Skip to main content
Log in

Nano Zinc Versus Bulk Zinc Form as Dietary Supplied: Effects on Growth, Intestinal Enzymes and Topography, and Hemato-biochemical and Oxidative Stress Biomarker in Nile Tilapia (Oreochromis niloticus Linnaeus, 1758)

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Five isonitrogenous diets were formulated to comprise two forms of zinc (Zn): convention zinc oxide named Bulk-ZnO or zinc oxide nanoparticles (Nano-ZnO) supplemented at two levels 30 and 60 mg kg−1 compared to the control diet. Nile tilapia, Oreochromis niloticus, fingerlings (5.02–5.05 g) were fed tested diets two times a day for 84 days. The results displayed that the best growth and digestive enzyme activity (P < 0.05) were noticed in fish fed 60 mg kg−1 Nano-ZnO. Moreover, significant (P < 0.05) improvement in intestinal topography was observed in 60 mg kg−1 Nano-ZnO group versus other treatments. Furthermore, fish fed 30 mg kg−1 Nano-ZnO recorded the best values of hematological indices (P < 0.05). The alanine and aspartate aminotransferase (ALT and AST) values were lower, while total serum protein, albumin, and globulin contents were clearly higher in fish fed diet that contained 30 mg kg−1 Nano-ZnO versus other groups. The significant highest values of oxidative enzyme activity escorted with lower malondialdehyde value recorded of fish fed diet supplemented with 60 mg kg−1 Nano-ZnO. The results indicated that inclusion of Nano-ZnO at 60 mg kg−1 was the recommended source to enhance growth, feed utilization, amylase and lipase enzymes activity, intestinal morphology, hemato-biochemical, and oxidative response biomarkers of Nile tilapia compared with Bulk-ZnO in commercial tilapia feeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data of the present article are available.

Code Availability

Custom code.

References

  1. FAO (2020) The state of World Fisheries and Aquaculture 2020. Sustainability in action. Rome

  2. Aliko V, Qirjo M, Sula E, Morina V, Faggio C (2018) Antioxidant defense system, immune response and erythron profile modulation in gold fish, Carassius auratus, after acute manganese treatment. Fish Shellfish Immunol 76:101–109

    Article  PubMed  Google Scholar 

  3. Hassaan MS et al (2020) The effect of dietary sericite on growth performance, digestive enzymes activity, gut microbiota and haematological parameters of Nile tilapia, Oreochromis niloticus (L.) fingerlings. Anim Feed Sci Technol 262:114400

    Article  CAS  Google Scholar 

  4. Hassaan M et al (2013) Influences of calcium/phosphorus ratio on supplemental microbial phytase efficiency for Nile tilapia (Oreochromis niloticus). Egypt J Aquat Res 39(3):205–213

    Article  Google Scholar 

  5. Tawfik M, et al (2017) Evaluation of nano zinc oxide feed additive on tilapia growth and immunity. In: 15th International Conference on Environmental Science and Technology, Rhodes, Greece

  6. Liang JJ, Yang HJ, Liu YJ, Tian LX, Liang GY (2012) Dietary zinc requirement of juvenile grass carp (C tenopharyngodon idella) based on growth and mineralization. Aquac Nutr 18(4):380–387

    Article  CAS  Google Scholar 

  7. Stefanidou M, Maravelias C, Dona A, Spiliopoulou C (2006) Zinc: a multipurpose trace element. Arch Toxicol 80(1):1–9

    Article  CAS  PubMed  Google Scholar 

  8. Spry D, Hodson P, Wood C (1988) Relative contributions of dietary and waterborne zinc in the rainbow trout, Salmo gairdneri. Can J Fish Aquat Sci 45(1):32–41

    Article  CAS  Google Scholar 

  9. Shearer KD, Maage A, Opstvedt J, Mundheim H (1992) Effects of high-ash diets on growth, feed efficiency, and zinc status of juvenile Atlantic salmon (Salmo salar). Aquaculture 106(3-4):345–355

    Article  CAS  Google Scholar 

  10. Chanda S, Paul BN, Ghosh K, Giri SS (2015) Dietary essentiality of trace minerals in aquaculture-A Review. Agric Rev 36(2)

  11. Council, N.R (2011) Nutrient requirements of fish and shrimp. National academies press

  12. Maage A, Julshamn K (1993) Assessment of zinc status in juvenile Atlantic salmon (Salmo salar) by measurement of whole body and tissue levels of zinc. Aquaculture 117(1-2):179–191

