Skip to main content

Advertisement

Log in

Promotive Effect of Zinc Ions on the Vitality, Migration, and Osteogenic Differentiation of Human Dental Pulp Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc is an essential trace element for proper cellular function and bone formation. However, its exact role in the osteogenic differentiation of human dental pulp cells (hDPCs) has not been fully clarified before. Here, we speculated that zinc may be effective to regulate their growth and osteogenic differentiation properties. To test this hypothesis, different concentrations (1 × 10−5, 4 × 10−5, and 8 × 10−5 M) of zinc ions (Zn2+) were added to the basic growth culture medium and osteogenic inductive medium. Cell viability and migration were measured by cell counting kit-8 (CCK-8) and transwell migration assay in the basic growth culture medium, respectively. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the gene expression levels of selective osteogenic differentiation markers and zinc transporters. Alkaline phosphatase (ALP) activity analysis and alizarin red S staining were used to investigate the mineralization of hDPCs. Exposure of hDPCs to Zn2+ stimulated their viability and migration capacity in a dose- and time-dependent manner. RT-qPCR assay revealed elevated expression levels of osteogenic differentiation-related genes and zinc transporters genes in various degrees. ALP activity was also increased with elevated Zn2+ concentrations and extended culture periods, but enhanced matrix nodules formation were observed only in 4 × 10−5 and 8 × 10−5 M Zn2+ groups. These findings suggest that specific concentrations of Zn2+ could potentiate the vitality, migration, and osteogenic differentiation of hDPCs. We may combine optimum zinc element into pulp capping materials to improve their biological performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Modena KC, Casas-Apayco LC, Atta MT, Costa CA, Hebling J, Sipert CR, Navarro MF, Santos CF (2009) Cytotoxicity and biocompatibility of direct and indirect pulp capping materials. J Appl Oral Sci: Rev FOB 17(6):544–554. doi:10.1590/S1678-77572009000600002

    Article  CAS  Google Scholar 

  2. Aguilar P, Linsuwanont P (2011) Vital pulp therapy in vital permanent teeth with cariously exposed pulp: a systematic review. J Endod 37(5):581–587. doi:10.1016/j.joen.2010.12.004

    Article  PubMed  Google Scholar 

  3. Schmalz G, Smith AJ (2014) Pulp development, repair, and regeneration: challenges of the transition from traditional dentistry to biologically based therapies. J Endod 40(4 Suppl):S2–S5. doi:10.1016/j.joen.2014.01.018

    Article  PubMed  Google Scholar 

  4. Yi JK, Mehrazarin S, Oh JE, Bhalla A, Oo J, Chen W, Lee M, Kim RH, Shin KH, Park NH, Kang MK (2014) Osteo−/odontogenic differentiation of induced mesenchymal stem cells generated through epithelial-mesenchyme transition of cultured human keratinocytes. J Endod 40(11):1796–1801. doi:10.1016/j.joen.2014.07.014

    Article  PubMed  Google Scholar 

  5. Lin LM, Ricucci D, Huang GT (2014) Regeneration of the dentine-pulp complex with revitalization/revascularization therapy: challenges and hopes. Int Endod J 47(8):713–724. doi:10.1111/iej.12210

    Article  CAS  PubMed  Google Scholar 

  6. Simon SRJ, Tomson PL, Berdal A (2014) Regenerative endodontics: regeneration or repair? J Endod 40(4):S70–S75. doi:10.1016/j.joen.2014.01.024

    Article  PubMed  Google Scholar 

  7. Maltz M, Alves LS (2013) Pulp capping material is an important prognostic factor for direct pulp capping in permanent teeth. J Evid Based Dent Pract 13(3):117–119. doi:10.1016/j.jebdp.2013.07.013

    Article  PubMed  Google Scholar 

  8. Lansdown AB, Mirastschijski U, Stubbs N, Scanlon E, Agren MS (2007) Zinc in wound healing: theoretical, experimental, and clinical aspects. Wound Repair Regen: Off Publ Wound Healing Soc [and] Eur Tissue Repair Soc 15(1):2–16. doi:10.1111/j.1524-475X.2006.00179.x

