Skip to main content
Log in

Antimicrobial activity of metal based nanoparticles against microbes associated with diseases in aquaculture

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The emergence of diseases and mortalities in aquaculture and development of antibiotics resistance in aquatic microbes, has renewed a great interest towards alternative methods of prevention and control of diseases. Nanoparticles have enormous potential in controlling human and animal pathogens and have scope of application in aquaculture. The present investigation was carried out to find out suitable nanoparticles having antimicrobial effect against aquatic microbes. Different commercial as well as laboratory synthesized metal and metal oxide nanoparticles were screened for their antimicrobial activities against a wide range of bacterial and fungal agents including certain freshwater cyanobacteria. Among different nanoparticles, synthesized copper oxide (CuO), zinc oxide (ZnO), silver (Ag) and silver doped titanium dioxide (Ag–TiO2) showed broad spectrum antibacterial activity. On the contrary, nanoparticles like Zn and ZnO showed antifungal activity against fungi like Penicillium and Mucor species. Since CuO, ZnO and Ag nanoparticles showed higher antimicrobial activity, they may be explored for aquaculture use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aarestrup FM (2005) Veterinary drug usage and antimicrobial resistance in bacteria of animal origin. Basic Clin Pharmacol 96:271–281

    Article  CAS  Google Scholar 

  • Abboud Y, Saffaj T, Chagraoui A, El Bouari A, Brouzi K, Tanane O, Ihssane B (2013) Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci 1–6. doi: 10.1007/s13204-013-0233-x

  • Ali DM, Thajuddin N, Jeganathan K, Gunasekaran M (2011) Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf B 85(2):360–365

    Article  Google Scholar 

  • Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomed 7:6003

    Article  CAS  Google Scholar 

  • Baek Y, An Y (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis and Streptococcus aureus. Sci Total Environ 409:1603–1608

    Article  CAS  Google Scholar 

  • Bauer AW, Kirby WMM, Sherris JCT, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45(4):493

    CAS  Google Scholar 

  • Bhainsa KC, D’ Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B 47(2):160–164

    Article  CAS  Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam M, Hagens W, Bulder A, De Heer C, Ten Voorde S, Wijnhoven S, Sips A (2007) Health impact of nanotechnologies in food production. Wageningen UR, RIKILT. Report 2007.014, published by RIKILT—Institute of Food Safety, Wageningen UR and National Institute of Public Health & the Environment—Center for Substances and Integrated Risk Assessment. Accessed at. http://edepot.wur.nl/120669; pp 1–91

  • Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8(7):1137–1144

    Article  CAS  Google Scholar 

  • Carbis CR, Mitchell GF, Anderson JW, McCauley I (1996) The effects of microcystins on the serum biochemistry of carp, Cyprinus carpio L, when the toxins are administered by gavage, immersion and intraperitoneal routes. J Fish Dis 19:151–159

    Article  CAS  Google Scholar 

  • Chitra K, Annadurai G (2013) Antimicrobial activity of wet chemically engineered spherical shaped ZnO nanoparticles on food borne pathogen. Int Food Res J 20(1):59–64

    CAS  Google Scholar 

  • Dash A, Singh AP, Chaudhary BR, Singh SK, Dash D (2012) Effect of silver nanoparticles on growth of eukaryotic green algae. Nano-Micro Lett 4(3):158–165

    CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2013) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 26(6):913–924

    Article  CAS  Google Scholar 

  • Dror-Ehre A, Mamane H, Belenkova T, Markovich G, Adin A (2009) Silver nanoparticle—E. coli colloidal interaction in water and effect on E. coli survival. J Colloid Interface Sci 339(2):521–526

    Article  CAS  Google Scholar 

  • Ernst B (2008) Investigations of the impact of toxic cyanobacteria on fish—as exemplified by the coregonids in lake Ammersee. Dissertation, University of Kostanz

  • Feynman R (1991) There’s plenty of room at the bottom. Science 254:1300–1301

    Article  Google Scholar 

  • Fischer WJ, Hitzfeld BC, Tencalla F, Eriksson JE, Mikhailov A, Dietrich DR (2000) Microcystin-LR toxicodynamics, induced pathology and immunohistochemical localization in livers of blue–green algae exposed rainbow trout (Oncorhynchus mykiss). Toxicol Sci 54(2):365–373

    Article  CAS  Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41(24):8484–8490

    Article  CAS  Google Scholar 

  • Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M (2011) Silver nanoparticles as potential antiviral agents. Molecules 16(10):8894–8918

    Article  CAS  Google Scholar 

  • Gunalan S, Sivaraj R, Rajendran V (2012) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci Mater Int 22(6):693–700

    Article  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    Article  CAS  Google Scholar 

  • Hektoen H, Berge JA, Hormazabal VY, Yndestad M (1995) Persistence of antibacterial agents in marine sediments. Aquaculture 133(3):175–184

    Article  CAS  Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1):71–76

    Article  CAS  Google Scholar 

  • Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic 8:1–13

    Article  CAS  Google Scholar 

  • Kim YS, Lamsal K, Kim SW, Jung JH, Kim KS, Lee YS (2011) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Microbiology 39(1):26–32

    Google Scholar 

  • Kiruba Daniel SCG, Vinothini G, Subramanian N, Nehru K, Sivakumar M (2013) Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens. J Nanopart Res 15(1):1319–1328

