Skip to main content
Log in

Nutritional factors and bone homeostasis: synergistic effect with zinc and genistein in osteogenesis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Bone homeostasis is regulated through osteoclasts and osteoblasts. Osteoporosis, which is induced with its accompanying decrease in bone mass with increasing age, is widely recognized as a major public health problem. Bone loss may be due to decreased osteoblastic bone formation and increased osteoclastic bone resorption. There is growing evidence that nutritional and food factors may play a part in the prevention of bone loss with aging and have been to be worthy of notice in the prevention of osteoporosis. Zinc, an essential trace element, or genistein, which are contained in soybeans, has been shown to have a stimulatory effect on osteoblastic bone formation and an inhibitory effect on osteoclastic bone resorption, thereby increasing bone mass. These factors have an effect on protein synthesis and gene expression, which are related to bone formation in osteoblastic cells and bone resorption in osteoclastic cells. The combination of zinc and genistein is found to reveal the synergistic effect on bone anabolic effect. The oral administration of those factors has been shown to prevent on bone loss in ovariectomized rats, an animal model for osteoporosis, indicating a role in the prevention of osteoporosis. Supplemental intake of ingredient with the combination of zinc and genistein has been shown to have a preventive effect on osteoporosis in human subjects, suggesting a role in the prevention of bone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cooper C, Melton J III (1995) Epidemiology of osteoporosis. Trends Endocrinol Metab 3:224–229

    Article  Google Scholar 

  2. Riggs BL, Jowsey J, Kelly PJ, Jones JD, Maher FT (1969) Effect of sex hormones on bone in primary osteoporosis. J Clin Invest 48:1065–1072

    Article  PubMed  CAS  Google Scholar 

  3. Bonjour J-P, Schurch M-A, Rizzori R (1996) Nutritional aspects of hip fracture. Bone 18:1395–1445

    Article  Google Scholar 

  4. Yamaguchi M (2002) Isoflavone and bone metabolism: its cellular mechanism and preventive role in bone loss. J Health Sci 48:209–222

    Article  CAS  Google Scholar 

  5. Yamaguchi M (2006) Regulatory mechanism of food factors in bone metabolism and prevention of osteoporosis. Yakugaku Zasshi 126:1117–1137

    Article  PubMed  CAS  Google Scholar 

  6. Yamaguchi M (2007) Role of zinc in bone metabolism and preventive effect on bone disorder. Biomed Res Trace Elements 18:346–366

    CAS  Google Scholar 

  7. Yamaguchi M (2008) β-Cryptoxanthin and bone metabolism: the preventive role of osteoporosis. J Health Sci 54:356–369

    Article  CAS  Google Scholar 

  8. Parfitt AM (1990) Bone-forming cells in clinical conditions. In: Hall BK (ed) Bone volume 1. The osteoblast and osteocyte. Telford Press and CRC Press, Boca Raton, pp 351–429

    Google Scholar 

  9. Baron R, Vignery A, Horowitz M (1984) Lymphocytes, macrophages and the regulation of bone remodeling. Bone Miner Res 2:175–243

    CAS  Google Scholar 

  10. Canalis E, McCarthy T, Centrella M (1988) Growth factors and the regulation of bone remodeling. J Clin Invest 81:277–281

    Article  PubMed  CAS  Google Scholar 

  11. Inoue K, Matsuda K, Itoh M, Kawaguchi H, Tomoike H, Aoyagi T, Nagai R, Hori M, Nakamura Y, Tanaka T (2002) Osteopenia and male-specific sudden cardiac death in mice lacking a zinc transporter gene, Znt5. Hum Mol Genet 15:1775–1784

    Article  Google Scholar 

  12. Khadeer MA, Sahu SN, Bai G, Abdulla S, Gupta A (2005) Expression of the zinc transporter ZIP1 in osteoclasts. Bone 37:296–304

    Article  PubMed  CAS  Google Scholar 

  13. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29

    Article  PubMed  CAS  Google Scholar 

  14. Shen ZJ, Nakamoto T, Tsuji K, Nifuji A, Miyazono K, Komori T, Hirai H, Noda M (2002) Negative regulation of bone morphogenetic protein/Smad signaling by Cas-interacting zinc finger protein in osteoblasts. J Biol Chem 277:29840–29846

    Article  PubMed  CAS  Google Scholar 

  15. Jones DC, Wein MN, Oukka M, Hofstaetter JG, Glimcher MJ, Glimcher LH (2006) Schnur Regulation of adult bone mass by the zinc finger adapter protein ri-3. Science 312:1223–1227

    Article  PubMed  CAS  Google Scholar 

  16. Shin JN, Kim I, Lee JS, Koh GY, Lee ZH, Kim HH (2002) A novel zinc finger protein that inhibits osteoclastogenesis and the function of tumor necrosis factor receptor-associated factor 6. J Biol Chem 277:8346–8353

    Article  PubMed  CAS  Google Scholar 

  17. Prasad AS, Halsted JA, Nadimi M (1961) Syndrome of iron deficiency anemia, hepatosplenomegaly, hupogonadism, dwarfism and geophagia. Am J Med 31:532–546

