Skip to main content

Advertisement

Log in

Antibacterial and Antibiofilm Potential of Mono-dispersed Stable Copper Oxide Nanoparticles-Streptomycin Nano-drug: Implications for Some Potato Plant Bacterial Pathogen Treatment

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The novelty of this work is to estimate the antibacterial and antibiofilm capabilities of the mono-dispersed copper oxide nanoparticles (CuO NPs)-streptomycin nano-drug which synthesized by a cost-effective and eco-friendly gamma irradiation method. The incorporated CuO NPs-streptomycin was fully defined by UV–Vis., XRD, FTIR, HRTEM, DLS, HRSEM and EDX elemental analysis. In vitro antibacterial and antibiofilm activities of CuO NPs-streptomycin were examined towards pathogenic bacteria-causing brown, ring, soft rot and black leg diseases in potato plant. The proposed reaction mechanism regarding the synergistic potential between CuO NPs and streptomycin was estimated. The incorporated CuO NPs-streptomycin displayed an absorption peak at 585.0 nm specific for the Surface Plasmon Resonance. Results achieved from HRTEM, HRSEM and XRD verified the mono-dispersed crystalline character of the fabricated CuO NPs-streptomycin with a common particle size of 20.20 nm. CuO NPs-streptomycin exhibited an encouraging antibacterial activity against Clavibacter michiganensis subsp. sepedonicus (35.50 mm ZOI). Additionally, CuO NPs-streptomycin displayed enhanced biofilm inhibition percentage of about 90.99%, 84.23%, and 83.42% toward C. michiganensis subsp. sepedonicus, Ralstonia solanacearum, and Dickeya solani, respectively. Consequently, according to the prominent characteristics, this research could provide insights for determining dangerous agricultural challenges, potato packaging and processing and new nano-drug formula for invading potato pathogenic bacteria through the cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Beaulieu and F. Van Gijsegem (1990). J.0 Bacteriol.172, (3), 1569–1575.

    CAS  Google Scholar 

  2. A. Sletten and T. Rafoss Fire Blight in Norway—An Assessment of the Plant Health Risk for the Plant Disease Fire Blight in Norway (Bioforsk, Oslo, 2007).

    Google Scholar 

  3. M. Perombelon (2000). EPPO Bull.30, (3–4), 413–420.

    Google Scholar 

  4. E. Parkin (1956). Annu. Rev. Entomol.1, (1), 223–240.

    Google Scholar 

  5. F. Dadaşoğlu and R. Kotan (2017). J. Anim. Plant Sci.27, 647–654.

    Google Scholar 

  6. M. Pérombelon (1992). Neth. J. Plant Pathol.98, (2), 135–146.

    Google Scholar 

  7. I. Toth, et al. (2011). Plant Pathol.60, (3), 385–399.

    Google Scholar 

  8. J. M. van der Wolf and S. H. De Boer Bacterial pathogens of potato. Potato Biology and Biotechnology (Oxford, Elsevier, 2007), pp. 595–617.

    Google Scholar 

  9. M. C. Perombelon and A. Kelman (1980). Annu. Rev. Phytopathol.18, (1), 361–387.

    Google Scholar 

  10. M. Pérombelon (2002). Plant Pathol.51, (1), 1–12.

    Google Scholar 

  11. A. O. Charkowski The soft rot Erwinia. Plant-Associated Bacteria (Springer, Dordrecht, 2007), pp. 423–505.

    Google Scholar 

  12. F. Barras, F. van Gijsegem, and A. K. Chatterjee (1994). Annu. Rev. Phytopathol.32, (1), 201–234.

    CAS  Google Scholar 

  13. S. Reverchon and W. Nasser (2013). Environ. Microbiol. Rep.5, (5), 622–636.

    PubMed  Google Scholar 

  14. S. Baghaee-Ravari, et al. (2011). Eur. J. Plant Pathol.129, (3), 413–425.

    Google Scholar 

  15. C. Picard, et al. (2019). BASE23, (1), 36–45.

    Google Scholar 

  16. I. Hadizadeh, et al. (2019). Plant Pathol.68, (2), 297–311.

    CAS  Google Scholar 

  17. N. F. Sommer, R. J. Fortlage, and D. C. Edwards (2002). Postharvest. Technol. Hortic. Crops3311, 197.

    Google Scholar 

  18. L. R. Jones, M. Miller, and E. Bailey Frost Necrosis of Potato Tubers, vol. 46 (Agricultural Experiment Station of the University of Wisconsin, Madison, 1919).