    Article  Google Scholar 

  • Korbekandi H, Iravani S (2012) Silver nanoparticles. In: Hashim Abbass A (ed) The delivery of nanoparticles. In Tech, Croatia, pp 3–36

    Google Scholar 

  • Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, Holecova M, Zboril R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112(15):5825–5834

    Article  CAS  Google Scholar 

  • Lanje AS, Sharma SJ, Pode RB, Ningthoujam RS (2010) Synthesis and optical characterization of copper oxide nanoparticles. Adv Appl Sci Res 2:36–40

    Google Scholar 

  • Leung TLF, Bates AE (2013) More rapid and severe disease outbreaks for aquaculture at the tropics: implications for food security. J Appl Ecol 50:215–222

    Article  Google Scholar 

  • Lipovsky A, Nitzan Y, Gedanken A, Lubart R (2011) Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury. Nanotechnology 22(10):105101

    Article  Google Scholar 

  • Malbrouck C, Kestemont P (2006) Effects of microcystins on fish. Environ Toxicol Chem 25(1):72–86

    Article  CAS  Google Scholar 

  • Moghaddam AB, Nazari T, Badraghi J, Kazemzad M (2009) Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite film. Int J Electrochem Sci 4:247–257

    CAS  Google Scholar 

  • Nair S, Sasidharan A, Rani VVD, Menon D, Nair S, Manzoor K, Raina S (2009) Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci Mater Med 20(Suppl. 1):S235–S241

    Article  CAS  Google Scholar 

  • Nasrollahi A, Pourshamsian K, Mansourkiaee P (2011) Antifungal activity of silver nanoparticles on some of fungi. Int J Nano Dim 1(3):233–239

    CAS  Google Scholar 

  • Novotny L, Dvorska L, Lorencova A, Beran V, Pavlik I (2004) Fish: a potential source of bacterial pathogens for human beings. A review. Vet Med Czech 9:343–358

    Google Scholar 

  • Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, Hamal P, Zboril R, Kvitek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30(31):6333–6340

    Article  CAS  Google Scholar 

  • Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A (2011) Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf B 82(1):152–159

    Article  CAS  Google Scholar 

  • Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7):4020–4028

    Article  CAS  Google Scholar 

  • Rai VR, Bai AJ (2011) Nanoparticles and their potential application as antimicrobials. In: Mendez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances, vol 1. Formatex. Res Center, Spain, pp 197–209

    Google Scholar 

  • Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90:2139021–2139023

    Google Scholar 

  • Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterization of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33(6):587–590

    Article  CAS  Google Scholar 

  • Rice LB (2009) The clinical consequences of antimicrobial resistance. Curr Opin Microbiol 12:476–481

    Article  CAS  Google Scholar 

  • Romero J, Feijoó CG, Navarrete P (2012) Antibiotics in aquaculture—use, abuse and alternatives. In: Carvalho ED, Silva DG, da Silva RJ (eds) Health and environment in aquaculture. InTech, Croatia, p 414

    Google Scholar 

  • Roszek B, de Jong WH, Geertsma RE (2005) Nanotechnology in medical applications: state-of-the-art in materials and devices. RIVM report 265001001/2005. Bilthoven, The Netherlands. pp 1–123

  • Saha S, Wang JM, Pal A (2012) Nano silver impregnation on commercial TiO2 and a comparative photocatalytic account to degrade malachite green. Sep Purif Technol 89:147–159

    Article  CAS  Google Scholar 

  • Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomed 7:2767–2781

    CAS  Google Scholar 

  • Singh G, Joyce EM, Beddow J, Mason TJ (2012) Evaluation of antibacterial activity of ZnO nanoparticles coated sonochemically on to textile fabrics. J Microbiol Biotechnol Food Sci 2(1):106–120

    CAS  Google Scholar 

  • Smith P (2012) Antibiotics in aquaculture: reducing their use and maintaining their efficacy. In Austin B (ed) Infectious Disease In Aquaculture: Prevention And Control. Woodhead Publishing Limited, 80 High Street, Sawston, Cambridge, CB22 3HJ, UK. pp 1–540

  • Tenover FC (2006) Mechanisms of antimicrobial resistance in bacteria. Am J Infect Control 34(5):S3–S10

    Article  Google Scholar 

  • Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insci J 1(1):65–79

    Article  CAS  Google Scholar 

  • Verma V (2008) Fungus disease in fish, diagnosis and treatment. Vet World 1(2):62

    Google Scholar 

  • Wong MS, Sun DS, Chang HH (2010) Bactericidal performance of visible-light responsive titania photocatalyst with silver nanostructures. PLoS One 5(4):e10394

    Article  Google Scholar 

  • Wu B, Huang R, Sahu M, Feng X, Biswas P, Tang YJ (2010) Bacterial responses to Cu-doped TiO2 nanoparticles. Sci Total Environ 408(7):1755–1758

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Indian Council of Agricultural Research (ICAR), New Delhi for funding the project under the National Fellow Scheme. The authors are also thankful to the Director of Central Institute of Freshwater Aquaculture, Kausalyaganga, Odisha, India for providing necessary facility to carry out the present work.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Swain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, P., Nayak, S.K., Sasmal, A. et al. Antimicrobial activity of metal based nanoparticles against microbes associated with diseases in aquaculture. World J Microbiol Biotechnol 30, 2491–2502 (2014). https://doi.org/10.1007/s11274-014-1674-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1674-4

Keywords

Navigation