Skip to main content
Log in

Dietary exposure to polyvinyl chloride microparticles induced oxidative stress and hepatic damage in Clarias gariepinus (Burchell, 1822)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present study investigated the effects of polyvinyl chloride (PVC) microparticles (MP) on hepatic antioxidant enzymes activities, serum biochemical and liver histology of juvenile Clarias gariepinus. A total of 180 (25.15 g average weight) C. gariepinus were fed PVC MP (95.41 ± 4.23 μm) spiked diets at 0.5, 1.5, 3.0 percentage inclusion levels and a control diet for 45 days of exposure, then followed by 30 days of depuration trials. Fish specimens (9) from each treatment were sampled every 15-day interval for serum biochemical, liver antioxidant enzymes and histopathological assay. Glucose and triglyceride levels increased significantly in PVC-treated groups when compared with the control. Protein levels of 0.5% and 3.0% PVC-treated groups reduced significantly on the 15th and 30th day exposure periods, while serum enzyme activities of all PVC-treated groups increased significantly in a time-dependent manner. Antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase) activity in the liver of the treated groups also decreased progressively in a time-dependent manner. A time-dependent elevation in lipid peroxidation levels was observed in PVC MP-treated groups. Histopathological assessment of the fish liver showed mild to severe levels of glycogen depletion, fatty vacuolation and degeneration, hepatocellular necrosis in PVC-treated groups with reference to the control. The present study revealed that PVC microplastic induced oxidative damage and hepatic histopathological alterations in the exposed fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Plate 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abayomi OA, Range P, Al-Ghouti MA, Obbard JP, Almeer SH, Ben-Hamadou R (2017) Microplastics in coastal environments of the Arabian Gulf. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2017.07.011

    CAS  Google Scholar 

  • Abbasi S, Soltani N, Keshavarzi B, Moore F, Turner A, Hassanaghaei M (2018) Microplastics in different tissues of fish and prawn from the Musa Estuary, Persian Gulf. Chemos 205:80–87

    CAS  Google Scholar 

  • Ajima MNO, Pandey PK, Kumar K, Poojary N (2017) Neurotoxic, molecular responses and oxidative stress biomarkers in Nile tilapia (Oreochromis niloticus) (Lin. 1758) exposed to Verapmil. Comp Biochem Physiol C 196:44–52

    CAS  Google Scholar 

  • Andrady A (2011) Microplastics in the marine environment. Mar Pollut Bull 62(8):1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030

    Article  CAS  Google Scholar 

  • Arias-Andres M, Klümper U, Rojas-Jimenez K, Grossart HP (2018) Microplastic pollution increases gene exchange in aquatic ecosystems. Environ Pollut 237:253–261. https://doi.org/10.1016/j.envpol.2018.02.058

    Article  CAS  Google Scholar 

  • Avio CG, Gorbi S, Milan M, Benedetti M, Fattorini D, d’Errico G, Pauletto M, Bargelloni L, Regoli F (2015) Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ Pollut 198:211–222. https://doi.org/10.1016/j.envpol.2014.12.021

    Article  CAS  Google Scholar 

  • Barton BA, Morgan JD, Vijayan MM, Adams SM (2002) Physiological and condition-related indicators of environmental stress in fish. In: Adams SM (ed) Biological indicators of aquatic ecosystem stress. American Fisheries Society, Maryland, pp 111–148

    Google Scholar 

  • Bello OS, Olaifa FE, Emikpe BO (2014) Haematological and blood biochemical changes in African catfish, Clarias gariepinus fed walnut (Tetracarpidium conophorum Mull Arg) leaf and onion (Allium cepa Linn) bulb supplemented diets. Am J Exp Agric 4(12):1593–1603

    Google Scholar 

  • Beutler E (1984) Red cell membrane metabolism. A manual of biochemical method, 2nd edn. Grune & Stratom, New York, 160p

  • Bouck RG, Ball RC (1966) Influence of capture methods on blood characteristics and mortality in rainbow trout (Salmo gairdneri). Trans Am Fish Soc 95:167–176

