Skip to main content

Advertisement

Log in

Effects of Se-Enriched Malt on the Immune and Antioxidant Function in the Se-Deprived Reclamation Merino Sheep in Southern Xinjiang

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We have found that the Reclamation merino sheep in Southern Xinjiang, China, showed emaciation, stiff limbs, instability, and sudden death, which is related to the impairment of immune function and antioxidant capacity caused by selenium (Se) deficiency. The experiments were to study the effects of Se-enriched malt on the immune and antioxidant function in Se-deprived Reclamation merino sheep in Southern Xinjiang, China. The samples of soil and forage had been collected from tested pastures, and animal tissues were also collected in tested animals. The mineral content of soil, forage, and animal tissues was measured in the collected samples. Hematological indexes and biochemical values were also examined. The findings showed that the Se contents were extremely lower in affected soil and forage than those from healthy soil and forage (P < 0.01). The Se contents in affected blood and wool were also extremely lower than those from healthy blood and wool (P < 0.01). The values in glutathione peroxidase and total antioxidant capacity in affected serum samples were also extremely lower than those from healthy serum samples, and levels of malondialdehyde, total nitric oxide synthase, and lipid peroxide were extremely higher in affected serum samples than those from healthy serum samples (P < 0.01). Meanwhile, the values of hemoglobin, packed cell volume, and platelet count from affected blood were extremely lower than those from healthy blood (P < 0.01). The levels of interleukin (IL)-1β, IL-2, tumor necrosis factor-alpha, immunoglobulin A, and immunoglobulin G in serum were extremely decreased in the affected Reclamation merino sheep (P < 0.01). The levels of IL-6 and immunoglobulin M in serum were extremely reduced in the affected Reclamation merino sheep compared to healthy animals (P < 0.01). The animals in affected pastures were orally treated with Se-enriched malt, and the Se contents in blood were extremely increased (P < 0.01). The immune function and antioxidant indicator returned to within the healthy range. Consequently, our findings were indicated that the disorder of the Reclamation merino sheep was mainly caused by the Se deficiency in soil and forage. The Se-enriched malt could not only markedly increase the Se content in blood but also much improve the immune function and the antioxidant capacity in the Se-deprived Reclamation merino sheep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Data will be available on request due to restriction privacy. The data presented in this study are available on request from the corresponding author. The data are not publicly available because this paper is part of a series of studies, and disclosure of data may influence the publication of subsequent papers.

References

  1. Shen XY, Song CJ (2021) Responses of Chinese merino sheep (Junken Type) on copper-deprived natural pasture. Biol Trace Elem Res 199(4):989–995. https://doi.org/10.1007/s12011-020-02214-8

    Article  CAS  PubMed  Google Scholar 

  2. Lv X, Chen L, He S, Liu C (2020) Effect of nutritional restriction on the hair follicles development and skin transcriptome of Chinese merino sheep. Animals 10(6):1058. https://doi.org/10.3390/ani10061058

    Article  PubMed Central  Google Scholar 

  3. Zhao K, Chi YK, Shen XY (2020) Studies on edema pathema in Hequ horse in the Qinghai-Tibet Plateau. Biol Trace Elem Res 198(1):142–148. https://doi.org/10.1007/s12011-020-02043-9

    Article  CAS  PubMed  Google Scholar 

  4. Méplan C, Hughes DJ (2020) The role of selenium in health and disease: emerging and recurring trends. Nutrients 12(4):1049. https://doi.org/10.3390/nu12041049

    Article  CAS  PubMed Central  Google Scholar 

  5. Wang CR, Wang JQ, Zhao GQ, Zhou ZF, Wei HY (2009) Effects of supplementary vitamin E and selenium for cows on growth and immune of neonatal calves. Chinese J Vet Sci 12:3–14

    Article  Google Scholar 

  6. Shen XY, Huo B, Gan SQ (2021) Effects of nano-selenium on antioxidant capacity in Se-deprived Tibetan Gazelle (Procapra picticaudata) in the Qinghai-Tibet Plateau. Biol Trace Elem Res 199(4):981–988. https://doi.org/10.1007/s12011-020-02206-8

