Skip to main content

Advertisement

Log in

Nanoparticles as Novel Emerging Therapeutic Antibacterial Agents in the Antibiotics Resistant Era

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Microorganisms are highly resistant to the antibiotics that are commonly used and thus are becoming serious public health problem. There is an urgent need for new approaches to monitor microbial behavior, and hence, nanomaterial can be a very promising solution. Nanotechnology has led to generation of novel antimicrobial agents such as gold, silver, zinc, copper, poly-£-lysine, iron, and chitosan which have shown remarkable potential, demonstrating their applicability as proficient antibiotic agents against various pathogenic bacterial species. The antimicrobial nanoproduct physically kills the organism’s cell membranes that prevent the production of drug-resistant microorganisms. These nanosized particles can also be used as diagnostic agents, targeted drug delivery vehicle, noninvasive imaging technologies, and in vivo visual monitoring of tumors angiogenesis. These nanomaterials provide a promising platform for diagnostics, prognostic, drug delivery, and treatment of diseases by means of nanoengineered products/devices. This owes to their small size, prolonged antimicrobial efficacy with insignificant toxicity creating less environmental hazard or toxicity. Scientists address several problems such as health, bioethical problems, toxicity risks, physiological, and pharmaceutical concerns related with the usage of NPs as antimicrobial agents as current research lack adequate data and information on the safe use of certain tools and materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Atef NM, Shanab SM, Negm SI, Abbas YA (2019) Evaluation of antimicrobial activity of some plant extracts against antibiotic susceptible and resistant bacterial strains causing wound infection. Bull Natl Res Cent 43:144

    Article  Google Scholar 

  2. Schürrle K (2018) History, current state, and emerging applications of industrial biotechnology. In: Fröhling M, Hiete M (eds) Sustainability and life cycle assessment in industrial biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 173. Springer, Cham

    Google Scholar 

  3. Verheij TJ (2009) The antibiotic revolution should be more focused. Br J Gen Pract 59:716–717

    Article  PubMed  PubMed Central  Google Scholar 

  4. Davey P, Sneddon J, Nathwani D (2010) Overview of strategies for overcoming the challenge of antimicrobial resistance. Expert Rev Clin Pharmacol 3:667–686

    Article  PubMed  Google Scholar 

  5. Awad HM, Kamal YES, Aziz R, Sarmidi MR, El-Enshasy HA (2012) Antibiotics as microbial secondary metabolites: Production and application. J Teknol 59:101–111

    Google Scholar 

  6. Eko KE, Forshey BM, Carrel M, Schweizer M. L, Perencevich EN, Smith TC (2015) Molecular characterization of methicillin-resistant Staphylococcus aureus (MRSA) nasal colonization and infection isolates in a Veterans Affairs hospital. Antimicrob Resist Infect Control 4:10.

  7. Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C (2013) Antibiotic resistance—The need for global solutions. Lancet Infect Dis 13:1057–1098

    Article  PubMed  Google Scholar 

  8. Akhtar M, Swamy MK, Umar A, Sahli A, Abdullah A (2015) Biosynthesis and characterization of silver nanoparticles from methanol leaf extract of Cassia didymobotyra and assessment of their antioxidant and antibacterial activities. J Nanosci Nanotechnol 15:9818–9823

    Article  CAS  PubMed  Google Scholar 

  9. Thabit AK, Crandon JL, Nicolau DP (2015) Pharm D FCCP FIDSA. Antimicrobial resistance: impact on clinical and economic outcomes and the need for new antimicrobials. Expert Opin Pharmacother 16:159–177

    CAS  PubMed  Google Scholar 

  10. Wong IY, Bhatia SN, Toner M (2013) Nanotechnology: Emerging tools for biology and medicine. Genes Dev 27:2397–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Akhtar M, Swamy MK, Umar A, Sahli A, Abdullah A (2015) Biosynthesis and characterization of silver nanoparticles from methanol leaf extract of Cassia didymobotyra and assessment of their antioxidant and antibacterial activities. J. Nanosci. Nanotechnol 15:9818–9823