    Google Scholar 

  19. P. Ark (1946). Am. J. Potato Res.23, (5), 170–181.

    Google Scholar 

  20. V. Divya Rani and H. Sudini (2013). Int. J. Plant Anim. Environ. Sci.3, (4), 156–164.

    Google Scholar 

  21. R. Trias, et al. (2008). Int. Microbiol.11, (4), 231.

    CAS  PubMed  Google Scholar 

  22. A. Makhlouf and R. Abdeen (2014). J. Biol. Agric. Healthc.4, (10), 31–44.

    Google Scholar 

  23. D. R. Fravel (1988). Annu. Rev. Phytopathol.26, (1), 75–91.

    CAS  Google Scholar 

  24. M. Salanoubat, et al. (2002). Nature415, (6871), 497.

    CAS  PubMed  Google Scholar 

  25. E. Yabuuchi, et al. (1995). Microbiol. Immunol.39, (11), 897–904.

    CAS  PubMed  Google Scholar 

  26. C. Allen, P. Prior, and A. Hayward Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex (American Phytopathological Society (APS Press), St. Paul, 2005).

    Google Scholar 

  27. G. Granada and L. Sequeira (1983). Can. J. Microbiol.29, (4), 433–440.

    Google Scholar 

  28. S. Weller, et al. (2000). Appl. Environ. Microbiol.66, (7), 2853–2858.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. A. Hayward (1991). Annu. Rev. Phytopathol.29, (1), 65–87.