    Article  PubMed  CAS  Google Scholar 

  18. Burch RE, Hahn HK, Sullivan JF (1975) Newer aspects of the roles of zinc, manganese, and copper in human nutrition. Clin Chem 21:501–520

    PubMed  CAS  Google Scholar 

  19. Parisi AF, Vallee BL (1969) Zinc metalloenzyme: characteristic and significance in biology and medicine. Am J Clin Nutr 22:1222–1230

    PubMed  CAS  Google Scholar 

  20. Hsieh HS, Navia JM (1980) Zinc deficiency and bone formation in guinea pig alveolar implants. J Nutr 110:1581–1588

    PubMed  CAS  Google Scholar 

  21. Oner G, Bhaumick B, Bala RM (1984) Effect of zinc deficiency on serum somatomedin levels and skeletal growth in young rats. Endocrinology 114:1860–1863

    Article  PubMed  CAS  Google Scholar 

  22. Hurley LS (1981) Tetratogenic aspects of manganese, zinc, and copper nutrition. Physiol Rev 61:249–295

    PubMed  CAS  Google Scholar 

  23. da Cunha Ferreira RM, Marguiegui IM, Elizaga IV (1989) Tetratogenicity of zinc deficiency in the rat: study of the fetal skeleton. Tetratology 39:181–194

    Article  Google Scholar 

  24. Leek JC, Vogler JB, Gershwin ME, Golub MS, Hurley LS, Hendrickx AG (1984) Studies of marginal zinc deprivation in rhesus monkeys. V. Fetal and infant skeletal defects. Am J Clin Nutr 40:1203–1212

    PubMed  Google Scholar 

  25. Ronaghy HA, Reinhold JG, Mahloudji M, Ghavami P, Spirey Fox MR, Halstead JA (1984) Zinc supplementation of malnourished schoolboys in Iran: increased growth and other effects. Am J Clin Nutr 40:1203–1212

    Google Scholar 

  26. Herzberg M, Foldes J, Steinberg R, Menczel J (1961) Zinc excretion in osteoporotic women. J Bone Miner Res 5:251–257

    Article  Google Scholar 

  27. Haumont S (1961) Distribution of zinc in bone tissues. J Histochem Cytochem 9:141

    Article  PubMed  CAS  Google Scholar 

  28. Hurley LS, Shyy-Hwa T (1972) Alleviation of tetratogenic effects of zinc deficiency by simultaneous lack of calcium. Am J Phys 222:322–325

    CAS  Google Scholar 

  29. Masters DG, Keen CL, Lonnerdal B, Hurley LS (1986) Release of zinc from maternal tissues during zinc deficiency or simultaneous zinc and calcium deficiency in the pregnant rat. J Nutr 116:2148–2154

    PubMed  CAS  Google Scholar 

  30. Murray EJ, Messer HH (1981) Turnover of bone zinc during normal and accelerated bone loss in rats. J Nutr 111:1641–1647

    PubMed  CAS  Google Scholar 

  31. Sherman SS, Smith JC, Tobin JD, Soares JH (1989) Ovariectomy, dietary zinc, and bone metabolism in retired breeder rats. Am J Clin Nutr 49:1184–1191

    PubMed  CAS  Google Scholar 

  32. Aitken JM (1976) Factors affecting the distribution of zinc in the human skeleton. Calcif Tissue Res 20:23–30

    Article  PubMed  CAS  Google Scholar 

  33. Sauer GR, Wuthier RE (1990) Distribution of zinc in the avian growth plate. J Bone Miner Res 5(Suppl 2):S162

    Google Scholar 

  34. Lappalainer R, Knuuttila M, Lammi S, Alhava EM (1983) Fluoride content related to the elemental composition, mineral density and strength of bone in healthy and chronically diseased persons. J Chronic Dis 36:707–713

    Article  Google Scholar 

  35. Reginster JY, Strause LG, Saltman O, Franchimont P (1988) Trace elements and postmenopausal osteoporosis: a preliminary study of decreased serum manganese. Med Sci Res 16:337–338

    CAS  Google Scholar 

  36. Majeska RJ, Wuthier RE (1975) Studies on matrix vesicles Isolated from chick epiphyseal cartilage. Association of pyrophosphatase and ATPase activities with alkaline phosphatase. Biochim Biophys Acta 391:51–60

    PubMed  CAS  Google Scholar 

  37. Lian JB, Stein GS, Cannalis E, Roky PG, Boskey AL (1999) Bone formation: osteoblast lineage cells, growth factor, matrix protein, and the mineralization process. In: Favus MJ (ed) Primer on the metabolic bone disease and disorders of mineral metabolism, 4th edn. Lippincott Williams & Wilkins Press, New York, pp 14–29

    Google Scholar 

  38. Yamaguchi M, Takahashi K (1984) Role of zinc as an activator of bone metabolism in weanling rats. Jpn J Bone Metab 2:186–191