    Article  CAS  PubMed  Google Scholar 

  12. Fouda A, Hassan SE, Abdo AM, El-Gamal SM (2020) Antimicrobial, antioxidant and larvicidal activities of spherical silver nanoparticles synthesized by endophytic Streptomyces spp. Biol Trace Elem Res 195:707–724

    Article  CAS  PubMed  Google Scholar 

  13. Al-Nuairi AG, Mosa KA, Mohammad MG, El-Keblawy A, Soliman S, Alawadhi H (2020) Biosynthesis, characterization, and evaluation of the cytotoxic effects of biologically synthesized silver nanoparticles from cyperus conglomeratus root extracts on breast cancer cell line MCF-7. Biol Trace Elem Res 194:560–569

    Article  CAS  PubMed  Google Scholar 

  14. Baghbani-Arani F, Movagharnia R, Sharifian A, Salehi S, Shandiz SAS (2017) Photo-catalytic, anti-bacterial, and anti-cancer properties of phyto-mediated synthesis of silver nanoparticles from Artemisia tournefortiana Rchb extract. J Photochem Photobiol B Biol 173:640–649

    Article  CAS  Google Scholar 

  15. He Y, Du Z, Ma S, Cheng S, Jiang S, Liu Y, Li D, Huang H, Zhang K, Zheng X (2016) Biosynthesis, antibacterial activity and anticancer effects against prostate cancer (PC-3) cells of silver nanoparticles using Dimocarpus longan Lour. peel extract. Nanoscale Res Lett 11:300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ortiz EP, Roque Ruiz JH, Márquez EAH, Esparza JL, Cornejo AD, González JCC, Espinosa-Cristóbal LF, SYR L (2017) Dose-dependent antimicrobial activity of silver nanoparticles on polycaprolactone fibers against gram-positive and gram-negative bacteria. J Nanomater 4752314:1–9

    Article  CAS  Google Scholar 

  17. Siddiqi KS, Husen A, Rao RAK (2018) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiot 16:14

    Article  CAS  Google Scholar 

  18. Chang B, Pan L, Lin H (2019) Nanodiamond-supported silver nanoparticles as potent and safe antibacterial agents. Sci Rep 9:13164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Oun AA, Rhim JW (2017) Carrageenan-based hydrogels and films: Effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties. Food Hydrocoll 67:45–53

    Article  CAS  Google Scholar 

  20. Horky P, Skalickova S, Urbankova L (2019) Zinc phosphate-based nanoparticles as a novel antibacterial agent: In vivo study on rats after dietary exposure. J Animal Sci Biotechnol 10:17

    Article  Google Scholar 

  21. Jiang YH, Zhang LL, Wen DS, Ding YL (2016) Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against E. Coli. Mater Sci Eng C-Mater Biol Appl 69:1361–1366

    Article  CAS  PubMed  Google Scholar 

  22. Chaudhary P, Fatima F, Kumar A (2020) Relevance of nanomaterials in food packaging and its advanced future prospects. J Inorg Organomet Polym 30:1–13

    Article  CAS  Google Scholar 

  23. Espitia PJP, Soares NDFF, Coimbra JSDR, de Andrade NJ, Cruz RS, Medeiros EAA (2012) Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5:1447–1464

    Article  CAS  Google Scholar 

  24. Salvadori MR, Ando RA, do Nascimento CA, Corrêa B (2014) Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLoS One 9:e87968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kruk T, Szczepanowicz K, Stefanska J, Socha RP, Warszyński P (2015) Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids Surf. B Biointerfaces 128:17–22

    Article  CAS  PubMed  Google Scholar 

  26. Longano D, Ditaranto N, Sabbatini L, Torsi L, Cioffi N (2020) Synthesis and antimicrobial activity of copper nanomaterials. Nano-antimicrobials 85:117

    Google Scholar 

  27. Prado JV, Vidal AR, Duran TC (2012) Application of copper bactericidal properties in medical practice. Rev Med Chil 140:1325–1332

    Article  PubMed  Google Scholar 

  28. Hans M, Erbe A, Mathews S, Chen Y, Solioz M (2013) Role of copper oxides in contact killing of bacteria. Langmuir 29:16160–16166