    CAS  PubMed  Google Scholar 

  30. E. Guchi (2015). World J. Agric. Res.3, (1), 34–42.

    Google Scholar 

  31. M. M. López, et al. (2003). Int. Microbiol.6, (4), 233–243.

    PubMed  Google Scholar 

  32. D. Baer and N. C. Gudmestad (1993). Phytopathology83, (2), 157–163.

    Google Scholar 

  33. J. T. Seil and T. J. Webster (2012). Int. J. Nanomed.7, 2767.

    CAS  Google Scholar 

  34. A. El-Batal, et al. (2014). Br. J. Pharm. Res.4, (11), 1341.

    Google Scholar 

  35. M. A. Maksoud, et al. (2018). Mater. Sci. Eng. C92, 644–656.

    Google Scholar 

  36. A. F. El-Baz, et al. (2016). J. Basic Microbiol.56, (5), 531–540.

    CAS  PubMed  Google Scholar 

  37. K. Pal, et al. (2019). Electron. Mater. Lett.15, (1), 84–101.

    CAS  Google Scholar 

  38. T. Thirugnanasambandan, et al. (2018). Nano-Struct Nano-Objects16, 224–233.

    CAS  Google Scholar 

  39. S. Sajjadifar, et al. (2019). Chem. Methodol.3, (2), 226–236.

    CAS  Google Scholar 

  40. K. Pal, et al. (2015). J. Mater. Chem. C3, (45), 11907–11917.

    CAS  Google Scholar 

  41. M. A. Elkodous, et al. (2019). J. Mater. Sci. Mater. Electron.30, (9), 8312–8328.

    CAS  Google Scholar 

  42. M. A. Elkodous, et al. (2018). Charact. Appl. Nanomater.. https://doi.org/10.24294/can.v1i2.585.

    Article  Google Scholar 

  43. M. I. A. A. Maksoud, et al. (2019). J. Mater. Sci. Mater. Electron.30, (5), 4908–4919.

    CAS  Google Scholar 

  44. A. Khatua, et al. (2019). J. Clust. Sci.. https://doi.org/10.1007/s10876-019-01624-6.

    Article  Google Scholar 

  45. A. I. El-Batal, et al. (2017). J. Clust. Sci.28, (3), 1083–1112.

    CAS  Google Scholar 

  46. M. Abd Elkodous, et al. (2019). Colloids Surf. B Biointerfaces180, 411–428.

    CAS  PubMed  Google Scholar 

  47. M. Abd Elkodous, et al. (2019). J. Clust. Sci.30, (3), 531–540.

    CAS  Google Scholar 

  48. H. Barabadi, et al. (2019). J. Clust. Sci.. https://doi.org/10.1007/s10876-019-01554-3.

    Article  Google Scholar 

  49. M. Saravanan, et al. (2018). Microb. Pathog.115, 57–63.

    CAS  PubMed  Google Scholar 

  50. S. Laurent, et al. (2008). Chem. Rev.108, (6), 2064–2110.

    CAS  PubMed  Google Scholar 

  51. C. Xu and X. Qu (2014). NPG Asia Mater.6, (3), e90.

    CAS  Google Scholar 

  52. D. Ling and T. Hyeon (2013). Small9, (9–10), 1450–1466.

    CAS  PubMed  Google Scholar 

  53. J. W. Rasmussen, et al. (2010). Expert Opin. Drug Deliv.7, (9), 1063–1077.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. V. Ravishankar Rai, and A. Jamuna Bai Nanoparticles and their potential application as antimicrobials. A. Méndez-Vilas (ed.), Science Against Microbial Pathogens: Communicating Current Research and Technological Advances (Formatex, Mysore, 2011).

  55. M. Ghorab, et al. (2016). Br. Biotechnol. J.16, (1), 1–25.

    Google Scholar 

  56. K. Pal, et al. (2015). Appl. Surf. Sci.357, 1499–1510.

    CAS  Google Scholar 

  57. D. V. Ponnuvelu, et al. (2016). Mater. Res. Express3, (10), 105005.

    Google Scholar 

  58. G. S. El-Sayyad, et al. (2019). J. Clust. Sci.. https://doi.org/10.1007/s10876-019-01629-1.

    Article  Google Scholar 

  59. A. I. El-Batal, et al. (2019). J. Clust. Sci.. https://doi.org/10.1007/s10876-019-01619-3.

    Article  Google Scholar 

  60. R. Emmanuel, et al. (2017). Microb. Pathog.113, 295–302.

    CAS  PubMed  Google Scholar 

  61. M. Saravanan, et al. (2014). J. Bionanosci.8, (1), 21–27.

    CAS  Google Scholar 

  62. N. A. Dhas, C. P. Raj, and A. Gedanken (1998). Chem. Mater.10, (5), 1446–1452.

    CAS  Google Scholar 

  63. M.-S. Yeh, et al. (1999). J. Phys. Chem. B103, (33), 6851–6857.

    CAS  Google Scholar 

  64. M. Yang and J.-J. Zhu (2003). J. Cryst. Growth256, (1–2), 134–138.

    CAS  Google Scholar 

  65. P. Boomi, et al. (2019). J. Clust. Sci.30, (3), 715–726.

    CAS  Google Scholar 

  66. J. Cheon, J. Lee, and J. Kim (2012). Thin Solid Films520, (7), 2639–2643.

    CAS  Google Scholar 

  67. A. Pugazhendhi, et al. (2019). J. Photochem. Photobiol. B Biol.190, 86–97.

    CAS  Google Scholar 

  68. R. Balachandar, et al. (2019). J. Clust. Sci.30, 1–8.

    Google Scholar 

  69. K. Kanagamani, et al. (2019). J. Clust. Sci.30, (6), 1415–1424.

    CAS  Google Scholar 

  70. G. S. El-Sayyad, F. M. Mosallam, and A. I. El-Batal (2018). Adv. Powder Technol.29, (11), 2616–2625.

    CAS  Google Scholar 

  71. H. Barabadi, et al. (2019). J. Clust. Sci.. https://doi.org/10.1007/s10876-019-01668-8.

    Article  Google Scholar 

  72. H. Barabadi, et al. (2014). Braz. J. Microbiol.45, (4), 1493–1501.

    CAS  PubMed  Google Scholar 

  73. H. Barabadi, et al. (2017). Green Chem. Lett. Rev.10, (4), 285–314.

    CAS  Google Scholar 

  74. H. Barabadi, F. Kobarfard, and H. Vahidi (2018). Iran. J. Pharm. Res.17, (Special Issue 2), 87–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. H. Barabadi, et al. (2019). J. Clust. Sci.30, (2), 259–279.

    CAS  Google Scholar 

  76. P. Kazakevich, et al. (2006). Appl. Surf. Sci.252, (13), 4373–4380.

    CAS  Google Scholar 

  77. G. Granata, et al. (2016). J. Nanoparticle Res.18, (5), 133.

    Google Scholar 

  78. C. Y. Ho, Y. H. Tsai, and F. M. Sui Thermal transport in the copper powders with nanometer and micrometer particles. Advanced Materials Research (Trans Tech Publ, Zurich, 2010).

