suematsu N, Wen J, Egashira K, Takeshita A (2003) Anti-monocyte chemoattractant protein-1 gene therapy attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation 108:2134–2140

    Article  CAS  PubMed  Google Scholar 

  26. Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, Dyspersin GD, Cleutjens JP, Shipley M, Angellilo A, Levi M, Nübe O, Baker A, Keshet E, Lupu F, Herbert JM, Smits JF, Shapiro SD, Baes M, Borgers M, Collen D, Daemen MJ, Carmeliet P (1999) Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5:1135–1142

    Article  CAS  PubMed  Google Scholar 

  27. Heymans S, Lupu F, Terclavers S, Vanwetswinkel B, Herbert JM, Baker A, Collen D, Carmeliet P, Moons L (2005) Loss or inhibition of uPA or MMP-9 attenuates LV remodeling and dysfunction after acute pressure overload in mice. Am J Pathol 166:15–25

    CAS  PubMed  Google Scholar 

  28. Hirotani S, Otsu K, Nishida K, Higuchi Y, Morita T, Nakayama H, Yamaguchi O, Mano T, Matsumura Y, Ueno H, Tada M, Hori M (2002) Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation 105:509–515

    Article  CAS  PubMed  Google Scholar 

  29. Jain M, Jakubowski A, Cui L, Shi J, Su L, Bauer M, Guan J, Lim CC, Naito Y, Thompson JS, Sam F, Ambrose C, Parr M, Crowell T, Lincecum JM, Wang MZ, Hsu YM, Zheng TS, Michaelson JS, Liao R, Burkly LC (2009) A novel role for tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in the development of cardiac dysfunction and failure. Circulation 119:2058–2068

    Article  CAS  PubMed  Google Scholar 

  30. Levine B, Kalman J, Mayer L, Fillit HM, Packer M (1990) Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 323:236–241

    CAS  PubMed  Google Scholar 

  31. Lynch CN, Wang YC, Lund JK, Chen Y, Leal JA, Wiley SR (1999) TWEAK induces angiogenesis and proliferation of endothelial cells. J Biol Chem 274:8455–8459

    Article  CAS  PubMed  Google Scholar 

  32. Meighan-Mantha RL, Hsu DK, Guo Y, Brown SA, Feng SL, Peifley KA, Alberts GF, Copeland NG, Gilbert DJ, Jenkins NA, Richards CM, Winkles JA (1999) The mitogen-inducible Fn14 gene encodes a type I transmembrane protein that modulates fibroblast adhesion and migration. J Biol Chem 274:33166–33176

    Article  CAS  PubMed  Google Scholar 

  33. Muñoz-García B, Martín-Ventura JL, Martínez E, Sánchez S, Hernández G, Ortega L, Ortiz A, Egido J, Blanco-Colio LM (2006) Fn14 is upregulated in cytokine-stimulated vascular smooth muscle cells and is expressed in human carotid atherosclerotic plaques: modulation by atorvastatin. Stroke 37:2044–2053

    Article  PubMed  Google Scholar 

  34. Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA (2006) Controversies in ventricular remodelling. Lancet 367:356–367

    Article  PubMed  Google Scholar 

  35. Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA, Braunwald E (1979) Myocardial infarct size and ventricular function in rats. Circ Res 44:503–512

    CAS  PubMed  Google Scholar 

  36. Polavarapu R, Gongora MC, Winkles JA, Yepes M (2005) Tumor necrosis factor-like weak inducer of apoptosis increases the permeability of the neurovascular unit through nuclear factor-κB pathway activation. J Neurosci 25:10094–10100

    Article  CAS  PubMed  Google Scholar 

  37. Purcell NH, Tang G, Yu C, Mercurio F, DiDonato JA, Lin A (2001) Activation of NF-kappa B is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proc Natl Acad Sci USA 98:6668–6673

    Article  CAS  PubMed  Google Scholar 

  38. Sah VP, Hoshijima M, Chien KR, Brown JH (1996) Rho is required for Galphaq and alpha1-adrenergic receptor signaling in cardiomyocytes. Dissociation of Ras and Rho pathways. J Biol Chem 271:31185–31190

    Article  CAS  PubMed  Google Scholar 

  39. Satoh M, Minami Y, Takahashi Y, Nakamura M (2008) Immune modulation: role of the inflammatory cytokine cascade in the failing human heart. Curr Heart Fail Rep 5:69–74

    Article  CAS  PubMed  Google Scholar 

  40. Schulz R, Heusch G (2009) Tumor necrosis factor-alpha and its receptors 1 and 2: Yin and Yang in myocardial infarction? Circulation 119:1355–1357

    Article  PubMed  Google Scholar 

  41. Seta Y, Shan K, Bozkurt B, Oral H, Mann DL (1996) Basic mechanisms in heart failure: the cytokine hypothesis. J Card Fail 2:243–249

    Article  CAS  PubMed  Google Scholar 

  42. Shioi T, Matsumori A, Kihara Y, Inoko M, Ono K, Iwanaga Y, Yamada T, Iwasaki A, Matsushima K, Sasayama S (1997) Increased expression of interleukin-1 beta and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in the hypertrophied and failing heart with pressure overload. Circ Res 81:664–671