    Article  CAS  Google Scholar 

  13. Eid AE, Ghonim SI (1994) Dietary zinc requirement of fingerling Oreochromis niloticus. Aquaculture 119(2-3):259–264

    Article  CAS  Google Scholar 

  14. Pagano M, Porcino C, Briglia M, Fiorino E, Vazzana M, Silvestro S, Faggio C (2017) The influence of exposure of cadmium chloride and zinc chloride on haemolymph and digestive gland cells from Mytilus galloprovincialis. Int J Environ Res 11(2):207–216

    Article  CAS  Google Scholar 

  15. Capillo G, Silvestro S, Sanfilippo M, Fiorino E, Giangrosso G, Ferrantelli V, Vazzana I, Faggio C (2018) Assessment of electrolytes and metals profile of the Faro Lake (Capo Peloro Lagoon, Sicily, Italy) and its impact on Mytilus galloprovincialis. Chem Biodivers 15(5):1800044

    Article  Google Scholar 

  16. Reilly C (2004) The nutritional trace metals. Blackwell Publishing Ltd, Oxford

  17. Swain PS, Rao SBN, Rajendran D, Dominic G, Selvaraju S (2016) Nano zinc, an alternative to conventional zinc as animal feed supplement: a review. Anim Nutr 2(3):134–141

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kucukbay Z, Yazlak H, Sahin N, Tuzcu M, Nuri Cakmak M, Gurdogan F, Juturu V, Sahin K (2006) Zinc picolinate supplementation decreases oxidative stress in rainbow trout (Oncorhynchus mykiss). Aquaculture 257(1-4):465–469

    Article  CAS  Google Scholar 

  19. Dekani L, Johari SA, Joo HS (2019) Comparative toxicity of organic, inorganic and nanoparticulate zinc following dietary exposure to common carp (Cyprinus carpio). Sci Total Environ 656:1191–1198

    Article  CAS  PubMed  Google Scholar 

  20. Shahpar Z, Johari SA (2019) Effects of dietary organic, inorganic, and nanoparticulate zinc on rainbow trout, Oncorhynchus mykiss larvae. Biol Trace Elem Res 190(2):535–540

    Article  CAS  PubMed  Google Scholar 

  21. Asaikkutti A, Bhavan PS, Vimala K, Karthik M, Cheruparambath P (2016) Dietary supplementation of green synthesized manganese-oxide nanoparticles and its effect on growth performance, muscle composition and digestive enzyme activities of the giant freshwater prawn Macrobrachium rosenbergii. J Trace Elem Med Biol 35:7–17

    Article  CAS  PubMed  Google Scholar 

  22. Steinfeld B, Scott J, Vilander G, Marx L, Quirk M, Lindberg J, Koerner K (2015) The role of lean process improvement in implementation of evidence-based practices in behavioral health care. J Behav Health Serv Res 42(4):504–518

    Article  PubMed  Google Scholar 

  23. Faiz H et al (2015) Zinc oxide, zinc sulfate and zinc oxide nanoparticles as source of dietary zinc: comparative effects on growth and hematological indices of juvenile grass carp (Ctenopharyngodon idella). Int J Agric Biol 17(3)

  24. Tan B, Mai K (2001) Zinc methionine and zinc sulfate as sources of dietary zinc for juvenile abalone, Haliotis discus hannai Ino. Aquaculture 192(1):67–84

    Article  CAS  Google Scholar 

  25. Zhao C-Y, Tan SX, Xiao XY, Qiu XS, Pan JQ, Tang ZX (2014) Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biol Trace Elem Res 160(3):361–367

    Article  CAS  PubMed  Google Scholar 

  26. Chemists, A.o.O.A, Horwitz W (1975) Official methods of analysis, vol 222. Association of Official Analytical Chemists, Washington, DC

  27. Furné M, García-Gallego M, Hidalgo MC, Morales AE, Domezain A, Domezain J, Sanz A (2008) Effect of starvation and refeeding on digestive enzyme activities in sturgeon (Acipenser naccarii) and trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol 149(4):420–425

    Article  PubMed  Google Scholar 

  28. Sarvestani FS, Rahmanifar F, Tamadon A (2015) Histomorphometric changes of small intestine in pregnant rat. In: Veterinary Research Forum. Faculty of Veterinary Medicine, Urmia University, Urmia

  29. Bernfeld P (1951) Enzymes of starch degradation and synthesis. In: Nord F (ed) Advances in Enzymology, vol XII. Interscience Publ, New York, p 379

  30. Mukundan M, Gopakumar K, Nair M (1985) Purification of a lipase from the hepatopancreas of oil sardine (Sardinella longiceps Linnaeus) and its characteristics and properties. J Sci Food Agric 36(3):191–203