    Article  Google Scholar 

  9. Li X, Li Y, Peng S, Ye B, Lin W, Hu J (2013) Effect of zinc ions on improving implant fixation in osteoporotic bone. Connect Tissue Res 54(4–5):290–296. doi:10.3109/03008207.2013.813495

    Article  CAS  PubMed  Google Scholar 

  10. Shiota J, Tagawa H, Izumi N, Higashikawa S, Kasahara H (2015) Effect of zinc supplementation on bone formation in hemodialysis patients with normal or low turnover bone. Ren Fail 37(1):57–60. doi:10.3109/0886022X.2014.959412

    Article  CAS  PubMed  Google Scholar 

  11. Yamaguchi M (2012) Nutritional factors and bone homeostasis: synergistic effect with zinc and genistein in osteogenesis. Mol Cell Biochem 366(1–2):201–221. doi:10.1007/s11010-012-1298-7

    Article  CAS  PubMed  Google Scholar 

  12. Kwun IS, Cho YE, Lomeda RA, Shin HI, Choi JY, Kang YH, Beattie JH (2010) Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone 46(3):732–741. doi:10.1016/j.bone.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  13. Hie M, Iitsuka N, Otsuka T, Nakanishi A, Tsukamoto I (2011) Zinc deficiency decreases osteoblasts and osteoclasts associated with the reduced expression of Runx2 and RANK. Bone 49(6):1152–1159. doi:10.1016/j.bone.2011.08.019

    Article  CAS  PubMed  Google Scholar 

  14. Brzoska MM, Rogalska J (2013) Protective effect of zinc supplementation against cadmium-induced oxidative stress and the RANK/RANKL/OPG system imbalance in the bone tissue of rats. Toxicol Appl Pharmacol 272(1):208–220. doi:10.1016/j.taap.2013.05.016

    Article  CAS  PubMed  Google Scholar 

  15. Yamaguchi M (2010) Role of nutritional zinc in the prevention of osteoporosis. Mol Cell Biochem 338(1–2):241–254. doi:10.1007/s11010-009-0358-0

    Article  CAS  PubMed  Google Scholar 

  16. Kamal R, Bansal SC, Khandelwal N, Rai DV, Dhawan DK (2014) Moderate zinc supplementation during prolonged steroid therapy exacerbates bone loss in rats. Biol Trace Elem Res 160(3):383–391. doi:10.1007/s12011-014-0063-z

    Article  CAS  PubMed  Google Scholar 

  17. Ito A, Otsuka M, Kawamura H, Ikeuchi M, Ohgushi H, Sogo Y, Ichinose N (2005) Zinc-containing tricalcium phosphate and related materials for promoting bone formation. Curr Appl Phys 5(5):402–406. doi:10.1016/j.cap.2004.10.006

    Article  Google Scholar 

  18. Osorio R, Yamauti M, Sauro S, Watson TF, Toledano M (2014) Zinc incorporation improves biological activity of beta-tricalcium silicate resin-based cement. J Endod 40(11):1840–1845. doi:10.1016/j.joen.2014.06.016

    Article  PubMed  Google Scholar 

  19. Osorio R, Sauro S, Watson TF, Toledano M (2015) Polyaspartic acid enhances dentine remineralization bonded with a zinc-doped Portland-based resin cement. Int Endod J. doi:10.1111/iej.12518

    PubMed  Google Scholar 

  20. Toledano M, Sauro S, Cabello I, Watson T, Osorio R (2013) A Zn-doped etch-and-rinse adhesive may improve the mechanical properties and the integrity at the bonded-dentin interface. Dent Mater Off Publ Acad Dent Mater 29(8):e142–e152. doi:10.1016/j.dental.2013.04.024

    CAS  Google Scholar 

  21. Osorio R, Cabello I, Toledano M (2014) Bioactivity of zinc-doped dental adhesives. J Dent 42(4):403–412. doi:10.1016/j.jdent.2013.12.006

    Article  CAS  PubMed  Google Scholar 

  22. Osorio R, Osorio E, Cabello I, Toledano M (2014) Zinc induces apatite and scholzite formation during dentin remineralization. Caries Res 48(4):276–290. doi:10.1159/000356873