    Google Scholar 

  79. J. B. Fathima, et al. (2018). J. Mol. Liq.260, 1–8.

    CAS  Google Scholar 

  80. S. N. Sinha, et al. (2015). Appl. Nanosci.5, (6), 703–709.

    CAS  Google Scholar 

  81. Z. Jiang, et al. (2019). Life Sci.220, 156–161.

    CAS  PubMed  Google Scholar 

  82. N. Cioffi, et al. (2005). Anal. Bioanal. Chem.381, (3), 607–616.

    CAS  PubMed  Google Scholar 

  83. R. G. Saratale, et al. (2018). J. Environ. Manag.223, 1086–1097.

    CAS  Google Scholar 

  84. S. Vasantharaj, et al. (2019). J. Photochem. Photobiol. B Biol.191, 143–149.

    CAS  Google Scholar 

  85. S. Sathiyavimal, et al. (2018). J. Photochem. Photobiol. B Biol.188, 126–134.

    CAS  Google Scholar 

  86. F. M. Mosallam, et al. (2018). Microb. Pathog.122, 108–116.

    CAS  PubMed  Google Scholar 

  87. Z. Klencsár, et al. (2019). Mater. Chem. Phys.223, 122–132.

    Google Scholar 

  88. H. Nosrati, et al. (2018). Int. J. Biol. Macromol.108, 909–915.

    CAS  PubMed  Google Scholar 

  89. M.-N. Yap Analysis of Erwinia Diversity and Cell Aggregation (The University of Wisconsin-Madison, Madison, 2006).

    Google Scholar 

  90. F. Casano, J. Wells, and T. Van der Zwet (1988). J. Phytopathol.121, (3), 267–274.

    CAS  Google Scholar 

  91. H. Jansing and K. Rudolph (1998). J. Plant Dis. Prot.105, 590–601.

    CAS  Google Scholar 

  92. Ahmed, M.E.E., Detection and effects of latent contamination of potato tubers by soft rot bacteria, and investigations on the effect of hydrogen peroxide on lipopolysaccharides of Erwinia carotovora in relation to acquired resistance against biocides. 2001, Citeseer.

  93. H. A. Wahab and N. M. Balabel (2011). Egypt J. Phytopathol.39, (3), 154–168.

    Google Scholar 

  94. Doloman, A., Optimization of biogas production by use of a microbially enhanced inoculum. 2019.

  95. J. Janse (1988). Eppo Bull.18, (3), 343–351.

    Google Scholar 

  96. G. Somodi, J. Jones, and J. Scott. Comparison of inoculation techniques for screening tomato genotypes for bacterial wilt resistance. in ACIAR Proceedings. (Australian Centre for International Agricultural Research, 1993).

  97. J. Van der Wolf, et al., Epidemiology of Clavibacter michiganensis subsp. sepedonicus in relation to control of bacterial ring rot. 2005, PRI Bioscience.

  98. R. Bryaskova, et al. (2011). J. Chem. Biol.4, (4), 185.

    PubMed  PubMed Central  Google Scholar 

  99. M. Balouiri, M. Sadiki, and S. K. Ibnsouda (2016). J. Pharm. Anal.6, (2), 71–79.

    PubMed  Google Scholar 

  100. C. W. Wong, et al. (2019). J. Clust. Sci.. https://doi.org/10.1007/s10876-019-01651-3.

    Article  Google Scholar 

  101. H. C. Diogo, et al. (2010). An. Bras. Dermatol.85, (3), 324–330.

    PubMed  Google Scholar 

  102. A. I. El-Batal, et al. (2019). J. Clust. Sci.30, (4), 947–964.

    CAS  Google Scholar 

  103. A. I. El-Batal, F. M. Mosallam, and G. S. El-Sayyad (2018). J. Clust. Sci.29, 1–13.

    Google Scholar 

  104. M. Abd Elkodous, et al. (2019). Biol. Trace Elem. Res.. https://doi.org/10.1007/s12011-019-01894-1.

    Article  PubMed  Google Scholar 

  105. G. D. Christensen, et al. (1982). Infect. Immun.37, (1), 318–326.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. M. A. Ansari, et al. (2014). Appl. Nanosci.4, (7), 859–868.

