Skip to main content
Log in

Selenium Deficiency Induces Autophagy in Immune Organs of Chickens

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate the effects of selenium (Se) deficiency on autophagy-related genes and on ultrastructural changes in the spleen, bursa of Fabricius, and thymus of chickens. The Se deficiency group was fed a basal diet containing Se at 0.033 mg/kg and the control group was fed the same basal diet containing Se at 0.15 mg/kg. The messenger RNA (mRNA) levels of the autophagy genes microtubule-associated protein 1 light chain 3 (LC3)-I, LC3-II, Beclin 1, dynein, autophagy associated gene 5 (ATG5), and target of rapamycin complex 1 (TORC1) were assessed using real-time qPCR. The protein levels of LC3-II, Beclin 1, and dynein were investigated using western blot analysis. Furthermore, the ultrastructure was observed using an electron microscope. The results indicated that spleen mRNA levels of LC3-I, LC3-II, Beclin 1, dynein, ATG5, and TORC1 and the protein levels of LC3-II, Beclin 1, and dynein were increased in the Se deficiency group compared with the control group. In the bursa of Fabricius, the mRNA levels of LC3-I, LC3-II, Beclin 1, dynein, ATG5, and TORC1 and the protein levels of Beclin 1 and dynein were increased; furthermore, the protein level of LC3-II was decreased in the Se deficiency group compared to the control group. In the thymus, the mRNA levels of LC3-I, Beclin 1, and ATG5 increased; the levels of LC3-II, dynein, and TORC1 were decreased; the protein level of Beclin 1 increased; and the levels of LC3-II and dynein decreased in the Se deficiency group compared to those in the control group. Further cellular morphological changes, such as autophagy vacuoles, autolysosomes, and lysosomal degradation, were observed in the spleen, bursa of Fabricius, and thymus of the Se-deficiency group. In summary, Se deficiency caused changes in autophagy-related genes, which increased the autophagic process and also caused structural damages to the immune organs of chickens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Se:

Selenium

LC3:

Microtubule-associated protein1 light chain 3

TOR:

Target of rapamycin

TORC1:

Target of rapamycin complex l

TORC2:

Target of rapamycin complex 2

mTOR:

Mammalian target of rapamycin

ATG:

Autophagy associated gene

AVM:

Avermectin

References

  1. Lei C, Niu XL, Ma XK, Wei J (2011) Is selenium deficiency really the cause of Keshan disease? Environ Geochem Hlth 33(2):183–188. doi:10.1007/s10653-010-9331-9

    Article  CAS  Google Scholar 

  2. You L, Liu C, Yang ZJ, Li M, Li S (2014) Prediction of selenoprotein T structure and its response to selenium deficiency in chicken immune organs. Biol Trace Elem Res 160(2):222–231. doi:10.1007/s12011-014-0049-x

    Article  CAS  PubMed  Google Scholar 

  3. Willett WC, Polk BF, Morris JS, Stampfer MJ, Pressel S, Rosner B, Taylor JO, Schneider K, Hames CG (1983) Prediagnostic serum selenium and risk of cancer. Lancet 2(8342):130–134

    Article  CAS  PubMed  Google Scholar 

  4. Khoso PA, Yang Z, Liu C, Li S (2015) Selenium deficiency downregulates selenoproteins and suppresses immune function in chicken thymus. Biol Trace Elem Res 167(1):48–55. doi:10.1007/s12011-015-0282-y

    Article  CAS  PubMed  Google Scholar 

  5. Janda E, Isidoro C, Carresi C, Mollace V (2012) Defective autophagy in Parkinson’s disease: role of oxidative stress. Mol Neurobiol 46(3):639–661. doi:10.1007/s12035-012-8318-1

    Article  CAS  PubMed  Google Scholar 

  6. Zhang ZW, Wang QH, Zhang JL, Li S, Wang XL, Xu SW (2012) Effects of oxidative stress on immunosuppression induced by selenium deficiency in chickens. Biol Trace Elem Res 149(3):352–361. doi:10.1007/s12011-012-9439-0

    Article  CAS  PubMed  Google Scholar 

  7. Trincheri NF, Follo C, Nicotra G, Peracchio C, Castino R, Isidoro C (2008) Resveratrol-induced apoptosis depends on the lipid kinase activity of Vps34 and on the formation of autophagolysosomes. Carcinogenesis 29(2):381–389. doi:10.1093/carcin/bgm271

    Article  CAS  PubMed  Google Scholar 

  8. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469(7330):323–335. doi:10.1038/nature09782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rong YG, McPhee CK, Deng SS, Huang L, Chen LL, Liu M, Tracy K, Baehrecke EH, Yu L, Lenardo MJ (2011) Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation (vol 108, pg 7826, 2011). Proc Natl Acad Sci U S A 108(27):11297–11297. doi:10.1073/pnas.1108410108