    Google Scholar 

  • Bråte ILN, Eidsvoll DP, Steindal CC, Thomas KV (2016) Plastic ingestion by Atlantic cod (Gadus morhua) from the Norwegian coast. Mar Pollut Bull 112:105e110

    Google Scholar 

  • Browne MA, Niven SJ, Galloway TS, Rowland SJ, Thompson RC (2013) Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr Biol 23(23):2388–2392

    CAS  Google Scholar 

  • Cedervall T, Hansson LA, Lard M, Frohm B, Linse S (2012) Food chain transport of changes water movement and heat transfer through beach sediments. Mar Pollut Bull 6:1708–1713

    Google Scholar 

  • Cole M, Lindeque P, Fileman E, Halsband C, Galloway TS (2015) The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ Sci Technol 49:1130–1137. https://doi.org/10.1021/es504525u

    Article  CAS  Google Scholar 

  • Critchell K, Hoogenboom MO (2018) Effects of microplastic exposure on the body condition and behaviour of planktivorous reef fish (Acanthochromis polyacanthus). PLoS One 13(3):e0193308. https://doi.org/10.1371/journal.pone.0193308

    Article  CAS  Google Scholar 

  • Dekic R, Savic N, Manojlovic M, Golub D, Pavlicevic J (2016) Condition factor and organosomatic indices of rainbow trout (Onchorhynchus mykiss) from different brood stock. Biotechhnol Anim Husband 32(2):229–237

    Google Scholar 

  • Egea J, Fabregat I, Frapart YM, Ghezzi P (2017) European contribution to the study of ROS: a summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 13:94–162. https://doi.org/10.1016/j.redox.2017.05.007

    Article  CAS  Google Scholar 

  • Epinosa C, Cnesta A, Esteban MA (2017) Effects of dietary polyvinyl chloride microparticles on general health, immune status and expression of several genes related to stress in gilthead and seabream (Sparus aurata). Fish Shell fish Immunol 68:251–259

    Google Scholar 

  • Espinosa C, Garcia BJM, Esteba MA, Cuesta A (2018) Invitro effects of virgin microplastic on fish head-kidney leucocytes activities. Environ Pollut 235:30–38

    CAS  Google Scholar 

  • Espinosa CR, Esteban AA, Cuesta A (2019) Dietary administration of polyvinylchloride and polyethene microplastics produces histological damage, oxidative stress and immunoregulation in European sea bass (Dicentrarchus labrax L.). Fish Shellfish Immunol. https://doi.org/10.1016/j.fsi.2019.10.072

    CAS  Google Scholar 

  • Ezeoyili I, Mgbenka BO, Atama CI, Ngwu G, Madu JC, Nwani CD (2019) Changes in brain acetylcholinesterase and oxidative stress biomarkers in C. gariepinus exposed to carbendazim. J Aquat Anim Health 31(4). https://doi.org/10.1002/aah.10089

    CAS  Google Scholar 

  • Foley CJ, Feiner ZS, Malinich TD, Höök TO (2018) A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Sci Total Environ 631–632(2018):550–559. https://doi.org/10.1016/j.scitotenv.2018.03.046

    Article  CAS  Google Scholar 

  • Gallo F, Fossi C, Weber R, Santillo D, Sousa J, Ingram I, Nadal A, Romano D (2018) Marine litter plastics and microplastics and their toxic chemicals components: the need for urgent preventive measures. Environ Sci Eur 30:13. https://doi.org/10.1186/s12302-018-0139-z

    Article  Google Scholar 

  • Galloway TS, Cole M, Lewis C (2017) Interactions of microplastic debris throughout the marine ecosystem. Natr Ecol Evol 1:116

    Google Scholar 

  • Gomiero A, Strafella P, Pellini G, Salvalaggio V, Fabi G (2018) Comparative effects of ingested PVC micro particles with and without adsorbed Benzo(a) pyrene vs. spiked sediments on the cellular and subcellular processes of the benthic organism Hediste diversicolor. Front Mar Sci 5:99. https://doi.org/10.3389/fmars.2018.00099