    Article  CAS  PubMed  Google Scholar 

  29. Alswat AA, Ahmad MB, Saleh TA (2017) Preparation and characterization of zeolite\zinc oxide-copper oxide nanocomposite: antibacterial activities. Colloid Interface Sci Commun 16:19–24

    Article  CAS  Google Scholar 

  30. Ashfaq M, Verma N, Khan S (2016) Copper/zinc bimetal nanoparticles-dispersed carbon nanofibers: a novel potential antibiotic material. Mater Sci Eng C 59:938–947

    Article  CAS  Google Scholar 

  31. Thekkae Padil VV, Cerník M (2013) Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomed 8:889–898

    Google Scholar 

  32. Nene A, Tuli HS (2019) Synergistic effect of copper nanoparticles and antibiotics to enhance antibacterial potential. Biomaterials 1:33–47

    Google Scholar 

  33. Naskar A, Lee S, Kim K-s (2020) Antibacterial potential of Ni-doped zinc oxide nanostructure: comparatively more effective against Gram-negative bacteria including multi-drug resistant strains. RSC Adv 10:1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Itabashi T, Narita K, Ono A, Wada K, Tanaka T, Kumagai G, Yamauchi R, Nakane A, Ishibashi Y (2017) Bactericidal and antimicrobial effects of pure titanium and titanium alloy treated with short-term, low-energy UV irradiation. Bone Jt Res 6:108–112

    Article  CAS  Google Scholar 

  35. Li Y, Zhang W, Niu J, Chen Y (2012) Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6:5164–5173

    Article  CAS  PubMed  Google Scholar 

  36. Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR (2018) Nano-strategies to fight multidrug resistant bacteria—a battle of the titans. Front Microbiol 9:1441

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shamaila S, Zafar N, Riaz S, Sharif R, Nazir J, Naseem S (2016) Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials (Basel) 6:71

    Article  CAS  Google Scholar 

  38. Li X, Robinson SM, Gupta A, Saha K, Jiang Z, Moyano DF, Sahar A, Riley MA, Rotello VM (2014) Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 8:10682-10686

  39. Abdel-Kareem MM, Zohri AA (2018) Extracellular mycosynthesis of gold nanoparticles using Trichoderma hamatum: Optimization, characterization and antimicrobial activity. Lett Appl Microbiol 67:465–475

    Article  CAS  PubMed  Google Scholar 

  40. Rajan A, Vilas V, Philip D (2015) Studies on catalytic, antioxidant, antibacterial and anticancer activities of biogenic gold nanoparticles. J Mol Liq 212:331–339

    Article  CAS  Google Scholar 

  41. Mishra A, Tripathy SK, Yun SI (2011) Bio-synthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic bacteria. J Nanosci Nanotechnol 11:243–248

    Article  CAS  PubMed  Google Scholar 

  42. Fatima F, Bajpai P, Pathak N, Singh S, Priya S, Verma SR (2015) Antimicrobial and immunomodulatory efficacy of extracellularly synthesized silver and gold nanoparticles by a novel phosphate solubilizing fungus Bipolaris tetramera. BMC Microbiol 15:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Nurit Beyth, Yael Houri-Haddad Avi Domb, Wahid Khan, Ronen Hazan (2015) Evidence-based complementary and alternative medicine, alternative antimicrobial approach: Nano-Antimicrobial Materials Article ID 246012, 1-16

  44. Saqib S, Munis MFH, Zaman W (2019) Synthesis, characterization and use of iron oxide nano particles for antibacterial activity. Microsc Res Tech 82:415–420

    Article  CAS  PubMed  Google Scholar 

  45. Aparicio-Caamaño M, Carrillo-Morales M, Olivares-Trejo JJ (2016) Iron oxide nanoparticle improves the antibacterial activity of erythromycin. J Bacteriol Parasitol 7:267

    Google Scholar 

  46. Armijo LM, Wawrzyniec SJ, Kopciuch M (2020) Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. J Nanobiotechnol 18:35

    Article  CAS  Google Scholar 

  47. Lin C, Chen J, Liu Z, Wang H, Yang H, Ding W (2018) Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Front Microbiol 9:790