    Article  CAS  PubMed  Google Scholar 

  7. Socha K, Klimiuk K, Naliwajko SK, Soroczyńska J, Puścion-Jakubik A, Puścion-Jakubik A, Markiewicz-Żukowska R (2021) Dietary habits, selenium, copper, zinc and total antioxidant status in serum in relation to cognitive functions of patients with Alzheimer’s disease. Nutrients 13(2):287. https://doi.org/10.3390/nu13020287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (2010) Selenium: biochemical role as a component of glutathione peroxidase. Science 38(8):280–283. https://doi.org/10.1126/science.179.4073.588

    Article  Google Scholar 

  9. Li Q, Zhao ZJ, Yang PZ, Xu XQ, Liu YF, Yu HZ, Ma X, Du R, Zhu L (2016) The prevention effect of selenium on prevalence of children kaschin-beck disease in active endemic areas in Qinghai plateau. Biol Trace Elem Res 169(1):17–21. https://doi.org/10.1007/s12011-015-0394-4

    Article  CAS  PubMed  Google Scholar 

  10. Hefnawy AEG, Tórtora PJL (2010) The importance of selenium and the effects of its deficiency in animal health. Small Rumin Res 89(2–3):185–192. https://doi.org/10.1016/j.smallrumres.2009.12.042

    Article  Google Scholar 

  11. Wen H, Zheng X, Quimby FR, Roneker CA, Lei XG (2003) Low levels of glutathione peroxidase 1 activity in selenium-deficient mouse liver affect c-Jun N-terminal kinase activation and p53 phosphorylation on Ser-15 in pro-oxidant-induced aponecrosis. Biochem J 370(3):927–934. https://doi.org/10.1042/BJ20021870

    Article  Google Scholar 

  12. Li YF, He J, Shen XY (2021) Effects of nano-selenium poisoning on immune function in the Wumeng semi-fine wool sheep. Biol Trace Elem Res 199(11):2919–2924. https://doi.org/10.1007/s12011-020-02408-0

    Article  CAS  PubMed  Google Scholar 

  13. Liu KY, Liu HL, Zhang T, Mu LL, Liu XQ, Li GY (2019) Effects of vitamin E and selenium on growth performance, antioxidant capacity, and metabolic parameters in growing furring blue foxes (Alopex lagopus). Biol Trace Elem Res 192(2):183–195. https://doi.org/10.1007/s12011-019-1655-4

    Article  CAS  PubMed  Google Scholar 

  14. Ringuet MT, Hunne B, Lenz M, Bravo DM, Furness JB (2021) Analysis of bioavailability and induction of glutathione peroxidase by dietary nanoelemental, organic and inorganic selenium. Nutrients 13(4):1073. https://doi.org/10.3390/nu13041073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Song CJ, Gan SQ, Shen XY (2020) Effects of nano-copper poisoning on immune and antioxidant function in the Wumeng semi-fine wool sheep. Biol Trace Elem Res 198:515–520. https://doi.org/10.1007/s12011-020-02085-z

    Article  CAS  PubMed  Google Scholar 

  16. Huo B, Wu T, Song CJ, Shen XY (2020) Studies of selenium deficiency in the Wumeng semi-fine wool sheep. Biol Trace Elem Res 194(1):152–158. https://doi.org/10.1007/s12011-019-01751-1

    Article  CAS  PubMed  Google Scholar 

  17. Huo B, Wu T, Song CJ, Shen XY (2019) Effects of selenium deficiency in alpine meadow on antioxidant systems of yaks. China Anim Husb Vet Med 46(04):1053–1062. https://doi.org/10.16431/j.cnki.1671-7236.2019.04.012

    Article  Google Scholar 

  18. Aram S, Bahram DN, Siamak AR, Ehsan A (2020) Platelet selenium indices as useful diagnostic surrogate for assessment of selenium status in lambs: an experimental comparative study on the efficacy of sodium selenite vs selenium nanoparticles. Biol Trace Elem Res 194(2):401–409. https://doi.org/10.1007/s12011-019-01784-6

    Article  CAS  Google Scholar 

  19. Zhang L, Jiao T, Zheng ZC, Liu CQ, Zhou XH, Feng RL (2005) Analysis of Se concentrations in study farm of Sanjiaocheng in Qinghai at different seasons. J Tradit Chin Vet Med 05:17–19. https://doi.org/10.13823/j.cnki.jtcvm.2005.05.006

    Article  Google Scholar 

  20. Huo B, Wu T, Xiao H, Shen XY (2012) Effect of copper contaminated pasture on mineral metabolism in the Wumeng semi-fine wool sheep. Asian J Ecotoxicol 14(6):1–9