    CAS  Google Scholar 

  107. G. S. El-Sayyad, et al. (2019). Biol. Trace Elem. Res.. https://doi.org/10.1007/s12011-019-01842-z.

    Article  PubMed  Google Scholar 

  108. S. H. Abidi, et al. (2013). BMC Ophthalmol.13, (1), 57.

    PubMed  PubMed Central  Google Scholar 

  109. T. Mathur, et al. (2006). Indian J. Med. Microbiol.24, (1), 25.

    CAS  PubMed  Google Scholar 

  110. K. Brownlee Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve (Cambridge Univ. Press, New York, 1952).

    Google Scholar 

  111. N. Gudmestad and G. Secor Management of soft rot and ring rot. Potato Health Management (American Phytopathological Society, St. Paul, 1993), pp. 135–139.

    Google Scholar 

  112. M. Składanowski, et al. (2017). J. Clust. Sci.28, (1), 59–79.

    Google Scholar 

  113. S. Link and M. A. El-Sayed (2003). Ann. Rev. Phys. Chem.54, (1), 331–366.

    CAS  Google Scholar 

  114. G. Das, K.-H. Baek, and J. K. Patra (2019). PLoS ONE14, (6), e0217318.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. N. Pauzi, N. M. Zain, and N. A. A. Yusof (2019). J. Environ. Chem. Eng.. https://doi.org/10.1016/j.jece.2019.103331.