    Google Scholar 

  39. Yamaguchi M, Inamoto K, Suketa Y (1986) Effect of essential trace metals on bone metabolism in weanling rats: comparison with zinc and other metals` actions. Res Exp Med 186:337–342

    Article  CAS  Google Scholar 

  40. Yamaguchi M, Uchiyama M (1987) Preventive effect of zinc for toxic actions of germanium and selenium on bone metabolism in weanling rats. Res Exp Med 187:395–400

    Article  CAS  Google Scholar 

  41. Lai YL, Yamaguchi M (2005) Effects of copper on bone component in the femoral tissues of rats: anabolic effect of zinc is weakened by copper. Biol Pharm Bull 28:2296–2301

    Article  PubMed  CAS  Google Scholar 

  42. Yamaguchi M, Sakashita T (1986) Enhancement of vitamin D3 effect on bone metabolism in weanling rats orally administered zinc sulphate. Acta Endocrinol 111:285–288

    PubMed  CAS  Google Scholar 

  43. Yamaguchi M, Yamaguchi R (1986) Action of zinc on bone metabolism in rats. Increases in alkaline phosphatase activity and DNA content. Biochem Pharmacol 35:773–777

    Article  PubMed  CAS  Google Scholar 

  44. Yamaguchi M, Inamoto K (1986) Differential effects of calcium-regulating hormones on bone metabolism in weanling rats orally administered zinc sulfate. Metabolism 35:1044–1047

    Article  PubMed  CAS  Google Scholar 

  45. McDonnell DP, Mongelsdorf DJ, Pike JW, Haussler MR, O’Malley BW (1987) Molecular cloning of complementary DNA encoding the avian receptor for vitamin D. Science 235:1214–1217

    Article  PubMed  CAS  Google Scholar 

  46. Yamaguchi M, Osishi H, Suketa Y (1987) Stimulatory effect of zinc on bone formation in tissue culture. Biochem Pharmacol 36:4007–4012

    Article  PubMed  CAS  Google Scholar 

  47. Yamaguchi M, Oishi H, Suketa Y (1988) Zinc stimulation of bone protein synthesis in tissue culture. Activation of aminoacyl-tRNA synthetase. Biochem Pharmacol 37:4075–4080

    Article  PubMed  CAS  Google Scholar 

  48. Yamaguchi M, Matsui R (1989) Effect of dipicolinate, a chelator of zinc, on bone protein synthesis in tissue culture. The essential role of zinc. Biochem Pharmacol 38:4485–4489

    Article  PubMed  CAS  Google Scholar 

  49. Shimokawa N, Yamaguchi M (1992) Characterization of bone protein components with polyacrylamide gel electrophoresis: effects of zinc and hormones in tissue culture. Mol Cell Biochem 117:153–158

    Article  PubMed  CAS  Google Scholar 

  50. Yamaguchi M, Oishi H (1989) Effect of 1, 25-dihydroxyvitamin D3 on bone metabolism in tissue culture. Enhancement of this steroid effect by zinc. Biochem Pharmacol 38:3453–3459

    Article  PubMed  CAS  Google Scholar 

  51. Yamaguchi M, Kitajima T (1991) Effect of estrogen on bone metabolism in tissue culture: enhancement of the steroid effect by zinc. Res Exp Med 191:145–154

    Article  CAS  Google Scholar 

  52. Hashizume M, Yamaguchi M (1993) Stimulatory effect of β-alanyl-l-histidinato zinc on cell proliferation is dependent on protein synthesis in osteoblastic MC3T3-E1 cells. Mol Cell Biochem 122:59–64

    Article  PubMed  CAS  Google Scholar 

  53. Hashizume M, Yamaguchi M (1994) Effect of β-alanyl-l-histidinato zinc on differentiation of osteoblastic MC3T3-E1 cells: increases in alkaline phosphatase activity and protein concentration. Mol Cell Biochem 131:19–24

    Article  PubMed  CAS  Google Scholar 

  54. Yamaguchi M, Goto M, Uchiyama S, Nakagawa T (2008) Effect of zinc on gene expression in osteoblastic MC3T3-E1 cells: enhancement of Runx2, OPG, and regucalcin mRNA expressions. Mol Cell Biochem 312:157–166

    Article  PubMed  CAS  Google Scholar 

  55. Yamaguchi M, Hashizume M (1994) Effect of β-alanyl-l-histidinato zinc on protein components in osteoblastic MC3T3-E1 cells: increases in osteocalcin, insulin-like growth factor-I and transforming growth factor-β. Mol Cell Biochem 136:163–169

    Article  PubMed  CAS  Google Scholar 

  56. Matsui T, Yamaguchi M (1995) Zinc modulation of insulin-like growth factor’s effect in osteoblastic MC3T3-E1 cells. Peptides 16:1063–1068

    Article  PubMed  CAS  Google Scholar 

  57. Yamaguchi M, Fukagawa M (2005) Role of zinc in regulation of protein tyrosine phosphatase activity in osteoblastic MC3T3-E1 cells: zinc modulation of insulin-like growth factor-I’s effect. Calcif Tissue Int 76:32–38