    Google Scholar 

  21. Shen XY, Jiang ZG (2012) Serum biochemical values and mineral contents of tissues in Przewalski’s and Tibetan gazelles. Afr J Biotechnol 11(3):718–723. https://doi.org/10.5897/AJB11.114

    Article  CAS  Google Scholar 

  22. Chi YK, Huo B, Shen XY (2020) Distribution characteristics of selenium nutrition on the natural habitat of Przewalski’s Gazelle. Pol J Environ Stud 29(1):67–77. https://doi.org/10.15244/pjoes/104661

    Article  CAS  Google Scholar 

  23. Huo B, Wu T, Chi YK, Min XY, Shen XY (2019) Effect of molybdenum fertilizer treatment to copper pollution meadow on copper metabolism in Wumeng semi-fine wool sheep. J Dom Anim Ecol 40 (07), 44–49. CNKI:SUN:JCST.0.2019–07–010

  24. Grace ND, Knowles SO (2002) A reference curve using blood selenium concentration to diagnose selenium deficiency and predict growth responses in lambs. N Z Vet J 50(4):163–165. https://doi.org/10.1080/00480169.2002.36303

    Article  CAS  PubMed  Google Scholar 

  25. Shen XY, Huo B, Gan SQ (2021) Effects of nano-selenium on antioxidant capacity in se-deprived Tibetan Gazelle (Procapra picticaudata) in the Qinghai-Tibet Plateau. Biol Trace Elem Res 199:981–988. https://doi.org/10.1007/s12011-020-02206-8

    Article  CAS  PubMed  Google Scholar 

  26. Wu XZ, Dai SF, Hua JL, Hu H, Wang SJ, Wen AY (2019) Influence of dietary copper methionine concentrations on growth performance, digestibility of nutrients, serum lipid profiles, and immune defenses in broilers. Biol Trace Elem Re 191(1):199–206. https://doi.org/10.1007/s12011-018-1594-5

    Article  CAS  Google Scholar 

  27. Shen XY, Huo B, Wu T, Song CJ, Chi YK (2019) iTRAQ-based proteomic analysis to identify molecular mechanisms of the selenium deficiency response in the Przewalski’s gazelle. J Proteomics 203(1):103389. https://doi.org/10.1016/j.jprot.2019.103389

    Article  CAS  PubMed  Google Scholar 

  28. Celik S, Akkaya H (2009) Total antioxidant capacity, catalase and superoxide dismutase on rats before and after diabetes. J Anim Vet Adv 8(8):1503–1508. https://doi.org/10.1016/j.fsi.2008.03.014

    Article  CAS  Google Scholar 

  29. Simsek S, Yuce A, Utuk AE (2006) Determination of serum malondialdehyde levels in sheep naturally infected with Dicrocoelium dendriticum. 20 (3), 217-220

  30. Chi YK, Zhang ZZ, Song CJ, Xiong KN, Shen XY (2020) Effects of fertilization on physiological and biochemical parameters of Wumeng sheep in China’s Wumeng prairie. Pol J Environ Stud 29(1):79–85. https://doi.org/10.15244/pjoes/100481

    Article  CAS  Google Scholar 

  31. Zeng R, Muhammad UF, Zhang G, Tang ZC (2020) Dissecting the potential of selenoproteins extracted from selenium-enriched rice on physiological, biochemical and anti-ageing effects in vivo. Biol Trace Elem Res 196(1):119–130. https://doi.org/10.1007/s12011-019-01896-z

    Article  CAS  PubMed  Google Scholar 

  32. Helder L, Egon H, Carolina R, Jimenez PS, Correa DB (2020) Effects of maternal dietary cottonseed on the profile of minerals in the testes of the lamb. Biol Trace Elem Res 197(1):165–172. https://doi.org/10.1007/s12011-019-01971-5

    Article  CAS  Google Scholar 

  33. Corbera JA, Morales M, Pulido M, Gutierrez C (2003) An outbreak of nutritional muscular dystrophy in dromedary camels. J Appl Anim Res 23(1):117–122. https://doi.org/10.1080/09712119.2003.9706775

    Article  Google Scholar 

  34. Zhao K, Huo B, Shen XY (2021) Studies on antioxidant capacity in selenium-deprived the Choko yak in the Shouqu prairie. Biol Trace Elem Res 1–4:1–6. https://doi.org/10.1007/s12011-020-02461-9