    Article  CAS  PubMed  Google Scholar 

  23. Osorio R, Cabello I, Medina-Castillo AL, Osorio E, Toledano M (2016) Zinc-modified nanopolymers improve the quality of resin-dentin bonded interfaces. Clin Oral Investig. doi:10.1007/s00784-016-1738-y

    Google Scholar 

  24. Jin G, Cao H, Qiao Y, Meng F, Zhu H, Liu X (2014) Osteogenic activity and antibacterial effect of zinc ion implanted titanium. Colloids Surf B: Biointerfaces 117:158–165. doi:10.1016/j.colsurfb.2014.02.025

    Article  CAS  PubMed  Google Scholar 

  25. Boyd D, Li H, Tanner DA, Towler MR, Wall JG (2006) The antibacterial effects of zinc ion migration from zinc-based glass polyalkenoate cements. J Mater Sci Mater Med 17(6):489–494. doi:10.1007/s10856-006-8930-6

    Article  CAS  PubMed  Google Scholar 

  26. An S, Gao Y, Ling J, Wei X, Xiao Y (2012) Calcium ions promote osteogenic differentiation and mineralization of human dental pulp cells: implications for pulp capping materials. J Mater Sci Mater Med 23(3):789–795. doi:10.1007/s10856-011-4531-0

    Article  CAS  PubMed  Google Scholar 

  27. Watjen W, Haase H, Biagioli M, Beyersmann D (2002) Induction of apoptosis in mammalian cells by cadmium and zinc. Environ Health Perspect 110 Suppl 5:865–867. http://www.jstor.org/stable/3455109

  28. Yamamoto A, Honma R, Sumita M (1998) Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. J Biomed Mater Res 39(2):331–340. doi:10.1002/(SICI)1097-4636(199802)39:2<331::AID-JBM22>3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  29. Popp JR, Love BJ, Goldstein AS (2007) Effect of soluble zinc on differentiation of osteoprogenitor cells. J Biomed Mater Res A 81(3):766–769. doi:10.1002/jbm.a.31214

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jefferies SR (2014) Bioactive and biomimetic restorative materials: a comprehensive review. Part I. J Esthet Restor Dent: Off Publ Am Acad Esthet Dent 26(1):14–26. doi:10.1111/jerd.12069

    Article  Google Scholar 

  31. Jefferies S (2014) Bioactive and biomimetic restorative materials: a comprehensive review. Part II. J Esthet Restor Dent: Off Publ Am Acad Esthet Dent 26(1):27–39. doi:10.1111/jerd.12066

    Article  Google Scholar 

  32. Wey A, Cunningham C, Hreha J, Breitbart E, Cottrell J, Ippolito J, Clark D, Lin HN, Benevenia J, O’Connor JP, Lin SS, Paglia DN (2014) Local ZnCl2 accelerates fracture healing. J Orthop Res: Off Publ Orthop Res Soc 32(6):834–841. doi:10.1002/jor.22593

    Article  CAS  Google Scholar 

  33. Grillo CA, Morales ML, Mirifico MV, Mele Fernandez Lorenzo de MA (2013) Synergistic cytotoxic effects of ions released by zinc-aluminum bronze and the metallic salts on osteoblastic cells. J Biomed Mater Res A 101(7):2129–2140. doi:10.1002/jbm.a.34503

    Article  PubMed  Google Scholar 

  34. Li X, Sogo Y, Ito A, Mutsuzaki H, Ochiai N, Kobayashi T, Nakamura S, Yamashita K, Legeros RZ (2009) The optimum zinc content in set calcium phosphate cement for promoting bone formation in vivo. Mater Sci Eng C Mater Biol Appl 29(3):969–975. doi:10.1016/j.msec.2008.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shumilina E, Xuan NT, Schmid E, Bhavsar SK, Szteyn K, Gu S, Gotz F, Lang F (2010) Zinc induced apoptotic death of mouse dendritic cells. Apoptosis: Int J Program cell Death 15(10):1177–1186. doi:10.1007/s10495-010-0520-x