    Article  PubMed  CAS  Google Scholar 

  58. Yamaguchi M, Kishi S, Hashizume M (1994) Effect of zinc-chelating dipeptides on osteoblastic MC3T3-E1 cells: activation of aminoacyl-tRNA synthetase. Peptides 15:1367–1371

    Article  PubMed  CAS  Google Scholar 

  59. Yamaguchi M, Matsui T (1996) Stimulatory effect of zinc-chelating dipeptide on deoxyribonucleic acid synthesis in osteoblastic MC3T3-E1 cells. Peptides 17:1207–1211

    Article  PubMed  CAS  Google Scholar 

  60. Yamaguchi M, Segawa Y, Shimokawa N, Tsuzuike N, Tagashira E (1992) Inhibitory effect of β-alanyl-l-histidinato zinc on bone resorption in tissue culture. Pharmacology 45:292–300

    Article  PubMed  CAS  Google Scholar 

  61. Yamaguchi M, Hashizume M (1994) Effect of parathyroid hormone and interleukin-1α in osteoblastic MC3T3-E1 cells: interaction with β-alanyl-l-histidinato zinc. Peptides 15:633–636

    Article  PubMed  CAS  Google Scholar 

  62. Kishi S, Yamaguchi M (1994) Inhibitory effect of zinc compounds on osteoclast-like cell formation in mouse marrow cultures. Biochem Pharmacol 48:1225–1230

    Article  PubMed  CAS  Google Scholar 

  63. Yamaguchi M, Kishi S (1996) Zinc compounds inhibit osteoclast-like cell formation at the earlier stage of rat marrow culture but not osteoclast function. Mol Cell Biochem 158:171–177

    Article  PubMed  CAS  Google Scholar 

  64. Yamaguchi M, Kishi S (1995) Inhibitory effect of zinc-chelating dipeptide on parathyroid hormone-stimulated osteoclast-like cell formation in mouse marrow cultures: involvement of calcium signaling. Peptides 16:629–633

    Article  PubMed  CAS  Google Scholar 

  65. Zaidi M, Blair HC, Moonga BS, Abe E, Huang CL-H (2003) Osteoclastogenesis, bone resorption, and osteoclast-based therapeutics. J Bone Miner Res 18:599–609

    Article  PubMed  Google Scholar 

  66. Asagiri M, Takayanagi H (2007) The molecular understanding of osteoclast differentiation. Bone 40:251–264

    Article  PubMed  CAS  Google Scholar 

  67. Anderson DM, Marashovsky E, Billingoley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L (1997) A homologue of the TNF receptor and its ligand enhances T-cell growth an dentritic-cell function. Nature (London) 390:175–179

    Article  CAS  Google Scholar 

  68. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    Article  PubMed  CAS  Google Scholar 

  69. Tsuda E, Goto M, Mochizuki S, Yano K, Kobayashi F, Morinaga T, Higashio K (1997) Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun 234:137–142

    Article  PubMed  CAS  Google Scholar 

  70. Inoue J, Ishida T, Tsukamoto N, Kobayashi N, Naito A, Azuma S, Yamamoto T (2000) Tumor necrosis factor receptor-associated factor (TRAF) family: adaptor proteins that mediate cytokine signaling. Exp Cell Res 254:14–24

    Article  PubMed  CAS  Google Scholar 

  71. Yamaguchi M, Uchiyma S (2004) Receptor activator of Nf-κB ligand (RANKL)-stimulated osteoclastogenesis in mouse marrow culture is suppressed by zinc in vitro. Int J Mol Med 14:81–85

    PubMed  CAS  Google Scholar 

  72. Zou W, Hikim I, Tschoep K, Endres S, Zvi B-S (2001) Tumor necrosis factor-mediated RANK ligand stimulation of osteoclast differentiation by an autocrine mechanism. J Cell Biochem 83:70–83

    Article  PubMed  CAS  Google Scholar 

  73. Ma ZJ, Yamaguchi M (2000) Alteration in bone components with increasing age of newborn rats: role of zinc in bone growth. J Bone Miner Metab 18:264–270

    Article  PubMed  CAS  Google Scholar 

  74. Ma ZJ, Yamaguchi M (2001) Role of endogenous zinc in the enhancement of bone protein synthesis associated with bone growth of newborn rats. J Bone Miner Metab 19:38–44

    Article  PubMed  CAS  Google Scholar 

  75. Ma ZJ, Misawa H, Yamaguchi M (2001) Stimulatory effect of zinc on insulin-like growth factor-I and transforming growth factor-β1 production with bone growth of newborn rats. Int J Mol Med 8:623–628

    PubMed  CAS  Google Scholar 

  76. Gabbitas B, Pash J, Canalis E (1994) Regulation of insulin-like growth factor-II synthesis in bone cell cultures by skeletal growth factors. Endocrinology 135:284–289

    Article  PubMed  CAS  Google Scholar 

  77. Asahina I, Sampath TK, Nishimura I, Hauschka PV (1999) Human osteogenic protein-1 induces both chondroblastic and osteoblastic differentiation of osteoprogenitor cells derived from newborn rat calvaria. J Cell Biol 123:921–933