    Article  Google Scholar 

  48. Al-Jumaili A, Alancherry S, Bazaka K (2017) Review on the antimicrobial properties of carbon nanostructures. Materials (Basel) 10:1066

    Article  CAS  Google Scholar 

  49. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in Pharmaceutical Sciences 9:385–406

    CAS  PubMed  PubMed Central  Google Scholar 

  50. S. C. Shukla , A. Singh , A. K. Pandey and A. Mishra (2012) Review on production and medical applications of ε-polylysine Biochem Eng J 65:70-81

  51. Naghadeh HT, Sharifi Z, Soleimani S, Jamaat ZPM, Ferdowsi S (2017) Efficacy of ε-poly-L-lysine as an antibacterial additive for platelets stored at room temperature, Iran. J Med Sci 42:509–511

    Google Scholar 

  52. Tan Z, Shi Y, Xing B (2019) The antimicrobial effects and mechanism of ε-poly-lysine against Staphylococcus aureus. Bioresour Bioprocess 6:11

    Article  Google Scholar 

  53. Ali A, Ahmed S (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286

    Article  CAS  PubMed  Google Scholar 

  54. Yilmaz AH (2020) Antibacterial activity of chitosan-based systems. Drug Delivery and Biomedical Applications, Functional Chitosan, pp 457–489

    Google Scholar 

  55. Anitha S, Sowmya PTS, Kumar S, Deepthi KP, Chennazhi H, Ehrlich M, Tsurkan, Jayakumar R (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667

    Article  CAS  Google Scholar 

  56. Hosseinnejad M, Jafari SM (2016) Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol 85:467–475

    Article  CAS  PubMed  Google Scholar 

  57. Shahryari F, Rabiei Z, Sadighian S (2020) Antibacterial activity of synthesized silver nanoparticles by sumac aqueous extract and silver-chitosan nanocomposite against Pseudomonas syringae pv. syringae. J Plant Pathol 102:469–475

    Article  Google Scholar 

  58. Kenawy ER, Salem IA, Abo-Elghit EM, Al-Owais AA (2014) New trends in antimicrobial polymers: a state-of-the-art review. Int J Chem Appl Biol Sci 1:95–105

    Article  Google Scholar 

  59. Munoz B, Fernandez M (2011) Polymeric materials with antimicrobial activity. Prog Polym Sci 37:281–339

    Article  CAS  Google Scholar 

  60. Demir B, Broughton RM, Qiao M, Huang TS, Worley SD (2017) N-halamine biocidal materials with superior antimicrobial efficacies for wound dressings. Molecules (Basel, Switzerland) 22:1582

    Article  CAS  Google Scholar 

  61. Ventola CL (2017) Progress in nanomedicine: approved and investigational nanodrugs P & T : a peer-reviewed. Journal for Formulary Management 42:742–755

    Google Scholar 

  62. Ehlerding EB, Grodzinski P, Cai W, Liu CH (2018) Big potential from small agents: nanoparticles for imaging-based companion diagnostics. ACS Nano 12:2106–2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Anselmo AC, Mitragotri S (2015) A review of clinical translation of inorganic nanoparticles. The AAPS Journal 17:1041–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Al-Halifa S, Gauthier L, Arpin D, Bourgault S, Archambault D (2019) Nanoparticle-based vaccines against respiratory viruses. Front Immunol 10:2286

    Article  CAS  Google Scholar 

  65. Madamsetty VS, Mukherjee A, Mukherjee S (2019) Recent trends of the bio-inspired nanoparticles in cancer theranostics. Front Pharmacol 10:1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lombardo D, Kiselev MA, Teresa MC (2019) Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomed 2019:1–26

    Google Scholar 

  67. Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR (2019) Nanopharmaceuticals and nanomedicines currently on the market:challenges and opportunities. Nanomedicine (Lond) 14:93–126