    Article  Google Scholar 

  • Gomiero A, Strafella P, Oysaed KB, Fabi G (2019) First occurrence and composition assessment of microplastics in native mussels collected from coastal and offshore areas of the northern and central Adriatic Sea. Environ Sci Pollut Res 26:24407–24416

    CAS  Google Scholar 

  • Graca B, Szewck K, Zarknewska D, Dolega A, Boruchowska MS (2017) Sources and fate of microplastics in marine and beach sediments of sourthern Baltic sea-a preliminary study. Environ Sci Pollut Res 24:7650–7661. https://doi.org/10.1007/s11356-017-8419-5

    Article  CAS  Google Scholar 

  • Greven AC, Merk T, Karagöz F, Mohr K, Klapper M, Jovanovic B, Palic D (2016) Polycarbonate and polystyrene nanoplastic particles act as stressors to the innate immune system of fathead minnow (Pimephale spromelas). Environ Toxicol Chem 35:3093–3100

    CAS  Google Scholar 

  • Güven O, Gökdağ K, Jovanović B, Kıdeyş AE (2017) Microplastic litter composition of the Turkish territorial waters of the Mediterranean Sea, and its occurrence in the gastrointestinal tract of fish. Environ Pollut 223:286–294

    Google Scholar 

  • Hesser EF (1960) Method for routine fish haematology prog. Fish cult22: 164–171

  • Horton AA, Svendsen C, Williams RJ, Spurgeon DJ, Lahive E (2017) Large microplastic particles in sediments of tributaries of the River Tames, UK–abundance, sources and methods for effective quantification. Mar Poll Bull 114(1):218–226

    CAS  Google Scholar 

  • Hugla JL, Thome JP (1999) Effects of polychlorinated biphenyls on liver ultrastructure, hepatic monoxygenases, and reproductive success in the barbel. Ecotoxicol Environ Saf 42:265–273

    CAS  Google Scholar 

  • Idodo-Umeh G (2003) Freshwater fishes of Nigeria; taxonomy, ecological notes, diet and utilization. Idodo-Umeh publishers Benin City, 123p

  • Iheanacho SC, Odo GE (2020) Neurotoxicity, oxidative stress biomarkers and haematological responses in African catfish (Clarias gariepinus) exposed to polyvinyl chloride microparticles. Comp Biochem Physiol C 232:108741. https://doi.org/10.1016/j.cbpc.2020.108741

    Article  CAS  Google Scholar 

  • Iheanacho SC, Ikwo TN, Igweze N, Chukwuidha C, Ogueji EO, Onyeneke R (2018) Effect of different dietary inclusion levels of melon seed (Citrullus lanatus) peel on growth, haematology and histology of Oroechromis niloticus juvenile. Turk J Fish Aquat Sci 18(3):377–384

    Google Scholar 

  • Iheanacho SC, Ogueji E, Igberi C, Avwemoya F, Amadi-eke A, Yaji A, Mbah C (2019) Suitability of discarded cashew nut (Anacardium occidentale) meal as replacement of soybean meal (Glycine max) in the diet of juvenile African catfish Clarias gariepinus (Burchell, 1822). Indian J Fish 66(3):78–86

    Google Scholar 

  • Jovanović B (2017) Ingestion of microplastics by fish and its potential consequences from a physical perspective. Int Environ Assess Mgt 13:510–515

    Google Scholar 

  • Jovanovic B, Palic D (2012) Immunotoxicology of non-functionalized engineered nanoparticles in aquatic organisms with special emphasis on fish. Aquat Toxicol. https://doi.org/10.1016/j.aquatox.2012.04.005

    Google Scholar 

  • Jovanovic B, Gokdag K, Guven O, Emre Y, Whitely EM, Kideys AE (2018) Virgin microplastics are not causing imminent harm to fish after dietary exposure. Mar Pollut Bull 130:123–131

    CAS  Google Scholar 

  • Jung SH, Sim DS, Park MS, Jo QT, Kim Y (2003) Effects of formalin on hematological and blood chemistry in olive flounder, Paralichthys olivaceus (Temminck at Schlegel). Aquat Res 34:1269–1275