    Article  Google Scholar 

  78. Ma ZJ, Yamaguchi M (2001) Stimulatory effect of zinc and growth factor on bone protein component in newborn rats: enhancement with zinc and insulin-like growth factor-I. Int J Mol Med 7:73–78

    PubMed  CAS  Google Scholar 

  79. Ma ZJ, Yamaguchi M (2001) Stimulatory effect of zinc on deoxyribonucleic acid synthesis in bone growth of newborn rats: enhancement with zinc and insulin-like growth factor-I. Calcif Tissue Int 69:158–163

    Article  PubMed  CAS  Google Scholar 

  80. Barnes GL, Kostenuik PJ, Gerstenfeld LC, Eihorn TA (1999) Growth factor regulation of fracture repair. J Bone Miner Res 14:1805–1815

    Article  PubMed  CAS  Google Scholar 

  81. Eihorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop 355S:S7–S21

    Article  Google Scholar 

  82. Bolander ME (1998) Regulation of fracture repair by growth factors. Proc Soc Exp Biol Med 200:165–170

    Google Scholar 

  83. Igarashi A, Yamaguchi M (1999) Increase in bone protein components with healing rat fractures: enhancement by zinc treatment. Int J Mol Med 4:615–620

    PubMed  CAS  Google Scholar 

  84. Igarashi A, Yamaguchi M (2001) Increase in bone growth factors with healing rat fractures: the enhancing effect of zinc. Int J Mol Med 8:433–438

    PubMed  CAS  Google Scholar 

  85. Igarashi A, Yamaguchi M (2002) Characterization of the increase in bone 66 kDa protein component with healing rat fractures: stimulatory effect of zinc. Int J Mol Med 9:503–508

    PubMed  CAS  Google Scholar 

  86. Igarashi A, Yamaguchi M (2003) Great increase in bone 66 kDa protein and osteocalcin at later stage with healing rat fractures: effect of zinc treatment. Int J Mol Med 11:223–228

    PubMed  CAS  Google Scholar 

  87. Yamaguchi M, Igarashi A, Misawa H, Tsurusaki Y (2003) Enhancement of albumin expression in bone tissues with healing rat fractures. J Cell Biochem 89:356–363

    Article  PubMed  CAS  Google Scholar 

  88. Ishida K, Sawada N, Yamaguchi M (2004) Expression of albumin in bone tissues and osteoblastic cells: involvement of hormone regulation. Int J Mol Med 14:891–895

    PubMed  CAS  Google Scholar 

  89. Ishida K, Yamaguchi M (2004) Role of albumin in osteoblastic cells: enhancement of cell proliferation and suppression of alkaline phosphatase activity. Int J Mol Med 14:1077–1081

    PubMed  CAS  Google Scholar 

  90. Ishida K, Yamaguchi M (2005) Albumin regulates Runx2 and α1 (I) collagen mRNA expression in osteoblastic cells: comparison with insulin-like growth factor-I. Int J Mol Med 16:689–694

    PubMed  CAS  Google Scholar 

  91. Yamaguchi M, Ozaki K, Suketa Y (1989) Alteration in bone metabolism with increasing age: effects of zinc and vitamin D3 in aged rats. J Pharmacobio-Dyn 12:67–73

    Article  PubMed  CAS  Google Scholar 

  92. Yamaguchi M, Ozaki K (1990) Aging affects cellular zinc and protein synthesis in the femoral diaphysis of rats. Res Exp Med 190:295–300

    Article  CAS  Google Scholar 

  93. Yamaguchi M, Ehara Y (1995) Zinc decrease and bone metabolism in the femoral–metaphyseal tissues of rats with skeletal unloading. Calcif Tissue Int 57:218–223

    Article  PubMed  CAS  Google Scholar 

  94. Yamaguchi M, Ehara Y (1996) Effect of essential trace metal on bone metabolism in the femoral–metaphyseal tissues of rats with skeletal unloading: comparison with zinc-chelating dipeptide. Calcif Tissue Int 59:27–32

    Article  PubMed  CAS  Google Scholar 

  95. Morey ER, Baylink DJ (1978) Inhibition of bone formation during spaceflight. Science 201:1138–1141

    Article  PubMed  CAS  Google Scholar 

  96. Yamaguchi M, Ozaki K (1990) A new zinc compound, β-alanyl-l-histidinato zinc, stimulates bone growth in weanling rats. Res Exp Med 190:105–110

    Article  CAS  Google Scholar 

  97. Yamaguchi M, Miwa H (1991) Stimulatory effect of beta-alanyl-l-histidinato zinc on bone formation in tissue culture. Pharmacology 42:230–240

    Article  PubMed  CAS  Google Scholar 

  98. Samuchson J (1967) Mechanism for the exchange of the calcium in bone mineral. Nature 216:193–194

    Article  Google Scholar 

  99. Yamaguchi M, Ohtaki J (1991) Effect of beta-alanyl-l-histidinato zinc on osteoblastic MC3T3-E1 cells: increases in alkaline phosphatase and proliferation. Pharmacology 43:225–232