    CAS  Google Scholar 

  10. Xiong N, Xiong J, Jia M, Liu L, Zhang X, Chen Z, Huang J, Zhang Z, Hou L, Luo Z, Ghoorah D, Lin Z, Wang T (2013) The role of autophagy in Parkinson’s disease: rotenone-based modeling. Behav Brain Funct: BBF 9:13. doi:10.1186/1744-9081-9-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884. doi:10.1038/nature04723

    Article  CAS  PubMed  Google Scholar 

  12. Yoshioka A, Miyata H, Doki Y, Yamasaki M, Sohma I, Gotoh K, Takiguchi S, Fujiwara Y, Uchiyama Y, Monden M (2008) LC3, an autophagosome marker, is highly expressed in gastrointestinal cancers. Int J Oncol 33(3):461–468. doi:10.3892/ijo_00000028

    CAS  PubMed  Google Scholar 

  13. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2003) LC3, a mammalian homolog of yeast Apg8p, is localized in autophagosome membranes after processing (vol 19, pg 5720, 2000). EMBO J 22(17):4577–4577

    Article  CAS  Google Scholar 

  14. Lai YC, Hickey RW, Chen YM, Bayir H, Sullivan ML, Chu CT, Kochanek PM, Dixon CE, Jenkins LW, Graham SH, Watkins SC, Clark RSB (2008) Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant gamma-glutamylcysteinyl ethyl ester. J Cerebr Blood F Met 28(3):540–550. doi:10.1038/sj.jcbfm.9600551

    Article  CAS  Google Scholar 

  15. Cui JZ, Gong ZY, Shen HM (2013) The role of autophagy in liver cancer: molecular mechanisms and potential therapeutic targets. Bba-Rev Cancer 1836(1):15–26. doi:10.1016/j.bbcan.2013.02.003

    CAS  Google Scholar 

  16. Mitchell DR (1994) Cell and molecular biology of flagellar dyneins. Int Rev Cytol 155:141–180

    Article  CAS  PubMed  Google Scholar 

  17. Noda T, Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273(7):3963–3966

    Article  CAS  PubMed  Google Scholar 

  18. Scott RC, Schuldiner O, Neufeld TP (2004) Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 7(2):167–178. doi:10.1016/j.devcel.2004.07.009

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, Chiu J, Zhang H, Qi T, Tang Q, Ma K, Lu H, Li G (2013) Autophagic cell death induced by resveratrol depends on the Ca(2+)/AMPK/mTOR pathway in A549 cells. Biochem Pharmacol 86(2):317–328. doi:10.1016/j.bcp.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  20. JP Q, Li M, Zhao FQ, Liu C, Zhang ZW, SW X, Li S (2015) Autophagy is upregulated in brain tissues of pigeons exposed to avermectin. Ecotoxicol Environ Saf 113:159–168. doi:10.1016/j.ecoenv.2014.12.002

    Article  Google Scholar 

  21. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100(6):914–922. doi:10.1161/01.RES.0000261924.76669.36

    Article  CAS  PubMed  Google Scholar 

  22. Virgin HW, Levine B (2009) Autophagy genes in immunity. Nat Immunol 10(5):461–470. doi:10.1038/ni.1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu C, Li M, Cao Y, Qu JP, Zhang ZW, Xu SW, Li S (2014) Effects of avermectin on immune function and oxidative stress in the pigeon spleen. Chem Biol Interact 210:43–50. doi:10.1016/j.cbi.2013.12.015

    Article  CAS  PubMed  Google Scholar 

  24. Li JL, Li HX, Gao XJ, Zhang JL, Li S, SW X, Tang ZX (2012) Priority in selenium homeostasis involves regulation of SepSecS transcription in the chicken brain. PLoS One 7(4):e35761. doi:10.1371/journal.pone.0035761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kiremidjian-Schumacher L, Roy M, Wishe HI, Cohen MW, Stotzky G (1992) Regulation of cellular immune responses by selenium. Biol Trace Elem Res 33:23–35

    Article  CAS  PubMed  Google Scholar 

  26. Demirci S, Kutluhan S, Naziroglu M, Uguz AC, Yurekli VA, Demirci K (2013) Effects of selenium and topiramate on cytosolic Ca(2+) influx and oxidative stress in neuronal PC12 cells. Neurochem Res 38(1):90–97. doi:10.1007/s11064-012-0893-z

    Article  CAS  PubMed  Google Scholar 

  27. Peng X, Cui H, Yuan J, Cui W, Fang J, Zuo Z, Deng J, Pan K, Zhou Y, Lai W (2011) Low-selenium diet induces cell cycle arrest of thymocytes and alters serum IL-2 content in chickens. Biol Trace Elem Res 144(1–3):688–694. doi:10.1007/s12011-011-9077-y

    Article  CAS  PubMed  Google Scholar 

  28. Khoso PA, Yang Z, Liu C, Li S (2015) Selenoproteins and heat shock proteins play important roles in immunosuppression in the bursa of Fabricius of chickens with selenium deficiency. Cell Stress Chaperones 20(6):967–978. doi:10.1007/s12192-015-0625-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang CW, Klionsky DJ (2003) The molecular mechanism of autophagy. Mol Med 9(3–4):65–76