    Article  CAS  Google Scholar 

  36. Liang D, Yang M, Guo B, Cao J, Yang L, Guo X, Li Y, Gao Z (2012) Zinc inhibits H(2)O(2)-induced MC3T3-E1 cells apoptosis via MAPK and PI3K/AKT pathways. Biol Trace Elem Res 148(3):420–429. doi:10.1007/s12011-012-9387-8

    Article  CAS  PubMed  Google Scholar 

  37. Guo B, Yang M, Liang D, Yang L, Cao J, Zhang L (2012) Cell apoptosis induced by zinc deficiency in osteoblastic MC3T3-E1 cells via a mitochondrial-mediated pathway. Mol Cell Biochem 361(1–2):209–216. doi:10.1007/s11010-011-1105-x

    Article  CAS  PubMed  Google Scholar 

  38. Suh KS, Lee YS, Seo SH, Kim YS, Choi EM (2013) Effect of zinc oxide nanoparticles on the function of MC3T3-E1 osteoblastic cells. Biol Trace Elem Res 155(2):287–294. doi:10.1007/s12011-013-9772-y

    Article  CAS  PubMed  Google Scholar 

  39. Brauer DS, Gentleman E, Farrar DF, Stevens MM, Hill RG (2011) Benefits and drawbacks of zinc in glass ionomer bone cements. Biomed Mater 6(4):045007. doi:10.1088/1748-6041/6/4/045007

    Article  PubMed  Google Scholar 

  40. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science (New York, NY) 302(5651):1704–1709. doi:10.1126/science.1092053

    Article  CAS  Google Scholar 

  41. Kanno S, Anuradha CD, Hirano S (2001) Chemotactic responses of osteoblastic MC3T3-E1 cells toward zinc chloride. Biol Trace Elem Res 83(1):49–55. doi:10.1385/bter:83:1:49

    Article  CAS  PubMed  Google Scholar 

  42. Zeng S, Hernandez J, Mullins RF (2012) Effects of antioxidant components of AREDS vitamins and zinc ions on endothelial cell activation: implications for macular degeneration. Invest Ophthalmol Vis Sci 53(2):1041–1047. doi:10.1167/iovs.11-8531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cho YE, Lomeda RA, Ryu SH, Lee JH, Beattie JH, Kwun IS (2007) Cellular Zn depletion by metal ion chelators (TPEN, DTPA and chelex resin) and its application to osteoblastic MC3T3-E1 cells. Nutr Res Pract 1(1):29–35. doi:10.4162/nrp.2007.1.1.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang T, Zhang JC, Chen Y, Xiao PG, Yang MS (2007) Effect of zinc ion on the osteogenic and adipogenic differentiation of mouse primary bone marrow stromal cells and the adipocytic trans-differentiation of mouse primary osteoblasts. J Trace Elem Med Biol: Organ Soc Miner Trace Elem 21(2):84–91. doi:10.1016/j.jtemb.2007.01.002

    Article  Google Scholar 

  45. Yamaguchi M, Goto M, Uchiyama S, Nakagawa T (2008) Effect of zinc on gene expression in osteoblastic MC3T3-E1 cells: enhancement of Runx2, OPG, and regucalcin mRNA expressions. Mol Cell Biochem 312(1–2):157–166. doi:10.1007/s11010-008-9731-7

    Article  CAS  PubMed  Google Scholar 

  46. Xu B, Zhang J, Brewer E, Tu Q, Yu L, Tang J, Krebsbach P, Wieland M, Chen J (2009) Osterix enhances BMSC-associated osseointegration of implants. J Dent Res 88(11):1003–1007. doi:10.1177/0022034509346928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen S, Gluhak-Heinrich J, Wang YH, Wu YM, Chuang HH, Chen L, Yuan GH, Dong J, Gay I, MacDougall M (2009) Runx2, osx, and dspp in tooth development. J Dent Res 88(10):904–909. doi:10.1177/0022034509342873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ulsamer A, Ortuno MJ, Ruiz S, Susperregui AR, Osses N, Rosa JL, Ventura F (2008) BMP-2 induces Osterix expression through up-regulation of Dlx5 and its phosphorylation by p38. J Biol Chem 283(7):3816–3826. doi:10.1074/jbc.M704724200