    Article  CAS  Google Scholar 

  35. Zhao K, Min XY, Shen XY (2021) Response of the Wumeng sheep to phosphorus deprived environment in the Southwest China. Pol J Environ Stud 30(3):2927–2934. https://doi.org/10.15244/pjoes/128330

    Article  CAS  Google Scholar 

  36. Herena YH, Naghum A, Marla JB, Lucia AS (2019) From selenium absorption to selenoprotein degradation. Biol Trace Elem Res 192(1):26–37. https://doi.org/10.1007/s12011-019-01771-x

    Article  CAS  Google Scholar 

  37. Petkova MTV, Ruseva BK, Atanasova BD (2017) Selenium deficiency as a risk factor for development of anemia. J Biomed Clin Res 10(1):9–17. https://doi.org/10.1515/jbcr-2017-0002

    Article  Google Scholar 

  38. Shen XY, Huo B, Li YF, Song CJ, Wu T, He J (2021) Response of the critically endangered Przewalski’s gazelle (Procapra przewalskii) to selenium deprived environment. J Proteomics 241:104218. https://doi.org/10.1016/j.jprot.2021.104218

    Article  CAS  PubMed  Google Scholar 

  39. Shen XY, Song CJ, Wu T (2021) Effects of nano-copper on antioxidant function in copper-deprived Guizhou black goats. Biol Trace Elem Res 199:2201–2207. https://doi.org/10.1007/s12011-020-02342-1

    Article  CAS  PubMed  Google Scholar 

  40. Emmanuelchide O, Charle O, Uchenna O (2011) Hematological parameters in association with outcomes in sickle cell anemia patients. Indian J Med Sci 65(9):393–401. https://doi.org/10.4103/0019-5359.108955

    Article  PubMed  Google Scholar 

  41. Rankaljeet K, Preety G, Polkit R, Naveen K (2011) Protective role of selenium against hemolytic anemia is mediated through redox modulation. Biol Trace Elem Res 189(2):490–500. https://doi.org/10.1007/s12011-018-1483-y

    Article  CAS  Google Scholar 

  42. Han YH, Kim SU, Kwon TH, Lee DS, Ha HL (2012) Peroxiredoxin II is essential for preventing hemolytic anemia from oxidative stress through maintaining hemoglobin stability. Biochem Biophys Res Commun 426(3):427–432. https://doi.org/10.1016/j.bbrc.2012.08.113

    Article  CAS  PubMed  Google Scholar 

  43. Ziki RV, Stajn AS, Ognjanovi BI, Saici ZS, Petrovi VM (1998) The effect of cadmium and selenium on the antioxidant enzyme activities in rat heart. J Environ Pathol Tox 17(3–4):259–264

    Google Scholar 

  44. Li YF, He J, Luo L, Wang YC (2021) The combinations of sulfur and molybdenum fertilization improved antioxidant capacity in grazing Nanjiang brown goat. Biol Trace Elem Res https://doi.org/10.1007/s12011-021-02702-5

  45. Liao C, Hardison RC, Kenentt MJ (2018) Selenoproteins regulate stress erythroid progenitors and spleen microenvironment during stress erythropoiesis. Blood 131(23):2568–2580. https://doi.org/10.1182/BLOOD-2017-08-800607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kaushal N, Hegde S, Lumadue J, Paulson RF, Prabhu KS (2011) The regulation of erythropoiesis byselenium in mice. Antioxid Redox Sign 14(8):1403–1412. https://doi.org/10.1089/ars.2010.3323

    Article  CAS  Google Scholar 

  47. Huo B, He J, Shen XY (2020) Effects of selenium-deprived habitat on the immune index and antioxidant capacity of Przewalski’s Gazelle. Biol Trace Elem Res 198(4):149–156. https://doi.org/10.1007/s12011-020-02070-6

    Article  CAS  PubMed  Google Scholar 

  48. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95. https://doi.org/10.1152/physrev.00018.2001

    Article  PubMed  Google Scholar 

  49. Liu Z (2007) Effect of a copper, selenium and cobalt soluble glass bolus given to grazing yaks. Asian Austral J Anim Sci 20(9):1433–1437. https://doi.org/10.5713/ajas.2007.1433

    Article  CAS  Google Scholar 

  50. Song CJ, Shen XY (2019) Effects of environmental zinc deficiency on antioxidant system function in Wumeng semi-fine wool sheep. Biol Trace Elem Res 195(1):110–116. https://doi.org/10.1007/s12011-019-01840-1