    CAS  PubMed  Google Scholar 

  43. Skyschally A, Gres P, Hoffmann S, Haude M, Erbel R, Schulz R, Heusch G (2007) Bidirectional role of tumor necrosis factor-alpha in coronary microembolization: progressive contractile dysfunction versus delayed protection against infarction. Circ Res 100:140–146

    Article  CAS  PubMed  Google Scholar 

  44. Tanabe K, Bonilla I, Winkles JA, Strittmatter SM (2003) Fibroblast growth factor-inducible-14 is induced in axotomized neurons and promotes neurite outgrowth. J Neurosci 23:9675–9686

    CAS  PubMed  Google Scholar 

  45. Tran NL, McDonough WS, Savitch BA, Fortin SP, Winkles JA, Symons M, Nakada M, Cunliffe HE, Hostetter G, Hoelzinger DB, Rennert JL, Michaelson JS, Burkly LC, Lipinski CA, Loftus JC, Mariani L, Berens ME (2006) Increased fibroblast growth factor inducible 14 expression levels promote glioma cell invasion via Rac1 and nuclear factor-kB and correlate with poor patient outcome. Cancer Res 66:9535–9542

    Article  CAS  PubMed  Google Scholar 

  46. Tran NL, McDonough WS, Savitch BA, Sawyer TF, Winkles JA, Beren ME (2005) The tumor necrosis factor-like weak inducer of apoptosis (TWEAK) fibroblast growth factor-inducible 14 (Fn14) signaling system regulates glioma cell via NFkappaB pathway activation and BCL-XL/BCL-W expression. J Chem 280:3483–3492

    CAS  Google Scholar 

  47. Torre-Amione G (2005) Immune activation in chronic heart failure. Am J Cardiol 95:3C–8C

    Article  CAS  PubMed  Google Scholar 

  48. Vince JE, Chau D, Callus B, Wong WW, Hawkins CJ, Schneider P, McKinlay M, Benetatos CA, Condon SM, Chunduru SK, Yeoh G, Brink R, Vaux DL, Silke J (2008) TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1-TRAF2 complex to sensitize tumor cells to TNFalpha. J Cell Biol 182:171–184

    Article  CAS  PubMed  Google Scholar 

  49. Wiley SR, Cassiano L, Lofton T, Davis-Smith T, Winkles JA, Lindner V, Liu H, Daniel TO, Smith CA, Fanslow WC (2001) A novel TNF receptor family member binds TWEAK and is implicated in angiogenesis. Immunity 15:837–846

    Article  CAS  PubMed  Google Scholar 

  50. Winkles JA (2008) The TWEAK–Fn14 cytokine–receptor axis: discovery, biology and therapeutic targeting. Nat Rev Drug Discov 7:411–425

    Article  CAS  PubMed  Google Scholar 

  51. Yamakawa T, Tanaka S, Numaguchi K, Yamakawa Y, Motley ED, Ichihara S, Inagami T (2000) Involvement of Rho-kinase in angiotensin II-induced hypertrophy of rat vascular smooth muscle cells. Hypertension 35:313–318

    CAS  PubMed  Google Scholar 

  52. Yang M, Wu J, Martin CM, Kvietys PR, Rui T (2008) Important role of p38 MAP kinase/NF-kappaB signaling pathway in the sepsis-induced conversion of cardiac myocytes to a proinflammatory phenotype. Am J Physiol Heart Circ Physiol 294:H994–H1001

    Article  CAS  PubMed  Google Scholar 

  53. Yepes M, Brown SAN, Moore EG, Smith EP, Lawrence DA, Winkles JA (2005) A soluble Fn14-Fc decoy receptor reduces infarct volume in a murine model of cerebral ischemia. Am J Pathol 166:511–520

    CAS  PubMed  Google Scholar 

  54. Zhou L, Azfer A, Niu J, Graham S, Choudhury M, Adamski FM, Younce C, Binkley PF, Kolattukudy PE (2006) Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ Res 98:1177–1185

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank J. Krebs, U. Oehl, L. Brtvova and A Buttler for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emmanuel Chorianopoulos or Norbert Frey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

395_2009_46_MOESM1_ESM.tif

Supplementary Fig. 1 Norepinephrine stimulated expression of ANF,ß-MHC and MCIP 1.4 incultured neonatal cardiomyocytes (n=3; * = p<0.05) (TIF 65 kb)

395_2009_46_MOESM2_ESM.tif

Supplementary Fig. 2 TWEAK did not induce expression of hypertrophy markers in neonatalcardiomyocytes (n=3; p= ns) (TIF 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chorianopoulos, E., Heger, T., Lutz, M. et al. FGF-inducible 14-kDa protein (Fn14) is regulated via the RhoA/ROCK kinase pathway in cardiomyocytes and mediates nuclear factor-kappaB activation by TWEAK. Basic Res Cardiol 105, 301–313 (2010). https://doi.org/10.1007/s00395-009-0046-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-009-0046-y

Keywords

Navigation