    CAS  Google Scholar 

  • Kettner MT, Rojas-Jimenez K, Oberbeckman S, Labrenoz M, Grossert HP (2017) Microplastics altered composition of fungal communities in aquatic ecosystem. Environ Microbiol 19(11):4447–4459

    CAS  Google Scholar 

  • Lavanya S, Ramesh M, Kavitha C, Malarvizhi A (2011) Hematological, biochemical and ionoregulatory responses of Indian major carp Catla catla during chronic sublethal exposure to inorganic arsenic. Chemosphere 82:977–985

    CAS  Google Scholar 

  • Leonardi M, Tarifeno E, Vera J (2009) Diseases of the Chilenean flounder, Paralichthys adspersus (Steindachner, 1867), as a biomarker of marine coastal pollution near the Itata River (Chile): Part II. Histopathological lesions. Arch Environ ContamToxicol 56:546–556

    Google Scholar 

  • Li ZH, Velisek J, Zlabek V, Grabic R, Machova J, Kolarova J, Randak T (2011) Chronic toxicity of verapamil on juvenile rainbow trout (Oncorhynchus mykiss): effects on morphological indices, hematological parameters and antioxidant responses. J Hazard Mater 185:870–880

    CAS  Google Scholar 

  • Li J, Yang D, Li L, Jabeen K, Shi H (2015) Microplastics in commercial bivalves from China. Environ Pollut 207:190–195

    CAS  Google Scholar 

  • Lu Y, Zhang Y, Deng Y, Jiang W, Zhao Y, Geng J, Ren H (2016) Uptake and accumulation of polystyrene microplastics in Zebrafish (Danio rerio) and toxic effects in liver. Environ Sci Technol 50(7):4054–4060

    CAS  Google Scholar 

  • Lusher A, O’Donnell C, Officer R, O’Connor I (2015) Microplastic interactions with North Atlantic mesopelagic fish. ICES J Mar Sci 73(4):1214–1225. https://doi.org/10.1093/icesjms/fsv241

    Google Scholar 

  • Mahon AM, O’Connell B, Healy MG, O’Connor I, Officer R, Nash R, Morrison L (2017) Microplastics in sewage sludge: effects of treatment. Environ Sci Technol 51(2):810–818

    CAS  Google Scholar 

  • Min EY, Kane JC (2008) Effect of waterborne benomyl on the hematological and antioxidant parameters of the Nile tilapia, Oreochromis niloticus. Pestic Biochem Physiol 92:138–143

    CAS  Google Scholar 

  • Misra HP, Friedovich I (1972) The role of superoxide anions in the auto-oxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  Google Scholar 

  • Nadal MA, Alomar C, Deudero S (2016) High levels of microplastic ingestion by the semi pelagic fish bogue Boops boops (L.) around the Balearic Islands. Environ Pollut 214:517–523

    CAS  Google Scholar 

  • National Oceanic and Atmospheric Administration (NOAA) (2016) How much would it cost to clean up the Pacific Garbage Patches? [cited 2016 December 11]. http://response.restoration.noaa.gov/about/media/howmuch- would-it-cost-clean-pacific-garbage-patches.html

  • Nwani CD, Somdare PO, Ukonze JA, Ejere VC, Nwadinigwe AO, Nwani JC, Odo GE, Ugbor ON (2016) Subchronic exposure to fenthion induces hematological changes in liver tissue of African catfish Clarias gariepinus. J Aquat Anim Health 28:229–234

    CAS  Google Scholar 

  • Odo GE, Agwu JE, Ivoke N, Ejere VC, Atama CI, Ezea CO, Aguoru GC, Anya BC (2017) Effect of short-term exposure to Cyperdicot on behavioural and haematological responses in African catfish (Clarias gariepinus). Turk J Fish Aquat Sci 17:61–70