    Article  PubMed  CAS  Google Scholar 

  100. Yamaguchi M, Kishi S (1994) Effect of zinc-chelating dipeptide on bone metabolism in weanling rats: comparison with β-alanyl-l-histidinato zinc-related compounds. Peptides 15:671–673

    Article  PubMed  CAS  Google Scholar 

  101. Yamaguchi M, Kishi S (1994) Comparison of the effect of β-alanyl-l-histidinato zinc and its zinc-chelating ligand on bone metabolism in tissue culture. Biol Pharm Bull 17:522–526

    Article  PubMed  CAS  Google Scholar 

  102. Yamaguchi M, Ozaki K (1990) Effect of the new zinc compound beta-alanyl-l-histidinato zinc on bone metabolism in elderly rats. Pharmacology 41:345–349

    Article  PubMed  CAS  Google Scholar 

  103. Kishi S, Yamaguchi M (1994) Stimulatory effect of β-alanyl-l-histidinato zinc on alkaline phosphatase activity in bone tissue from elderly rats: comparison with zinc sulfate action. Biol Pharm Bull 17:345–347

    Article  Google Scholar 

  104. Yamaguchi M, Ozaki K, Hoshi T (1990) β-Alanyl-l-histidinato zinc prevents skeletal unloading-induced disorder of bone metabolism in rats. Res Exp Med 190:289–294

    Article  CAS  Google Scholar 

  105. Yamaguchi M, Ozaki K (1990) Beta-alanyl-l-histidinato zinc prevents the toxic effect of aluminium on bone metabolism in weanling rats. Pharmacology 41:338–344

    Article  PubMed  CAS  Google Scholar 

  106. Segawa Y, Tsuzuike N, Tagashira E, Yamaguchi M (1992) Preventive effect of β-alanyl-l-histidinato zinc on bone metabolism in rats fed on low-calcium and vitamin D-deficient diets. Res Exp Med 192:213–219

    Article  CAS  Google Scholar 

  107. Segawa Y, Tsuzuike N, Itokazu Y, Tagashira E, Yamaguchi M (1993) Effect of β-alanyl-l-histidinato zinc on bone metabolism in rats with adjuvant arthritis. Biol Pharm Bull 16:656–659

    Article  PubMed  CAS  Google Scholar 

  108. Segawa Y, Tsuzuike N, Itokazu Y, Tagashira E, Yamaguchi M (1992) β-Alanyl-l-histidinato zinc prevents hydrocortisone-induced disorder of bone metabolism in rats. Res Exp Med 192:317–322

    Article  CAS  Google Scholar 

  109. Segawa Y, Tsuzuike N, Tagashira E, Yamaguchi M (1993) Preventive effect of β-alanyl-l-histidinato zinc on the deterioration of bone metabolism in ovariectomized rats. Biol Pharm Bull 16:486–489

    Article  PubMed  CAS  Google Scholar 

  110. Yamaguchi M, Kishi S (1993) Prolonged administration of β-alanyl-l-histidinato zinc prevents bone loss in ovariectomized rats. Jap J Pharmacol 63:203–207

    Article  PubMed  CAS  Google Scholar 

  111. Kishi S, Segawa Y, Yamaguchi M (1994) Histomorphological confirmation of the preventive effect of β-alanyl-l-histidinato zinc on bone loss in ovariectomized rats. Biol Pharm Bull 17:862–865

    Article  PubMed  CAS  Google Scholar 

  112. Yamaguchi M, Gao YH (1998) Potent effect of zinc acexamate on bone components in the femoral–metaphyseal tissues of elderly female rats. Gen Pharmacol 30:423–427

    Article  PubMed  CAS  Google Scholar 

  113. Yamaguchi M, Uchiyama S (2003) Preventive effect of zinc acexamate administration in streptozotocin-diabetic rats: restoration of bone loss. Int J Mol Med 12:755–761

    PubMed  CAS  Google Scholar 

  114. Uchiyama S, Yamaguchi M (2003) Alteration in serum and bone component findings induced in streptozotocin-diabetic rats is restored by zinc acexamate. Int J Mol Med 12:949–954

    PubMed  CAS  Google Scholar 

  115. Igarashi A, Yamaguchi M (1999) Stimulatory effect of zinc acexamate administration on fracture healing of the femoral–diaphyseal tissues in rats. Gen Pharmacol 32:463–469

    Article  PubMed  CAS  Google Scholar 

  116. Yamaguchi M (1995) β-Alanyl-l-histidinato zinc: a potent activator in bone formation. Curr Med Chem 1:356–365

    CAS  Google Scholar 

  117. Yamaguchi M (1995) β-Alanyl-l-histidinato zinc and bone resorption. Gen Pharmac 26:1179–1183

    Article  CAS  Google Scholar 

  118. Yamaguchi M (1998) Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med 11:119–135

    Article  CAS  Google Scholar 

  119. Yamaguchi M (2004) Role of zinc in regulation of osteoclastogenesis. Biomed Res Trace Elements 15:9–14

    CAS  Google Scholar 

  120. Yamaguchi M, Igarashi A, Uchiyama S (2004) Bioavailability of zinc yeast in rats: stimulatory effect on bone calcification in vivo. J Health Sci 50:75–81