    Article  CAS  Google Scholar 

  31. Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28(1):56–63

    Article  CAS  PubMed  Google Scholar 

  32. Martins ML et al (2004) Physiological and haematological response of Oreochromis niloticus (Osteichthyes: Cichlidae) exposed to single and consecutive stress of capture. Aqua Res 26(4):449–456

    Google Scholar 

  33. Bates I et al (2001) Basic hematological techniques. Dacie and Lewis Practical Hematology, 9th edn. Churchill Livingstone, London, pp 19–46

  34. Olson K et al (1987) Angiotensin-converting enzyme in organs of air-breathing fish. Gen Comp Endocrinol 68(3):486–491

    Article  CAS  PubMed  Google Scholar 

  35. Henry R (1964) Clinical chemistry. Harber and Row publishers, New York, p 181

  36. Abdel-Tawwab M, Abdel-Rahman AM, Ismael NE (2008) Evaluation of commercial live bakers’ yeast, Saccharomyces cerevisiae as a growth and immunity promoter for Fry Nile tilapia, Oreochromis niloticus (L.) challenged in situ with Aeromonas hydrophila. Aquaculture 280(1-4):185–189

    Article  Google Scholar 

  37. Coles E (1974) Vet. Cline Path. WB Sounders Company, Philadelphia, London and Toronto, pp 211–213

  38. Wilson PW, Abbott RD, Garrison RJ, Castelli WP (1981) Estimation of very-low-density lipoprotein cholesterol from data on triglyceride concentration in plasma. Clin Chem 27(12):2008–2010

    Article  CAS  PubMed  Google Scholar 

  39. Schäperclaus W (1992) Fish diseases, vol 1. CRC Press

  40. Mohammady EY, Soaudy MR, Abdel-Rahman A, Abdel-Tawwab M, Hassaan MS (2021) Comparative effects of dietary zinc forms on performance, immunity, and oxidative stress-related gene expression in Nile tilapia, Oreochromis niloticus. Aquaculture 532:736006

    Article  CAS  Google Scholar 

  41. Duncan D (1955) Multi range and multi F tests. Biometrics 11:1–42

    Article  Google Scholar 

  42. Buentello JA, Goff JB, Gatlin DM III (2009) Dietary zinc requirement of hybrid striped bass, Morone chrysops× Morone saxatilis, and bioavailability of two chemically different zinc compounds. J World Aquacult Soc 40(5):687–694

    Article  Google Scholar 

  43. Mondal AH, Behera T, Swain P, Das R, Sahoo SN, Mishra SS, Das J, Ghosh K (2020) Nano zinc vis-à-vis inorganic Zinc as feed additives: effects on growth, activity of hepatic enzymes and non-specific immunity in rohu, Labeo rohita (Hamilton) fingerlings. Aquac Nutr 26(4):1211–1222

    Article  CAS  Google Scholar 

  44. Chupani L, Zusková E, Niksirat H, Panáček A, Lünsmann V, Haange SB, von Bergen M, Jehmlich N (2017) Effects of chronic dietary exposure of zinc oxide nanoparticles on the serum protein profile of juvenile common carp (Cyprinus carpio L.). Sci Total Environ 579:1504–1511

    Article  CAS  PubMed  Google Scholar 

  45. Swain P, Das R, Das A, Padhi SK, Das KC, Mishra SS (2019) Effects of dietary zinc oxide and selenium nanoparticles on growth performance, immune responses and enzyme activity in rohu, Labeo rohita (Hamilton). Aquac Nutr 25(2):486–494

    Article  CAS  Google Scholar 

  46. Abdel-Tawwab M, Samir F, Abd el-Naby AS, Monier MN (2018) Antioxidative and immunostimulatory effect of dietary cinnamon nanoparticles on the performance of Nile tilapia, Oreochromis niloticus (L.) and its susceptibility to hypoxia stress and Aeromonas hydrophila infection. Fish Shellfish Immunol 74:19–25

    Article  CAS  PubMed  Google Scholar 

  47. Abdel-Tawwab M, Razek NA, Abdel-Rahman AM (2019) Immunostimulatory effect of dietary chitosan nanoparticles on the performance of Nile tilapia, Oreochromis niloticus (L.). Fish Shellfish Immunol 88:254–258

    Article  CAS  PubMed  Google Scholar 

  48. Şıklar Z, Tuna C, Dallar Y, Tanyer G (2003) Zinc deficiency: a contributing factor of short stature in growth hormone deficient children. J Trop Pediatr 49(3):187–188