    Article  Google Scholar 

  116. N. Pauzi, N. M. Zain, and N. A. A. Yusof (2019). Bull. Chem. React. Eng. Catal.14, (1), 182–188.

    CAS  Google Scholar 

  117. L. Alrehaily, et al. (2013). Phys. Chem. Chem. Phys.15, (1), 98–107.

    CAS  PubMed  Google Scholar 

  118. A. El-Batal, et al. (2016). J. Chem. Pharm. Res.8, (4), 934–951.

    CAS  Google Scholar 

  119. H. Barabadi, et al. (2019). Inorg. Nano-Metal Chem.49, (2), 33–43.

    CAS  Google Scholar 

  120. A. I. El-Batal, et al. (2019). J. Clust. Sci.30, (3), 687–705.

    CAS  Google Scholar 

  121. M. S. Attia, et al. (2019). J. Clust. Sci.30, (4), 919–935.

    CAS  Google Scholar 

  122. A. I. El-Batal, et al. (2016). Bioengineering3, (2), 14.

    PubMed Central  Google Scholar 

  123. A. I. El-Batal, et al. (2017). J. Photochem. Photobiol. B Biol.173, 120–139.

    CAS  Google Scholar 

  124. A. El-Batal, et al. (2013). J. Chem. Pharm. Res.5, (8), 1–15.

    Google Scholar 

  125. A. I. El-Batal, et al. (2018). Microb. Pathog.118, 159–169.

    CAS  PubMed  Google Scholar 

  126. A. Baraka, et al. (2017). Chem. Pap.71, (11), 2271–2281.

    CAS  Google Scholar 

  127. A. I. El-Batal, et al. (2016). Nanomater. Nanotechnol.6, 13.

    Google Scholar 

  128. A. El-Batal, et al. (2014). Br. J. Pharm. Res.4, (21), 2525.

    Google Scholar 

  129. A. Hanora, et al. (2016). J. Chem. Pharm. Res.8, (3), 405–423.

    CAS  Google Scholar 

  130. A. Ashour, et al. (2018). Particuology40, 141–151.

    CAS  Google Scholar 

  131. G. Govindasamy, et al. (2019). J. Mater. Sci. Mater. Electron.30, (17), 16463–16477.

    CAS  Google Scholar 

  132. P. K. Tiwari, et al. (2019). Ecotoxicol. Environ. Saf.176, 321–329.

    CAS  PubMed  Google Scholar 

  133. H. Dong and G. M. Koenig (2019). CrystEngComm. https://doi.org/10.1039/C9CE00679F.

    Article  Google Scholar 

  134. M. I. A. Abdel Maksoud, et al. (2019). J. Sol–Gel Sci. Technol.90, (3), 631–642.

    CAS  Google Scholar 

  135. P. Belavi, et al. (2012). Mater. Chem. Phys.132, (1), 138–144.

    CAS  Google Scholar 

  136. M. A. Maksoud, et al. (2019). J. Mater. Sci. Mater. Electron.30, 1–12.

    Google Scholar 

  137. K. Pal, M. A. Elkodous, and M. M. Mohan (2018). J. Mater. Sci. Mater. Electron.29, (12), 10301–10310.

    CAS  Google Scholar 

  138. M. Bashir and S. Haripriya (2016). Int. J. Biol. Macromol.93, 476–482.

    CAS  PubMed  Google Scholar 

  139. E. R. Arakelova, et al. (2014). Int. J. Med. Heal. Pharm. Biomed. Eng.8, 33–38.

    Google Scholar 

  140. M. A. Maksoud, et al. (2019). Microb. Pathog.127, 144–158.

    CAS  PubMed  Google Scholar 

  141. S. Pal, Y. K. Tak, and J. M. Song (2007). Appl. Environ. Microbiol.73, (6), 1712–1720.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. A. Satyvaldiev, et al. Copper nanoparticles: synthesis and biological activity. IOP Conference Series: Materials Science and Engineering (IOP Publishing, Bristol, 2018).

    Google Scholar 

  143. V. Belava, et al. (2017). Nanoscale Res. Lett.12, (1), 250.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. M. S. Rubina, et al. (2017). J. Nanostruct. Chem.7, (3), 249–258.

    CAS  Google Scholar 

  145. A. Pugazhendhi, et al. (2018). Microb. Pathog.122, 84–89.

    CAS  PubMed  Google Scholar 

  146. C. Ashajyothi, et al. (2016). J. Nanostruct. Chem.6, (4), 329–341.

    CAS  Google Scholar 

  147. H.-J. Park, et al. (2013). Chemosphere92, (5), 524–528.

    CAS  PubMed  Google Scholar 

  148. H. A. Ammar, G. H. Rabie, and E. Mohamed (2019). Bioprocess Biosyst. Eng.. https://doi.org/10.1007/s00449-019-02188-5.

    Article  PubMed  Google Scholar 

  149. E. Prokhorov, et al. (2019). Colloids Surf. B Biointerfaces180, 186–192.

    CAS  PubMed  Google Scholar 

  150. P. K. Stoimenov, et al. (2002). Langmuir18, (17), 6679–6686.

    CAS  Google Scholar 

  151. M. F. Khan, et al. (2016). Sci. Rep.6, 27689.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. A. Shinde, J. Ganu, and P. Naik (2012). J. Dental Allied Sci.1, (2), 63.

    Google Scholar 

  153. H. E. Alexander and G. Leidy (1947). J. Exp. Med.85, (4), 329–338.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. W. Umbreit (1949). J. Biol. Chem.177, (2), 703–714.

    CAS  PubMed  Google Scholar 

  155. H. Barabadi, et al. (2019). Medicina55, (8), 439.

    PubMed Central  Google Scholar 

  156. K. Mortezaee, et al. (2019). Chem. Biol. Interact.312, 108814.

    CAS  PubMed  Google Scholar 

  157. E. Assadian, et al. (2018). Biol. Trace Elem. Res.184, (2), 350–357.

    CAS  PubMed  Google Scholar 

  158. R. Mani, et al. (2019). Environ. Sci. Pollut. Res.. https://doi.org/10.1007/s11356-019-06095-w.

    Article  Google Scholar 

  159. S. Mahjouri, et al. (2018). Plant Cell Tissue Organ Cult.135, (2), 223–234.

    CAS  Google Scholar 

  160. K. Shahzad, et al. (2018). Environ. Sci. Pollut Res.25, (16), 15943–15953.

    CAS  Google Scholar 

  161. J.-K. Wan, et al. (2018). J. Appl. Phycol.30, (6), 3153–3165.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Nanotechnology Research Unit (P.I. Prof. Dr. Ahmed I. El-Batal), Drug Microbiology Lab., Drug Radiation Research Department, NCRRT, Egypt, for financing and supporting this study under the project “Nutraceuticals and Functional Foods Production by using Nano/Biotechnological and Irradiation Processes”. Also, the authors would like to thank Prof. Mohamed Gobara (Military Technical College, Egyptian Armed Forces), and Zeiss microscope team in Cairo for their invaluable advice during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gharieb S. El-Sayyad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Batal, A.I., Balabel, N.M., Attia, M.S. et al. Antibacterial and Antibiofilm Potential of Mono-dispersed Stable Copper Oxide Nanoparticles-Streptomycin Nano-drug: Implications for Some Potato Plant Bacterial Pathogen Treatment. J Clust Sci 31, 1021–1040 (2020). https://doi.org/10.1007/s10876-019-01707-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01707-4

Keywords

Navigation