    Article  CAS  Google Scholar 

  121. Yamaguchi M (2011) Role of nutritional zinc in the prevention of osteoporosis. Mol Cell Biochem 338:241–254

    Article  CAS  Google Scholar 

  122. Yamaguchi M, Gao YH (1997) Anabolic effect of genistein on bone metabolism in the femoral–metaphyseal tissues of elderly rats is inhibited by the anti-estrogen tamoxifen. Res Exp Med 197:101–107

    Article  CAS  Google Scholar 

  123. Yamaguchi M, Gao YH (1998) Anabolic effect of genistein and genistein on bone metabolism in the femoral–metaphyseal tissues of elderly rats: the genistein effect is enhanced by zinc. Mol Cell Biochem 178:377–382

    Article  PubMed  CAS  Google Scholar 

  124. Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139:4252–4263

    Article  PubMed  CAS  Google Scholar 

  125. Gao YH, Yamaguchi M (1999) Anabolic effect of daidzein on cortical bone in tissue culture: comparison with genistein effect. Mol Cell Biochem 194:93–98

    Article  PubMed  CAS  Google Scholar 

  126. Yamaguchi M, Zhong JM, Fushimi T (2002) Anabolic effect of phosphogenistein and phosphodaidzein on bone components in rat femoral–metaphyseal tissues in vitro. J Bone Miner Metab 20:148–155

    Article  PubMed  CAS  Google Scholar 

  127. Yamaguchi M, Ma ZJ (2001) Effect of polyphenols on calcium content and alkaline phosphatase activity in rat femoral tissues in vitro. Biol Pharm Bull 24:1437–1438

    Article  PubMed  CAS  Google Scholar 

  128. Sugimoto E, Yamaguchi M (2000) Anabolic effect of genistein is osteoblastic MC3T3-E1 cells. Int J Mol Med 5:515–520

    PubMed  CAS  Google Scholar 

  129. Sugimoto E, Yamaguchi M (2000) Stimulatory effect of daidzein in osteoblastic MC3T3-E1 cells. Biochem Pharmacol 59:471–475

    Article  PubMed  CAS  Google Scholar 

  130. Yamaguchi M, Sugimoto E (2000) Stimulatory effect of genistein and daizein on protein synthesis in osteoblastic MC3T3-E1 cells: activation of aminoacyl-tRNA synthetase. Mol Cell Biochem 214:97–102

    Article  PubMed  CAS  Google Scholar 

  131. Yamaguchi M, Weitzmann MN (2009) The estrogen 17β-estradiol and phytoestrogen genistein mediate differential effects on osteoblastic NF-κB activity. Int J Mol Med 23:297–301

    PubMed  CAS  Google Scholar 

  132. Yamaguchi M, Gao YH (1998) Inhibitory effect of genistein on bone resorption in tissue culture. Biochem Pharmacol 55:71–76

    Article  PubMed  CAS  Google Scholar 

  133. Gao YH, Yamaguchi M (1999) Inhibitory effect of genistein on osteoclast-like cell formation in mouse marrow cultures. Biochem Pharmacol 58:767–772

    Article  PubMed  CAS  Google Scholar 

  134. Gao YH, Yamaguchi M (1999) Suppressive effect of genistein on rat bone osteoclasts: apoptosis is induced throughCa2+ signaling. Biol Pharm Bull 22:805–809

    Article  PubMed  CAS  Google Scholar 

  135. Gao YH, Yamaguchi M (2000) Suppressive effect of genistein on rat bone osteoclasts: involvement of protein kinase inhibition and protein tyrosine phosphatase activation. Int J Mol Med 5:261–267

    PubMed  CAS  Google Scholar 

  136. Takahashi N, Yamana H, Yoshiki S, Roodman GD, Mundy GR, Jones SJ, Boyde A, Suda T (1988) Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures. Endocrinology 122:1373–1382

    Article  PubMed  CAS  Google Scholar 

  137. Liu Y, Bhalla K, Hill C, Priest DG (1994) Evidence for involvement of tyrosine phosphorylation in taxol-induced apoptosis in a human ovarian tumor cell line. Biochem Pharmacol 48:1265–1272

    Article  PubMed  CAS  Google Scholar 

  138. Murrills RJ, Shane E, Lindsay R, Dempster DW (1989) Bone resorption by isolated human osteoclasts in vitro: effects of calcitonin. J Bone Miner Res 4:259–268

    Article  PubMed  CAS  Google Scholar 

  139. Su Y, Charkrabort M, Nathanson MH, Baron R (1992) Differential effects of the 3′,5′-cyclic adenosine monophosphate and protein kinase C pathways on the response of isolated rat osteoclasts to calcitonin. Endocrinology 131:1497–1502

    Article  PubMed  CAS  Google Scholar 

  140. Jones DOP, McConkey DJ, Nicotera P, Orrenius S (1989) Calcium-activated DNA fragmentation in rat liver nuclei. J Biol Chem 264:6398–6403