    Article  CAS  Google Scholar 

  68. Wu J, Li G, Hu X, Lu J, Sun X, Gao J, Ling D (2019) Responsive assembly of silver nanoclusters with a biofilm locally amplified bactericidal effect to enhance treatments against multi-drug-resistant bacterial infections. ACS Cent Sci 5:1366–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nallanthighal S, Chan C, Bharali DJ, Mousa SA, Vásquez E, Reliene R (2017) Particle coatings but not silver ions mediate genotoxicity of ingested silver nanoparticles in a mouse model. NanoImpact 5:92–100

    Article  PubMed  PubMed Central  Google Scholar 

  70. Argenziano M, Gigliotti CL, Clemente N, Boggio E, Ferrara B, Trotta F, Pizzimenti S, Barrera G, Boldorini R, Bessone F, Dianzani U, Cavalli R, Dianzani C (2020) Improvement in the anti-tumor efficacy of doxorubicin nanosponges in in vitro and in mice bearing breast tumor models. Cancers 12:162

    Article  CAS  PubMed Central  Google Scholar 

  71. Jiang J, Pi J, Cai J (2018) The advancing of zinc oxide nanoparticles for biomedical applications. Bioin Chem Appl 2018:1–18

    Article  CAS  Google Scholar 

  72. Nazarizadeh A, Asri-Rezaie S (2016) Comparative study of antidiabetic activity and oxidative stress induced by zinc oxide nanoparticles and zinc sulfate in diabetic rats. AAPS Pharm Sci Tech 17:834–843

    Article  CAS  Google Scholar 

  73. Ávalos A, Haza AI, Drosopoulou E, Mavragani-Tsipidou P, Morales P (2015) In vivo genotoxicity assesment of silver nanoparticles of different sizes by the Somatic Mutation and Recombination Test (SMART) on Drosophila. Food Chem Toxicol 85:114–119

    Article  PubMed  CAS  Google Scholar 

  74. Lee IC, Ko JW, Park SH (2016) Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats. Int J Nanomedicine 11:2883–2900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ziental D, Czarczynska-Goslinska B, Mlynarczyk DT, Glowacka-Sobotta A, Stanisz B, Goslinski T, Sobotta L (2020) Titanium dioxide nanoparticles:prospects and applications in medicine. Nanomaterials (Basel, Switzerland) 10:387

    Article  CAS  Google Scholar 

  76. Ullah K, Khan SA, Mannan A, Khan R, Murtaza G, Yameen MA (2020) Enhancing the antibacterial activity of erythromycin with titanium dioxide nanoparticles against MRSA. Curr Pharm Biotechnol 10:2174

    Google Scholar 

  77. Fan M, Han Y, Gao S, Yan H, Cao L, Li Z, Liang XJ, Zhang J (2020) Ultrasmall gold nanoparticles in cancer diagnosis and therapy. Theranostics 10:4944–4957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chandarana M, Curtis A, Hoskins C (2018) The use of nanotechnology in cardiovascular disease. Appl Nanosci 8:1607–1619

    Article  CAS  Google Scholar 

  79. Yew YP, Shameli K, Miyake M, Khairudin NBA, Mohamed SEB, Naiki T, XinLee K (2020) Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review. Arab J Chem 13:2287–2308

    Article  CAS  Google Scholar 

  80. Wallyn J, Anton N, Vandamme TF (2019) Review synthesis, principles, and properties of magnetite nanoparticles for in vivo imaging applications a review. Pharmaceutics 11:601

    Article  CAS  PubMed Central  Google Scholar 

  81. Mangalampalli B, Dumala N, Perumalla Venkata R, Grover P (2018) Genotoxicity, biochemical, and biodistribution studies of magnesium oxide nano and microparticles in albino wistar rats after 28-day repeated oral exposure. Environ Toxicol 33:396–410

    Article  CAS  PubMed  Google Scholar 

  82. Virlan MJ, Miricescu D, Radulescu R, Sabliov CM, Totan A, Calenic B, Greabu M (2016) Organic nanomaterials and their applications in the treatment of oral diseases. Molecules (Basel, Switzerland) 21:207

    Article  CAS  Google Scholar 

  83. Green MR, Manikhas GM, Orlov S (2006) Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Annals of Oncology : Official Journal of the European Society for Medical Oncology / ESMO 17:1263–1268