    Article  CAS  PubMed  Google Scholar 

  51. Saban C (2019) Effect of dietary vitamin E, selenium and their combination on concentration of selenium, MDA, and antioxidant enzyme activities in some tissues of laying hens. Pak J Zool 51(3):1155–1161. https://doi.org/10.17582/journal.pjz/2019.51.3.1155.1161

    Article  CAS  Google Scholar 

  52. Iqra B, Moolchand M, Pershotam K, Saeed AS, Hira S (2019) Effect of dietary selenium yeast supplementation on morphology and antioxidant status in testes of young goat. Pak J Zool 51(3):979–988. https://doi.org/10.17582/journal.pjz/2019.51.3.979.988

    Article  CAS  Google Scholar 

  53. Shen XY, Song CJ, Wu T (2020) Effects of Nano-copper on antioxidant function in copper-deprived Guizhou black goats. Biol Trace Elem Res 199(1):2201–2207. https://doi.org/10.1007/s12011-020-02342-1

    Article  CAS  PubMed  Google Scholar 

  54. Zhang QJ, Zheng SF, Wang SC, Jiang ZH (2019) The effects of low selenium on DNA methylation in the tissues of chickens. Biol Trace Elem Res 191(2):474–484. https://doi.org/10.1007/s12011-019-1630-0

    Article  CAS  PubMed  Google Scholar 

  55. Olsvik PA, Kristensen T, Waagb R, Rosseland BO, Tollefsen KE, Baeverfjord G (2005) Mrna expression of antioxidant enzymes (sod, cat and gsh-px) and lipid peroxidative stress in liver of atlantic salmon (salmo salar) exposed to hyperoxic water during smoltification. Comp Biochem Phys C 141(3):314–323. https://doi.org/10.1016/j.cbpc.2005.07.009

    Article  CAS  Google Scholar 

  56. Huma N, Sajid A, Khalid A, Wardah H, Moazama B, Shakeela P, Sadia M, Sajida M (2019) Toxic effect of insecticides mixtures on antioxidant enzymes in different organs of fish Labeo rohita. Pak J Zool 51(4):1355–1361. https://doi.org/10.17582/journal.pjz/2019.51.4.1355.1361

    Article  CAS  Google Scholar 

  57. Wu L, Zhang H, Xu C, Xia C (2016) Critical thresholds of antioxidant and immune function parameters for Se deficiency prediction in dairy cows. Biol Trace Elem Res 172(2):320–325. https://doi.org/10.1007/s12011-015-0606-y

    Article  CAS  PubMed  Google Scholar 

  58. Li YF, Shen XY (2021) Effects of sulfur fertilization on antioxidant capacity of Wumeng semi-fine wool sheep in the Wumeng Prairie. Pol J Environ Stud. https://doi.org/10.15244/pjoes/132792

  59. Li YF, Wang YC, Shen XY (2021) Effects of sulfur fertilization on antioxidant capacity of Wumeng semi-fine wool sheep in the Wumeng Prairie. Pol J Environ Stud. https://doi.org/10.15244/pjoes/132792

  60. Shen Q, Zhang B, Xu R, Wang Y, Li P (2010) Antioxidant activity in vitro of the selenium-contained protein from the Se-enriched Bifidobacterium animalis. Anaerobe 16(4):380–386. https://doi.org/10.1016/j.anaerobe.2010.06.006

    Article  CAS  PubMed  Google Scholar 

  61. Pan C, Huang K, Zhao Y, Qin S, Chen F (2010) Effect of different selenium sources on selenium contents and the antioxidant capacity of hen tissues. J Anim Sci Technol 41(12):1605–1613. https://doi.org/10.1016/j.anaerobe.2010.06.006

    Article  CAS  Google Scholar 

  62. Zhao J, Xing H, Liu C (2016) Effect of selenium deficiency on nitric oxide and heat shock proteins in chicken erythrocytes. Biol Trace Elem Res 171(1):208–213. https://doi.org/10.1007/s12011-015-0527-9

    Article  CAS  PubMed  Google Scholar 

  63. Li YF, Shen XY, Liu FY, Luo L, Wang YC (2021) Molybdenum fertilization improved antioxidant capacity of grazing Nanjiang brown goat on copper-contaminated pasture. Biol Trace Elem Res 1-8. https://doi.org/10.1007/s12011-021-02735-w