    PubMed  PubMed Central  Google Scholar 

  30. Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306(5698):990–995. doi:10.1126/science.1099993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park MH, Lee SJ, Byun HR, Kim Y, YJ O, Koh JY, Hwang JJ (2011) Clioquinol induces autophagy in cultured astrocytes and neurons by acting as a zinc ionophore. Neurobiol Dis 42(3):242–251. doi:10.1016/j.nbd.2011.01.009

    Article  CAS  PubMed  Google Scholar 

  32. Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3(6):542–545

    Article  CAS  PubMed  Google Scholar 

  33. Zucchini-Pascal N, de Sousa G, Rahmani R (2009) Lindane and cell death: at the crossroads between apoptosis, necrosis and autophagy. Toxicology 256(1–2):32–41. doi:10.1016/j.tox.2008.11.004

    Article  CAS  PubMed  Google Scholar 

  34. He CC, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93. doi:10.1146/annurev-genet-102808-114910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ren HG, Fu K, CC M, Li B, Wang D, Wang GH (2010) DJ-1, a cancer and Parkinson’s disease associated protein, regulates autophagy through JNK pathway in cancer cells. Cancer Lett 297(1):101–108. doi:10.1016/j.canlet.2010.05.001

    Article  CAS  PubMed  Google Scholar 

  36. Gui YX, Fan XN, Wang HM, Wang G, Chen SD (2012) Glyphosate induced cell death through apoptotic and autophagic mechanisms. Neurotoxicol Teratol 34(3):342–349. doi:10.1016/j.ntt.2012.03.005

    Article  Google Scholar 

  37. Maday S, Wallace KE, Holzbaur EL (2012) Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol 196(4):407–417. doi:10.1083/jcb.201106120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Winslow AR, Rubinsztein DC (2008) Autophagy in neurodegeneration and development. Biochim Biophys Acta 1782(12):723–729. doi:10.1016/j.bbadis.2008.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maskey D, Yousefi S, Schmid I, Zlobec I, Perren A, Friis R, Simon HU (2013) ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy. Nat Commun 4. doi:10.1038/Ncomms3130

  40. Pyo JO, Yoo SM, Ahn HH, Nah J, Hong SH, Kam TI, Jung S, Jung YK (2013) Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat Commun 4:2300. doi:10.1038/ncomms3300

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen B, Sun XJ, Zhang Y, Zhu XQ, Shen HM (2012) Use of inducible Atg5 deletion and expression cell lines in study of the pro-survival function of autophagy under starvation. Biochem Bioph Res Co 427(1):11–17. doi:10.1016/j.bbrc.2012.08.117

    Article  CAS  Google Scholar 

  42. Liu C, Zhao Y, Chen L, Zhang Z, Li M, Li S (2015) Avermectin induced autophagy in pigeon spleen tissues. Chem Biol Interact 242:327–333. doi:10.1016/j.cbi.2015.10.022

    Article  CAS  PubMed  Google Scholar 

  43. Yao L, Du Q, Yao H, Chen X, Zhang Z, Xu S (2015) Roles of oxidative stress and endoplasmic reticulum stress in selenium deficiency-induced apoptosis in chicken liver. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine 28(2):255–265. doi:10.1007/s10534-014-9819-3

    Article  CAS  Google Scholar 

  44. Sheng PF, Jiang Y, Zhang ZW, Zhang JL, Li S, Zhang ZQ, SW X (2014) The effect of Se-deficient diet on gene expression of inflammatory cytokines in chicken brain. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine 27(1):33–43. doi:10.1007/s10534-013-9682-7

    Article  CAS  Google Scholar 

  45. Shao JJ, Yao HD, Zhang ZW, Li S, Xu SW (2012) The disruption of mitochondrial metabolism and ion homeostasis in chicken hearts exposed to manganese. Toxicol Lett 214(2):99–108. doi:10.1016/j.toxlet.2012.08.011

    Article  CAS  PubMed  Google Scholar 

  46. Li JL, Li HX, Li S, Gao XJ, SW X, Tang ZX (2012) Effects of selenoprotein W gene expression by selenium involves regulation of mRNA stability in chicken embryos neurons. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine 25(2):459–468. doi:10.1007/s10534-012-9517-y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to members of the Veterinary Physiology and Veterinary Internal Medicine Lab for tissue collection and processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Li.

Ethics declarations

Conflicts of Interests

The authors declare that they have no conflicts of interests.

Funding

This study was supported by the National Natural Science Foundation of China (Grant No. 31472161).

Humane Care of Animals

All of the chicken experiments were approved by the Institutional Animal Care and Use Committee of Northeast Agricultural University under the approved protocol number SRM-06.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoso, P.A., Pan, T., Wan, N. et al. Selenium Deficiency Induces Autophagy in Immune Organs of Chickens. Biol Trace Elem Res 177, 159–168 (2017). https://doi.org/10.1007/s12011-016-0860-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0860-7

Keywords

Navigation