    Article  PubMed  Google Scholar 

  49. Swain P, Nayak SK, Sasmal A, Behera T, Barik SK, Swain SK, Mishra SS, Sen AK, Das JK, Jayasankar P (2014) Antimicrobial activity of metal based nanoparticles against microbes associated with diseases in aquaculture. World J Microbiol Biotechnol 30(9):2491–2502

    Article  CAS  PubMed  Google Scholar 

  50. Yang Z, Sun L (2006) Effects of nanometre ZnO on growth performance of early weaned piglets. Aqua Res 3(024):577–588

    Google Scholar 

  51. Huang S, Wang L, Liu L, Hou Y, Li L (2015) Nanotechnology in agriculture, livestock, and aquaculture in China. A review. Agron Sustain Dev 35(2):369–400

    Article  Google Scholar 

  52. Wang J, Wang A, Wang W-X (2017) Evaluation of nano-ZnOs as a novel Zn source for marine fish: importance of digestive physiology. Nanotoxicology 11(8):1026–1039

    Article  CAS  PubMed  Google Scholar 

  53. De Grande A et al (2020) Dietary zinc source impacts intestinal morphology and oxidative stress in young broilers. Poult Sci 99(1):441–453

    Article  PubMed  Google Scholar 

  54. Hu C et al (2014) Effects of zinc oxide supported on zeolite on growth performance, intestinal barrier function and digestive enzyme activities of Nile tilapia. Aquac Nutr 20(5):486–493

    Article  CAS  Google Scholar 

  55. Silva EN et al (2019) Photosynthesis impairment and oxidative stress in Jatropha curcas exposed to drought are partially dependent on decreased catalase activity. Acta Physiol Plant 41(1):1–12

    Article  Google Scholar 

  56. Sansuwan K, Jintasataporn E, Chumkam S (2019) Effects of dietary zinc amino acid complex and zinc sulfate on growth performance. Digestive Enzyme Activity and Immune Response in Asian Seabass

  57. Dawood MA et al (2019) Dietary supplementation of selenium nanoparticles modulated systemic and mucosal immune status and stress resistance of red sea bream (Pagrus major). Fish Physiol Biochem 45(1):219–230

    Article  CAS  PubMed  Google Scholar 

  58. Hassaan MS, Mohammady EY, Soaudy MR, el-Garhy HAS, Moustafa MMA, Mohamed SA, el-Haroun ER (2019) Effect of Silybum marianum seeds as a feed additive on growth performance, serum biochemical indices, antioxidant status, and gene expression of Nile tilapia, Oreochromis niloticus (L.) fingerlings. Aquaculture 509:178–187

    Article  CAS  Google Scholar 

  59. Hassaan MS, Nssar KM, Mohammady EY, Amin A, Tayel SI, el-Haroun ER (2020) Nano-zeolite efficiency to mitigate the aflatoxin B1 (AFB1) toxicity: effects on growth, digestive enzymes, antioxidant, DNA damage and bioaccumulation of AFB1 residues in Nile tilapia (Oreochromis niloticus). Aquaculture 523:735123

    Article  CAS  Google Scholar 

  60. Hassaan MS, Mohammady EY, Adnan AM, Abd Elnabi HE, Ayman MF, Soltan MA, el-Haroun ER (2020) Effect of dietary protease at different levels of malic acid on growth, digestive enzymes and haemato-immunological responses of Nile tilapia, fed fish meal free diets. Aquaculture 522:735124

    Article  CAS  Google Scholar 

  61. Sakr S, Jamal S, Lail A (2005) Fenvalerate induced histopathological and histochemical changes in the liver of the catfish, Clarias gariepinus. J Appl Sci Res 1(3):263–267

    Google Scholar 

  62. Gopal V, Parvathy S, Balasubramanian P (1997) Effect of heavy metals on the blood protein biochemistry of the fish Cyprinus carpio and its use as a bio-indicator of pollution stress. Environ Monit Assess 48(2):117–124

    Article  CAS  Google Scholar 

  63. Akrami R, Gharaei A, Mansour MR, Galeshi A (2015) Effects of dietary onion (Allium cepa) powder on growth, innate immune response and hemato–biochemical parameters of beluga (Huso huso Linnaeus, 1754) juvenile. Fish Shellfish Immunol 45(2):828–834

    Article  CAS  PubMed  Google Scholar 

  64. Hassaan MS, Mohammady EY, Soaudy MR, Sabae SA, Mahmoud AMA, el-Haroun ER (2021) Comparative study on the effect of dietary β-carotene and phycocyanin extracted from Spirulina platensis on immune-oxidative stress biomarkers, genes expression and intestinal enzymes, serum biochemical in Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol 108:63–72