  64. Kumar N, Garg AK, Dass S, Chaturvedi VK, Mudgal V, Varshney VP (2009) Selenium supplementation influences growth performance, antioxidant status and immune response in lamb. Anim Feed Sci Tech 153(1–2):77–87. https://doi.org/10.1016/j.anifeedsci.2009.06.007

    Article  CAS  Google Scholar 

  65. Liao C, Carlson BA, Paulson RF (2018) The intricaterole of selenium and selenoproteins in erythropoiesis. Free Radical Bio Med 127(1):165–171. https://doi.org/10.1016/j.freeradbiomed.2018.04.578

    Article  CAS  Google Scholar 

  66. Chen M, Mahfuz S, Cui Y, Jia LY, Liu ZJ, Song H (2020) The antioxidant status of serum and egg yolk in layer fed with mushroom stembase (Flammulina velutipes). Pak J Zool 52:389–392. https://doi.org/10.17582/journal.pjz/2020.52.1.sc6

    Article  CAS  Google Scholar 

  67. Li YF, Wang YC, Shen XY, Liu FY (2021) The combinations of sulfur and molybdenum fertilizations improved antioxidant capacity of grazing Guizhou semi-fine wool sheep under copper and cadmium stress. Ecotox Environ Safe 222:112520. https://doi.org/10.1016/J.ECOENV.2021.112520

    Article  CAS  Google Scholar 

  68. Cao C, Fan R, Chen M, Li XJ, Xing MY, Zhu FT (2017) Inflammatory response occurs in veins of broiler chickens treated with a selenium deficiency diet. Biol Trace Elem Res 183(2):1–9. https://doi.org/10.1007/s12011-017-1145-5

    Article  CAS  Google Scholar 

  69. Song CJ, Qing J, Shen XY (2021) Responses of Przewalski’s Gazelle (Procapra przewalskii) to Zinc Nutrition in Physical Habitat. Biol Trace Elem Res 199:142–147. https://doi.org/10.1007/s12011-020-02137-4

    Article  CAS  PubMed  Google Scholar 

  70. Ashley G, Jeffrey C (2014) Effects of inorganic or organic selenium on immunoglobulins in swine. J Anim Sci Biotechno 4 (2), 47-47. CNKI:SUN:XMSW.0.2014-02-015

  71. Xu J, Gong Y, Sun Y (2020) Impact of selenium deficiency on inflammation, oxidative stress, and phagocytosis in mouse macrophages. Biol Trace Elem Res 194(1):237–243. https://doi.org/10.1007/s12011-019-01775-7

    Article  CAS  PubMed  Google Scholar 

  72. Bakhshalinejad R, Reza AMK, Zoidis E (2018) Effects of different dietary sources and levels of selenium supplements on growth performance, antioxidant status and immune parameters in Ross 308 broiler chickens. Brit Poultry Sci 59(1):81–91. https://doi.org/10.1080/00071668.2017.1380296

    Article  CAS  Google Scholar 

  73. Pan TR, Liu TQ, Tan SR, Wan N, Zhang YM, Li S (2018) Lower selenoprotein T expression and immune response in the immune organs of broilers with exudative diathesis due to selenium deficiency. Biol Trace Elem Res 182(2):364–372. https://doi.org/10.1007/s12011-017-1110-3

    Article  CAS  PubMed  Google Scholar 

  74. Pervez AK, Pan TR, Wan N, Yang ZJ, Liu C, Li S (2016) Selenium deficiency induces autophagy in immune organs of chickens. Biol Trace Elem Res 177(1):159–168. https://doi.org/10.1007/s12011-016-0860-7

    Article  CAS  Google Scholar 

  75. Chang WC, Chen CH, Yu YM (2010) P385 chlorogenic acid attenuates adhesion molecules upregulation in IL-1β treated huvecs. Atherosclerosis Supp 11(2):98–98. https://doi.org/10.1016/S1567-5688(10)70452-9

    Article  Google Scholar 

  76. Liu LN, Chen F, Qin SY, Ma JF, Li L, Jin TM, Zhao RL (2019) Effects of selenium-enriched yeast improved aflatoxin B1-induced changes in growth performance, antioxidation capacity, IL-2 and IFN-γ contents, and gene expression in mice. Biol Trace Elem Res 191(1):183–188. https://doi.org/10.1007/s12011-018-1607-4