    Google Scholar 

  • Ogata Y, Takada H, Mizukawa K, Hirai H, Iwasa S, Endo S, Mato Y, Saha M, Okuda K, Nakashima A, Murakami M, Zurcher N, Booyatumanondo R, Zakaria MP, Dung le Q, Gordon M, Miguez C, Suzuki S, Moore C, Karapanagioti HK, Weerts S, McClurg T, Burres E, Smith W, Van Velkenburg M, Lang JS, Lang RC, Laursen D, Danner B, Stewardson N, Thompson RC (2009) International pellet watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs. Mar Pollut Bull 58(10):1437–1446. doi: https://doi.org/10.1016/j.marpolbul.2009.06.014

    CAS  Google Scholar 

  • Ogueji EO, Nwani CD, Iheanacho SC, Mbah CE, Okeke CO, Yaji A (2018) Acute toxicity effects of ibuprofen on behaviour and haematological parameters of African catfish Clarias gariepinus (Burchell, 1822). Afr J Aquat Sci 43(3):293–303. https://doi.org/10.2989/16085914.2018.1465393

    Article  CAS  Google Scholar 

  • Okoro N, Iheanacho SC, Nwakpa J, Eze C (2019) Effects of Chromolaena odorata leaf extract on behavior and haematology of Clarias gariepinus (Burchell, 1822). Afr J Aquat Sci 44(4):421–427. https://doi.org/10.2989/16085914.2019.1661823

    Article  CAS  Google Scholar 

  • Oliveira M, Ribeiro A, Hylland K, Guilhermino L (2013) Single and combined effects of microplastics and pyrene on juveniles (0+ group) of the common goby Pomatoschistus microps (Teleostei, gobiidae). Ecol Indic 34:641–647

    CAS  Google Scholar 

  • Organisation of Economic Coorperation and Development (OECD) (2012) Guidelines for the testing of chemicals. Test guidelines No. 301. OECD, Paris

    Google Scholar 

  • Pedà C, Caccamo L, Fossi MC, Gai F, Andaloro F, Genovese L, Perdichizzi A, Romeo T, Maricchiolo G (2016) Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics: preliminary results. Environ Pollut 212:251–256. https://doi.org/10.1016/j.envpol.2016.01.083

    Article  CAS  Google Scholar 

  • Pellini G, Gomiero A, Ferr FC, Grati F, Tassetti N, Polidori P, Fabi G, Scarcella G (2018) Characterization of microplastic litter in the gastrointestinal tract of Solea solea from the Adriatic Sea. Environ Pollut 234(2018):943–952. https://doi.org/10.1016/j.envpol.2017.12.038

    Article  CAS  Google Scholar 

  • Plastics Team (2016) Density. http://www.tworzywa.pwr.wroc. pl/pl/dydaktyka/gestosc. Accessed 4 September 2016 (in Polish)

  • Ramsden CS, Smith TJ, Shaw BJ, Handy RD (2009) Dietary exposure to titanium dioxide nanoplaticles in rainbow trout, (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain. Ecotoxicol 18:939–951

    CAS  Google Scholar 

  • Ribeiro F, Garcia AR, Pereira BP, Fonseca M, Mestre NC, Fonseca TG, IIharco LM (2017) Microplastic effects in Scrobicularia plana. Mar Pollut Bull 122(1–2):379–391

    CAS  Google Scholar 

  • Rochman CM, Hoh E, Kurobe T, Teh SJ (2013) Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci Report 3(3263). https://doi.org/10.1038/srep03263

  • Romeo T, Pietro B, Peda C, Consoli P, Andaloro F, Fossi MC (2015) First evidence of presence of plastic debris in stomach of large pelagic fish in the Mediterranean Sea. Mar Pollut Bull 95:358–361

    CAS  Google Scholar 

  • Ronlad WG, Bruce AB (1990) Organosomatic indices and an autopsy-based assessment as indicators of health condition of fish. Am Fish Soc 8:93–108

    Google Scholar 

  • Rummel C (2014) Occurrence and potential effects of plastic ingestion by pelagic and demersal fish from the North Sea and Baltic Sea Diplom thesis, Johannes Gutenberg-Universität Mainz

  • Santana MFM, Ascer LG, Cust-odio MR, Moreira FT, Turra A (2016) Microplastic contamination in natural mussel beds from a Brazilian urbanized coastal region: rapid evaluation through bioassessment. Mar Pollut Bull 106:183–189