    PubMed  CAS  Google Scholar 

  141. McCabe MJ, Orrenius S (1993) Genistein induces apoptosis in immature human thymocytes by inhibiting topoisomerase-II. Biochem Biophys Res Commun 194:944–950

    Article  PubMed  CAS  Google Scholar 

  142. Missbach M, Jeschke M, Feyen J, Muller K, Glatt M, Green J, Susa M (1999) A novel inhibitor of the tyrosine kinase Src suppresses phosphorylation of its major cellular substrates and reduces bone resorption in vitro and in rodent models in vivo. Bone 24:437–449

    Article  PubMed  CAS  Google Scholar 

  143. Hunter T (1995) Protein kinases and phosphatases: the Yin and Yang of protein phosphorylation and signaling. Cell 80:225–236

    Article  PubMed  CAS  Google Scholar 

  144. Aoki K, Didomenico E, Sims NA, Mukhopadhyay K, Neff L, Houghton A, Amling M, Levy JB, Horne WC, Baron R (1999) The tyrosine phosphatase SHP-1 is a negative regulator of osteoclastogenesis and osteoclast resorbing activity: increased resorption and osteopenia in mev.mev mutant mice. Bone 25:261–267

    Article  PubMed  CAS  Google Scholar 

  145. Ono R, Yamaguchi M (1999) Increase in bone components of rats orally administered isoflavone-containing soybean extract (Nijiru). J Health Sci 45:66–69

    Article  CAS  Google Scholar 

  146. Ono R, Yamaguchi M (1999) Anabolic effect of soybean saponin on bone components in the femoral tissues of rats. J Health Sci 45:251–255

    Article  CAS  Google Scholar 

  147. Ono R, Ma ZJ, Yamaguchi M (2000) Prolonged intake of fermented soybean diets with supplementation of isoflavone and saponin prevents bone loss in ovariectomized rats. J Health Sci 46:70–74

    Article  CAS  Google Scholar 

  148. Yamaguchi M, Ono R, Ma ZJ (2001) Prolonged intake of isoflavone- and saponin-containing soybean extract (nijiru) supplement enhances circulating γ-carboxylated osteocalcin concentration in healthy individuals. J Health Sci 47:579–582

    Article  CAS  Google Scholar 

  149. Gao YH, Yamaguchi M (1998) Zinc enhancement of genistein’s anabolic effect on bone components in elderly female rats. Gen Pharmacol 31:199–202

    Article  PubMed  CAS  Google Scholar 

  150. Yamaguchi M, Gao YH, Ma ZJ (2000) Synergistic effect of genistein and zinc on bone components in the femoral–metaphyseal tissues of female rats. J Bone Miner Metab 18:77–83

    Article  PubMed  CAS  Google Scholar 

  151. Ma ZJ, Igarashi A, Inagaki M, Mitsugi F, Yamaguchi M (2000) Supplemental intake of isoflavones and zinc-containing mineral mixture enhances bone components in the femoral tissues of rats with increasing age. J Health Sci 46:363–369

    Article  CAS  Google Scholar 

  152. Uchiyama S, Yamaguchi M (2007) Genistein and zinc synergistically enhance gene expression and mineralization in osteoblastic MC3T3-E1 cells. Int J Mol Med 19:213–220

    PubMed  CAS  Google Scholar 

  153. Uchiyama S, Yamaguchi M (2007) Genistein and zinc synergistically stimulate apoptotic cell death and suppress RANKL signaling-related gene expression in osteoclastic cells. J Cell Biochem 101:529–542

    Article  PubMed  CAS  Google Scholar 

  154. Darnay BG, Ni J, Moore PA, Aggarwal BB (1999) Activation of NF-κB by RANK require tumor necrosis factor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF-6 interaction motif. J Biol Chem 274:7724–7731

    Article  PubMed  CAS  Google Scholar 

  155. Kim K, Kim JH, Lee J, Jim HM, Lee SH, Fisher DE, Kook H, Kim KK, Choi Y, Kim N (2005) Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis. J Biol Chem 280:35209–35216

    Article  PubMed  CAS  Google Scholar 

  156. Ma ZJ, Shimanuki S, Igarashi A, Kawasaki Y, Yamaguchi M (2000) Preventive effect of dietary fermented soybean on bone loss in ovariectomized rats: enhancement with isoflavone and zinc supplementation. J Health Sci 46:263–268

    Article  CAS  Google Scholar 

  157. Yamaguchi M, Igarashi A, Sakai M, Degawa H, Ozawa Y (2005) Prolonged intake of dietary fermented isoflavone-rich soybean reinforced with zinc affects circulating bone biochemical markers in aged individuals. J Health Sci 51:191–196

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Yamaguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, M. Nutritional factors and bone homeostasis: synergistic effect with zinc and genistein in osteogenesis. Mol Cell Biochem 366, 201–221 (2012). https://doi.org/10.1007/s11010-012-1298-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1298-7

Keywords

Navigation