    Article  CAS  PubMed  Google Scholar 

  65. Lee J-w et al (2014) Serum and ultrastructure responses of common carp (Cyprinus carpio L.) during long-term exposure to zinc oxide nanoparticles. Ecotoxicol Environ Saf 104:9–17

    Article  CAS  PubMed  Google Scholar 

  66. Gharaei A, Khajeh M, Khosravanizadeh A, Mirdar J, Fadai R (2020) Fluctuation of biochemical, immunological, and antioxidant biomarkers in the blood of beluga (Huso huso) under effect of dietary ZnO and chitosan–ZnO NPs. Fish Physiol Biochem 46(2):547–561

    Article  CAS  PubMed  Google Scholar 

  67. Sheikh Asadi M, Gharaei A, Mirdar Harijani J, Arshadi A (2018) A Comparison between dietary effects of Cuminum cyminum essential oil and Cuminum cyminum essential oil, loaded with iron nanoparticles, on growth performance, immunity and antioxidant indicators of white leg shrimp (Litopenaeus vannamei). Aquac Nutr 24(5):1466–1473

    Article  CAS  Google Scholar 

  68. Awad A, Zaglool AW, Ahmed SAA, Khalil SR (2019) Transcriptomic profile change, immunological response and disease resistance of Oreochromis niloticus fed with conventional and nano-zinc oxide dietary supplements. Fish Shellfish Immunol 93:336–343

    Article  CAS  PubMed  Google Scholar 

  69. Saddick S, Afifi M, Zinada OAA (2017) Effect of Zinc nanoparticles on oxidative stress-related genes and antioxidant enzymes activity in the brain of Oreochromis niloticus and Tilapia zillii. Aqua Res 24(7):1672–1678

    CAS  Google Scholar 

  70. Khosravi-Katuli K, Lofrano G, Pak Nezhad H, Giorgio A, Guida M, Aliberti F, Siciliano A, Carotenuto M, Galdiero E, Rahimi E, Libralato G (2018) Effects of ZnO nanoparticles in the Caspian roach (Rutilus rutilus caspicus). Sci Total Environ 626:30–41

    Article  CAS  PubMed  Google Scholar 

  71. Ogawa D, Asanuma M, Miyazaki I, Tachibana H, Wada J, Sogawa N, Sugaya T, Kitamura S, Maeshima Y, Shikata K, Makino H (2011) High glucose increases metallothionein expression in renal proximal tubular epithelial cells. Exp Diabetes Res 2011:1–8

    Article  Google Scholar 

  72. Olechnowicz J, Tinkov A, Skalny A, Suliburska J (2018) Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci 68(1):19–31

    Article  CAS  PubMed  Google Scholar 

  73. Satoh S, Takeuchi T, Watanabe T (1987) Effect of deletion of several trace elements from a mineral mixture in fish meal diets on mineral composition of gonads in rainbow trout and carp. Cellulose 3:3

    Google Scholar 

  74. Zhao HX et al (2011) Effect of supplemental dietary zinc sources on the growth and carbohydrate utilization of tilapia Smith 1840, Oreochromis niloticus× Oreochromis aureus. Aquac Nutr 17(1):64–72

    Article  CAS  Google Scholar 

  75. El-Saidy D et al (2012) Effect of zinc supplementation on the growth performance, feed utilization, body composition and hematological parameters of Nile tilapia, Oreochromis niloticus (L.). Aqua Res 15(3):671–679

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Animal Production Department, Faculty of Agriculture, Benha University, Cairo, Egypt, for supporting and financial assistance during this research project.

Funding

This study was funded by the Benha University, Egypt.

Author information

Authors and Affiliations

Authors

Contributions

The authors declared that the current manuscript prepared from the Ph. D student project to submit his thesis paper work to the GS to get approve to setup his defense date and time and nominate the external examiner after received the acceptance of the manuscript.

Corresponding author

Correspondence to Mohamed S. Hassaan.

Ethics declarations

Ethics Approval

All applicable international, national, and/or institutional guidelines for the care and use of fish were followed by the authors.

Consent to Participate

All authors approved this version of manuscript.

Consent for Publication

All authors approved this version of the manuscript to submit to the journal.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 216 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, M.S., El-Gendi, G.M.I., Ahmed, A.I. et al. Nano Zinc Versus Bulk Zinc Form as Dietary Supplied: Effects on Growth, Intestinal Enzymes and Topography, and Hemato-biochemical and Oxidative Stress Biomarker in Nile Tilapia (Oreochromis niloticus Linnaeus, 1758). Biol Trace Elem Res 200, 1347–1360 (2022). https://doi.org/10.1007/s12011-021-02724-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02724-z

Keywords

Navigation