    CAS  Google Scholar 

  • Santillo D, Miller K, Johnston P (2017) Microplastics as contaminants in commercially important seafood species. Integr Environ Assess Mgt 13(3):516–521. https://doi.org/10.1002/ieam.1909

    Article  Google Scholar 

  • Saravanan M, Ussha-Devik K, Malarvizhi A, Ramesh M (2012) Effects of Ibuprofen on haematological, biochemical and enzymological parameters of blood in an Indian major carp Cirrhinus mrigala. Environ Toxicol Pharmacol 34:14–22

    CAS  Google Scholar 

  • Scherer C, Weber A, Lambert S, Wagner M (2018) Interaction of microplastics with freshwater biota. Hdb Environ Chem 58. https://doi.org/10.1007/978-3-319-61615-5_8

    Google Scholar 

  • Shahsavani D, Mohri M, Gholipour H (2010) Determination of normal values of some blood serum enzymes in Acipenser stellatus Pallas. Fish Physiol Biochem 36:39–43

    CAS  Google Scholar 

  • Sharma SK, Krishna-Murti CR (1968) Production of lipid peroxides by brain. J Neurochem 15:147–149

    CAS  Google Scholar 

  • Sogbanmu TO, Osibona AO, Oguntunde OA, Otitoloju AA (2018) Biomarkers of toxicity in Clarias gariepinus exposed to sublethal concentrations of polycyclic aromatic hydrocarbons. Afr J Aquat Sci 43(3):281–292

    CAS  Google Scholar 

  • Song SB, Xu Y, Zhou BS (2006) Effects of hexachlorobenzene on antioxidant status of liver and brain of common cap (Cyprinus carpio). Chemosphere 65:699–706

    CAS  Google Scholar 

  • Terry B (2012) Plastic free: how I kicked the plastic habit and how you can too. Sky House Publishing, New York

    Google Scholar 

  • Tiwari BSS (2015) Microplastics: the hidden contaminant in aquatic ecosystems. DOI: https://doi.org/10.13140/RG.2.1.1559.0566

  • Wagner T, Congleton JL (2004) Blood-chemistry correlates of nutritional condition, tissue damage, and stress in migrating juvenile Chinook salmon Oncorhynchus tshawytscha. Can J Fish Aquat Sci 61:1066–1074

    CAS  Google Scholar 

  • World Economic Forum (2016) The new plastics economy: rethinking the future of plastics. Industry Agenda REF 080116. 34 p. Cologny/Geneva, Switzerland

  • Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492

    CAS  Google Scholar 

  • Wu WM, Yang J, Criddle CS (2017) Microplastic pollution and reduction strategies. Front Environ Sci Eng 11(1):6–23. https://doi.org/10.1007/S11783-017-0897-7

    Article  Google Scholar 

  • Yaj AJ, Iheanacho SC, Ogueji EO (2018) Sublethal exposure and toxicity effect of propanil on haematology and serum biochemistry in Oreochromis niloticus in a static bioassay. Gazi Uni J Sci 31(4):1048–1062

    Google Scholar 

  • Zhang C, Chen X, Wang J, Tan L (2017) Toxic effects of microplastic on marine microalgae Skeletonema costatum: interactions between microplastic and algae. Environ Pollut 220:1282–1288

    CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Department of Zoology and Environmental Biology, University of Nigeria Nsukka for their support during the conceptualization of the study. Prof. Dr. Johnny Ogunji is appreciated for critiquing the manuscript.

Funding

This research was supported by Tertiary Education Trust Fund, (TETfund, AE-FUNAI/AST &D/2018/2019) Nigeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley C. Iheanacho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iheanacho, S.C., Odo, G.E. Dietary exposure to polyvinyl chloride microparticles induced oxidative stress and hepatic damage in Clarias gariepinus (Burchell, 1822). Environ Sci Pollut Res 27, 21159–21173 (2020). https://doi.org/10.1007/s11356-020-08611-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08611-9

Keywords

Navigation