    Article  CAS  Google Scholar 

  84. Zhao N, Woodle MC, Mixson AJ (2018) Advances in delivery systems for doxorubicin. J Nanomed Nanotechnol 9:519

    Article  PubMed  PubMed Central  Google Scholar 

  85. Anselmo AC, Mitragotri S (2015) A review of clinical translation of inorganic nanoparticles. The AAPS Journal 17:1041–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Singh P, Pandit S, Mokkapati V, Garg A, Ravikumar V, Mijakovic I (2018) Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci 19:1979

    Article  PubMed Central  CAS  Google Scholar 

  87. El-Hussein A, Hamblin MR (2017) ROS generation and DNA damage with photo-inactivation mediated by silver nanoparticles in lung cancer cell line. IET Nanobiotechnol 11(2):173–178

    Article  PubMed  Google Scholar 

  88. Suski JM, Lebiedzinska M, Bonora M, Pinton P, Duszynski J, Wieckowski MR (2012) Relation between mitochondrial membrane potential and ROS formation. Methods Mol Biol 810:183–205

    Article  CAS  PubMed  Google Scholar 

  89. Rim KT, Song SW, Kim HY (2013) Oxidative DNA damage from nanoparticle exposure and its application to workers’ health: a literature review. Safety and Health at Work 4:177–186

    Article  PubMed  PubMed Central  Google Scholar 

  90. Stensberg MC, Wei Q, McLamore ES, Porterfield DM, Wei A, Sepúlveda MS (2011) Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine (London, England) 6:879–898

    Article  CAS  Google Scholar 

  91. Nisar P, Ali N, Rahman L (2019) Antimicrobial activities of biologically synthesized metal nanoparticles: an insight into the mechanism of action. J Biol Inorg Chem 24:929–941

    Article  CAS  PubMed  Google Scholar 

  92. Chatterjee T, Chatterjee BK, Majumdar D, Chakrabarti P (2015) Antibacterial effect of silver nanoparticles and the modeling of bacterial growth kinetics using a modified Gompertz model. Biochim Biophys Acta 1850:299–306

    Article  CAS  PubMed  Google Scholar 

  93. Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y (2018) Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine 13:3311–3327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shaikh S (2019) Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int J Mol Sci 20:2468

    Article  PubMed Central  CAS  Google Scholar 

  95. Bankier C, Matharu R, Cheong YK (2019) Synergistic antibacterial effects of metallic nanoparticle combinations. Sci Rep 9:16074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bondarenko OM, Sihtmäe M, Kuzmičiova J, Ragelienė L, Kahru A, Daugelavičius R (2018) Plasma membrane is the target of rapid antibacterial action of silver nanoparticles in Escherichia coli and Pseudomonas aeruginosa. Int J Nanomedicine 13:6779–67900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yan X, He B, Liu L (2018) Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach. Metallomics 10:557–564

    Article  CAS  PubMed  Google Scholar 

  98. Yin JJ, Liu J, Ehrenshaft M (2012) Phototoxicity of nano titanium dioxides in HaCaT keratinocytes – generation of reactive oxygen species and cell damage. Toxicol Appl Pharmacol 263:81–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnology 15:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Jahnke JP, Cornejo JA, Sumner JJ, Schuler AJ, Atanassov P, Ista LK (2016) Conjugated gold nanoparticles as a tool for probing the bacterial cell envelope:the case of Shewanella oneidensis MR-1. Biointerphases 11:11003

    Article  CAS  Google Scholar 

  101. Madl AK, Plummer LE, Carosino C, Pinkerton KE (2014) Nanoparticles, lung injury, and the role of oxidant stress. Ann Rev Physiol 76:447–465

    Article  CAS  Google Scholar 

  102. Gou N, Onnis-Hayden A, Gu AZ (2010) Mechanistic toxicity assessment of nanomaterials by whole-cell-array stress genes expression analysis. Environ Sci Technol 44:5964–5970

    Article  CAS  PubMed  Google Scholar 

  103. Gilbert DL, Colton CA (1999) Reactive oxygen species in biological systems: An interdisciplinary approach. Kluwer Academic Publishers, New York, pp 155–171