    Article  CAS  PubMed  Google Scholar 

  77. Ahmed KP, Zhang YM, Hang Y, Teng XH, Li S (2018) Selenium deficiency affects immune function by influencing selenoprotein and cytokine expression in chicken spleen. Biol Trace Elem Res 187(2):506–516. https://doi.org/10.1007/s12011-018-1396-9

    Article  CAS  Google Scholar 

  78. Mosmann T, Bond M, Coffman R, Ohara J, Paul W (1986) T-cell and mast cell lines respond to B-cell stimulatory factor-I. P Natl Acad Sci 83(15):5654–5658. https://doi.org/10.1073/pnas.83.15.5654

    Article  CAS  Google Scholar 

  79. Michal K, Szabo P, Barbora D, Lukas L (2012) Upregulation of IL-6, IL-8 and CXCL-1 production in dermal fibroblasts by normal/malignant epithelial cells in vitro: immunohistochemical and transcriptomic analyses. Biol Cell 104(12):738–751. https://doi.org/10.1111/boc.201200018

    Article  CAS  Google Scholar 

  80. Shen X, Min X, Zhang S (2020) Effect of heavy metal contamination in the environment on antioxidant function in Wumeng semi-fine wool sheep in Southwest China. Biol Trace Elem Res 198:505–514. https://doi.org/10.1007/s12011-020-02081-3

    Article  CAS  PubMed  Google Scholar 

  81. Sackesen C, Veen W, Akdis M, Soyer O, Zumkehr J, Ruckert B (2013) Suppression of B-cell activation and IgE, IgA, IgG1 and IgG4 production by mammalian telomeric oligonucleotides. Allergy 68(5):593–603. https://doi.org/10.1111/all.12133

    Article  CAS  PubMed  Google Scholar 

  82. Song CJ, Gan SQ, He J, Shen XY (2020) Effects of nano-zinc on immune function in Qianbei-Pockmarked goats. Biol Trace Elem Res 199 (6). https://doi.org/10.1007/s12011-020-02182-z

  83. Lopez AJR, Rueda CU, Patrucco L, Juan IR (2011) Selective IgA deficiency and multiple sclerosis déficit selectivo de IgA y esclerosis múltiple. Neurologia 26(6):375–377. https://doi.org/10.1016/j.nrl.2010.12.012

    Article  Google Scholar 

  84. Huo B, He J, Shen XY (2020) Effects of selenium-deprived habitat on the immune index and antioxidant capacity of Przewalski’s Gazelle. Biol Trace Elem Res 198:149–156. https://doi.org/10.1007/s12011-020-02070-6

    Article  CAS  PubMed  Google Scholar 

  85. Wu T, He J, Shen XY (2021) Study of metabolomics in selenium deprived Przewalski’s Gazelles (P. przewalskii). Brit J Nutr 1–29. https://doi.org/10.1017/S000711452100355X

  86. Li YF, Liu HW, He J, Shen XY, Zhao K, Wang YC (2021) The effects of oral administration of molybdenum fertilizers on immune function of Nanjiang brown goat grazing on natural pastures contaminated by mixed heavy metal. Biol Trace Elem Res. https://doi.org/10.1007/s12011-021-02901-0

Download references

Funding

The study has been supported by the Innovation and Development Supporting Plan Project of Key Industries in Southern Xinjiang (grant number 2021DB014).

Author information

Authors and Affiliations

Authors

Contributions

The author contributions are as follows: ZYZ and SXY conceived and designed the research; SXY and ZP were responsible for experiment operation, data analysis, chart drawing, drafting, and editing the manuscript; ZYZ and SXY were responsible for manuscript revision and approval of the final version of the manuscript.

Corresponding author

Correspondence to Xiaoyun Shen.

Ethics declarations

Ethics Statement

Sample collection in animals was approved by the Southwest University of Science and Technology in China, Institutional Animal Care and Use Committee (Project A00655).

Consent of Publish

Agree.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ping Zhou and Xiaoyun Shen contributed equally to this work as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhou, P. & Shen, X. Effects of Se-Enriched Malt on the Immune and Antioxidant Function in the Se-Deprived Reclamation Merino Sheep in Southern Xinjiang. Biol Trace Elem Res 200, 3621–3629 (2022). https://doi.org/10.1007/s12011-021-02957-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02957-y

Keywords

Navigation