    Article  CAS  PubMed  Google Scholar 

  49. Nagata M, Lonnerdal B (2011) Role of zinc in cellular zinc trafficking and mineralization in a murine osteoblast-like cell line. J Nutr Biochem 22(2):172–178. doi:10.1016/j.jnutbio.2010.01.003

    Article  CAS  PubMed  Google Scholar 

  50. Huang L, Tepaamorndech S (2013) The SLC30 family of zinc transporters—a review of current understanding of their biological and pathophysiological roles. Mol Asp Med 34(2–3):548–560. doi:10.1016/j.mam.2012.05.008

    Article  CAS  Google Scholar 

  51. Haase H, Hebel S, Engelhardt G, Rink L (2015) The biochemical effects of extracellular Zn2+ and other metal ions are severely affected by their speciation in cell culture media. Metallomics 7(1):102–111. doi:10.1039/c4mt00206g

    Article  CAS  PubMed  Google Scholar 

  52. Seo HJ, Cho YE, Kim T, Shin HI, Kwun IS (2010) Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. Nutr Res Pract 4(5):356–361. doi:10.4162/nrp.2010.4.5.356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hall SL, Dimai HP, Farley JR (1999) Effects of zinc on human skeletal alkaline phosphatase activity in vitro. Calcif Tissue Int 64(2):163–172. doi:10.1007/s002239900597

    Article  CAS  PubMed  Google Scholar 

  54. Kawakubo A, Matsunaga T, Ishizaki H, Yamada S, Hayashi Y (2011) Zinc as an essential trace element in the acceleration of matrix vesicles-mediated mineral deposition. Microsc Res Tech 74(12):1161–1165. doi:10.1002/jemt.21009

    Article  CAS  PubMed  Google Scholar 

  55. Cerovic A, Miletic I, Sobajic S, Blagojevic D, Radusinovic M, El-Sohemy A (2007) Effects of zinc on the mineralization of bone nodules from human osteoblast-like cells. Biol Trace Elem Res 116(1):61–71. doi:10.1007/bf02685919

    Article  CAS  PubMed  Google Scholar 

  56. An S, Ling J, Gao Y, Xiao Y (2012) Effects of varied ionic calcium and phosphate on the proliferation, osteogenic differentiation and mineralization of human periodontal ligament cells in vitro. J Periodontal Res 47(3):374–382. doi:10.1111/j.1600-0765.2011.01443.x

    Article  CAS  PubMed  Google Scholar 

  57. Diogenes A, Ruparel NB, Shiloah Y, KM H (2016) Regenerative endodontics: a way forward. J Am Dent Assoc (1939) 147(5):372–380. doi:10.1016/j.adaj.2016.01.009

    Article  Google Scholar 

  58. Cao Y, Song M, Kim E, Shon W, Chugal N, Bogen G, Lin L, Kim RH, Park NH, Kang MK (2015) Pulp-dentin regeneration: current state and future prospects. J Dent Res 94(11):1544–1551. doi:10.1177/0022034515601658

    Article  CAS  PubMed  Google Scholar 

  59. Lee J, Cuddihy MJ, Kotov NA (2008) Three-dimensional cell culture matrices: state of the art. Tissue Eng B Rev 14(1):61–86. doi:10.1089/teb.2007.0150

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the Guangdong Natural Science Foundation (grant no. S2012040007041) and Fundamental Research Funds for the Central Universities (grant no. 16ykpy01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaofeng An.

Ethics declarations

The protocol for the isolation and culture of hDPCs was approved by the Ethics Committee of Guanghua School of Stomatology, Sun Yat-sen University. Healthy subjects undergoing orthodontic treatment were recruited for the isolation of hDPCs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, S., Gong, Q. & Huang, Y. Promotive Effect of Zinc Ions on the Vitality, Migration, and Osteogenic Differentiation of Human Dental Pulp Cells. Biol Trace Elem Res 175, 112–121 (2017). https://doi.org/10.1007/s12011-016-0763-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0763-7

Keywords

Navigation