    Google Scholar 

  104. Butler KS, Peeler DJ, Casey BJ, Dair BJ, Elespuru RK (2015) Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity. Mutagenesis 30:577–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fu PP, Xia Q, Sun X (2012) Phototoxicity and environmental transformation of polycyclic aromatic hydrocarbons (PAHs)-light-induced reactive oxygen species, lipid peroxidation, and DNA damage. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 30:1–41

    Article  CAS  PubMed  Google Scholar 

  106. Chiang HM, Xia Q, Zou X (2012) Nanoscale ZnO induces cytotoxicity and DNA damage in human cell lines and rat primary neuronal cells. J Nanosci Nanotechnol 12:2126–2135

    Article  CAS  PubMed  Google Scholar 

  107. Hussain S, Garantziotis S, Rodrigues-Lima F, Dupret JM, Baeza-Squiban A, Boland S (2014) Intracellular signal modulation by nanomaterials. Adv Exp Med Biol 811:111–134

    Article  PubMed  PubMed Central  Google Scholar 

  108. Leung YH, Ng AM, Xu X (2014) Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small 10:1171–1183

    Article  CAS  PubMed  Google Scholar 

  109. Su Y, Zheng X, Chen Y, Li M, Liu K (2015) Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles. Sci Rep 5:15824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Roguska A, Belcarz A, Pisarek M, Ginalska G, Lewandowska M (2015) TiO2 nanotube composite layers as delivery system for ZnO and Ag nanoparticles – an unexpected overdose effect decreasing their antibacterial efficacy. Mater Sci Eng C Mater Biol Appl 51:158–166

    Article  CAS  PubMed  Google Scholar 

  111. Qiu W, Zheng X, Wei Y (2016) D-alanine metabolism is essential for growth and biofilm formation of Streptococcus mutans. Mol Oral Microbiol 31:435–444

    Article  CAS  PubMed  Google Scholar 

  112. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dwivedi PD, Misra A, Shanker R, Das M (2009) Are nanomaterials a threat to the immune system? Nanotoxicology 3:19–26

    Article  CAS  Google Scholar 

  114. Gonzalez L, Lison D, Kirsch-Volders M (2008) Genotoxicity of engineered nanomaterials: A critical review. Nanotoxicology 2:252–273

    Article  Google Scholar 

  115. Fatima F, Bajpai P, Pathak N, Singh S, Priya S, Verma SR (2016) Extracellular mycosynthesis of silver nanoparticles and their microbicidal activity. J Glob Antimicrob Re 7:88–92

    Article  Google Scholar 

  116. Korani M, Ghazizadeh E, Korani S, Hami Z, Mohammadi-Bardbori A (2015) Effects of silver nanoparticles on human health Eur J Nanomed 7:51–62

    Article  CAS  Google Scholar 

  117. Kumar V, Sharma N, Maitra SS (2017) In vitro and in vivo toxicity assessment of nanoparticles. Int Nano Lett 7:243

    Article  CAS  Google Scholar 

  118. Marzban A, Seyedalipour B, Mianabady M (2020) Biochemical, toxicological, and histopathological outcome in rat brain following treatment with NiO and NiO nanoparticles. Biol Trace Elem Res 196:528–536

    Article  CAS  PubMed  Google Scholar 

  119. Indrakumar J, Korrapati PS (2020) Steering efficacy of nano molybdenum towards cancer: mechanism of action. Biol Trace Elem Res 194:121–134

    Article  CAS  PubMed  Google Scholar 

  120. Shakeel M, Jabeen F, Shabbir S (2016) Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: a review. Biol Trace Elem Res 172:1–36

    Article  CAS  PubMed  Google Scholar 

  121. Chuang H, Hsiao T, Wu C, Chang H, Lee C, Chang C, Cheng T (2013) Allergenicity and toxicology of inhaled silver nanoparticles in allergen-provocation mice models. Int J Nanomed 8:4495–4506

    Article  CAS  Google Scholar 

  122. Poh T, Ali N, Mac Aogain M, Kathawala M, Setyawati M, Ng K, Chotirmall S (2018) Inhaled nanomaterials and the respiratory microbiome: Clinical, immunological and toxicological perspectives. Part Fibre Toxicol 15:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fatima F, Verma SR, Pathak N, Bajpai P (2016) Extracellular mycosynthesis of silver nanoparticles and their microbicidal activity. J Glob Antimicrob 7:88–92

    Article  Google Scholar 

  124. Fatima F, Pathak N, Verma SR, Bajpai P (2017) Toxicity and immunomodulatory efficacy of biosynthesized silver myconanosomes on pathogenic microbes and macrophage cells. Artif Cells Nanomed Biotechnol 46:1–9

    Article  CAS  Google Scholar 

  125. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2017) Silver nanoparticles as potential antibacterial agents. Molecules 20:8856–8874

    Article  CAS  Google Scholar 

  126. Bose D, Chatterjee S (2015) Antibacterial activity of green synthesized silver nanoparticles using Vasaka (Justicia adhatoda L.) leaf extract. Indian J Microbiol 55:163–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dicastillo CL, Vidal CP, Falcó I, Sánchez G, Márquez P, Escrig J (2020) Antimicrobial bilayer nanocomposites based on the incorporation of as-synthetized hollow zinc oxide nanotubes. Nanomaterials (Basel, Switzerland) 10:503

    Article  CAS  Google Scholar 

  128. Lingaraju K, Naika HR, Manjunath K, Basavaraj R, Nagabhushana H, Nagaraju G, Suresh D (2016) Biogenic synthesis of zinc oxide nanoparticles using Ruta graveolens (L.) and their antibacterial and antioxidant activities. Appl Nanosci 6:703–710

    Article  CAS  Google Scholar 

  129. El-Batal AI, Balabel NM, Attia MS (2020) Antibacterial and antibiofilm potential of mono-dispersed stable copper oxide nanoparticles-streptomycin nano-drug: implications for some potato plant bacterial pathogen treatment. J Clust Sci 31:1021–1040

    Article  CAS  Google Scholar 

  130. López de Dicastillo C, Patiño C, Galotto MJ, Palma JL, Alburquenque D, Escrig J (2018) Novel antimicrobial titanium dioxide nanotubes obtained through a combination of atomic layer deposition and electrospinning technologies. Nanomaterials (Basel, Switzerland) 8:128

    Article  CAS  Google Scholar 

  131. Singh P, Pandit S, Garnæs J, Tunjic S, Mokkapati VR, Sultan A, Thygesen A, Mackevica A, Mateiu RV, Daugaard AE, Baun A, Mijakovic I (2018) Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. Int J Nanomedicine 13:3571–3591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Naseem T, Farrukh MA (2015) Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. J Chem 2015:1–7

    Article  CAS  Google Scholar 

  133. Arakha M, Pal S, Samantarrai D (2015) Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep 5:14813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Maji J, Pandey S, Basu S (2020) Synthesis and evaluation of antibacterial properties of magnesium oxide nanoparticles. Bull Mater Sci 43:25

    Article  CAS  Google Scholar 

  135. Leid J, Ditto A, Knapp A, Shah P, Wright B, Blust R, Christensen L, Clemons CB, Wilber JP, Young GW (2012) In vitro antimicrobial studies of silver carbine complexes: Activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria. J Antimicrob Chemother 67:138–148

    Article  CAS  PubMed  Google Scholar 

  136. Rodrigues B, Morais T.P, Zaini PA (2020) Antimicrobial activity of Epsilon-Poly-L-lysine against phytopathogenic bacteria. Sci Rep 10:11324

  137. Divya K, Vijayan S, George TK (2017) Antimicrobial properties of chitosan nanoparticles: Mode of action and factors affecting activity. Fibers Polym 18:221–230

Download references

Acknowledgments

The authors are highly thankful to Chancellor, Integral University, for their support and encouragement. The authors thank and appreciate all the supports given to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faria Fatima.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatima, F., Siddiqui, S. & Khan, W.A. Nanoparticles as Novel Emerging Therapeutic Antibacterial Agents in the Antibiotics Resistant Era. Biol Trace Elem Res 199, 2552–2564 (2021). https://doi.org/10.1007/s12011-020-02394-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02394-3

Keywords

Navigation