Skip to main content
Log in

Effects of zinc on the mineralization of bone nodules from human osteoblast-like cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc is an important mineral that is required for normal bone development. However, the direct effects of zinc on the mineralization of bone cells of human origin are not clear. The objective of this study was to determine the effects of zinc on the differentiation of SaOS-2 human osteoblast-like cells and the formation of mineralized bone nodules. Cells were cultured for 8 d and then transferred to zinc-free medium and treated with varying concentrations (0–50 μM) of zinc. Alkaline phosphatase (ALP) activity was used as a measure of osteoblast differentiation, and bone nodules were detected by von Kossa staining. After 4, 6, and 8 d of treatment, zinc increased ALP activity at 1 and 10 μM, but decreased activity at 50 μM. After 9 d of treatment, zinc increased both the number and area of mineralized bone nodules at low concentrations (1 and 10 μM), but decreased both at higher concentrations (25 and 50 μM). These findings demonstrate that zinc has biphasic effects on the differentiation and mineralization of human osteoblast-like cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Pandel and R. M. Francis, Osteoporosis in men, Best Pract Res. Clin. Rheumatol. 15, 415–427 (2001).

    Article  Google Scholar 

  2. R. Eastell, I. T. Boyle, and J. Compston, Management of male osteoporosis: report of the UK consensus group, Q. J. Med. 91, 71–92 (1998).

    CAS  Google Scholar 

  3. C. Christodoulou and C. Cooper, What is osteoporosis? Postgrad. Med. J. 79, 133–138 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. K. M. Hambidge, C. E. Casey, and N. F. Krebs, Zinc, in Trace Elements in Human and Animal Nutrition, W. Metz, ed., Academic, Orlando, FL, pp. 1–37 (1986).

    Google Scholar 

  5. R. Cousins, Zinc, in Present Knowledge in Nutrition, E. E. Ziegler and L. J. Filer, ed., ILSI Press, Washington DC, pp. 293–306 (1996).

    Google Scholar 

  6. A. Cerovic, I. Miletic, S. Sobajic, et al., Effect of dietary zinc on the levels and distribution of fatty acids and vitamin A in blood plasma chylomicrons. Biol. Trace Element Res. 112, 145–158 (2006).

    Article  CAS  Google Scholar 

  7. R. S. MacDonald, The role of zinc in growth and cell proliferation, J. Nutr. 130, 1500S-1508S (2000).

    PubMed  CAS  Google Scholar 

  8. A. S. Prasad, J. A. Halsted, and M. Nadim, Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia, Am. J. Med. 31, 532–546 (1961).

    Article  PubMed  CAS  Google Scholar 

  9. J. C. Wallwork and H. H. Sandstead, Zinc, in Nutrition and Bone Development, D. J. Simmons, ed., Oxford University Press, New York, pp. 313–339 (1990).

    Google Scholar 

  10. R. M. Angus, P. N. Sambrook, N. A. Pocock, and J. A. Eisman, Dietary intake and bone mineral density, Bone Miner. 4, 265–277 (1988).

    PubMed  CAS  Google Scholar 

  11. A. Gur, L. Colpan, and K. Nas, The role of trace minerals in the pathogenesis of postmenopausal osteoporosis and a new effect of calcitonin, J. Bone Miner. Metab. 20, 39–43 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. J. P. McClung, C. H. Stahl, L. J. Marchitelli, et al., Effects of dietary phytase on body weight gain, body composition and bone strength in growing rats fed a low-zinc diet, J. Nutr. Biochem. 17, 190–196 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. L. Rossi, S. Migliaccio, A. Corsi, M. Marzia, P. Bianco, and A. Teti, Reduced growth and skeletal changes in zinc-deficient growing rats are due to impaired growth plate activity and inanition. J. Nutr. 131, 1142–1146 (2001).

    PubMed  CAS  Google Scholar 

  14. I. Diamonde and L. S. Hurley, Histopathology of zinc-deficient fetal rats. J. Nutr. 100, 325–329 (1970).

    Google Scholar 

  15. M. Yamaguchi and T. Matsui, Stimulatory effect of zinc-chelating dipeptide on deoxyribonucleic acid synthesis in osteoblastic MC3T3-E1 cells, Peptides 17, 1207–1211 (1996).

    Article  PubMed  CAS  Google Scholar 

  16. M. Yamaguchi, H. Oishi, and Y. Suketa, Stimulatory effects of zinc on bone formation in tissue culture, Biochem. Pharmacol. 36, 4007–4012 (1987).

    Article  PubMed  CAS  Google Scholar 

  17. S. L. Hall, H. P. Dimai, and J. R. Farley, Effects of zinc on human skeletal alkaline phosphatase activity in vitro. Calcif. Tissue. Int. 64, 163–172 (1996).

    Article  Google Scholar 

  18. S. Epstein, Serum and urinary markers of bone remodeling: assessment of bone turnover, Endocrine Rev. 9, 437–438 (1988).

    Article  CAS  Google Scholar 

  19. R. H. Christenson, Biochemical markers of bone metabolism: an overview, Clin. Biochem. 30, 573–593 (1997).

    Article  PubMed  CAS  Google Scholar 

  20. Y. Sugawara, K. Suzuki, M. Koshikawa, M. Ando, and J. Iida, Necessity of enzymatic activity of alkaline phosphatase for mineralization of osteoblastic cells, Jpn. J. Pharmacol. 88, 262–269 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. B. J. Lian, G. S. Stein, E. Canalis, P. G. Robey, and A. L. Boskey, Bone formation: osteoblast lineage cells, growth factors, matrix proteins and the mineralization process, in: Primer on the Metabolic Bone Disease and Disorder of Mineral Metabolism, M. J. Favus, ed., Lippincott Wiliams & Wiliams, Philadelphia (1999).

    Google Scholar 

  22. L. G. Rao, L. J. Liu, T. M. Murray, E. McDermott, and X. Zhang, Estrogen added inter-mittently but not continuously, stimulates differentiation and bone formation in SaOS-2 cells, Biol. Pharm. Bull. 26, 936–945 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. N. W. Tietz, ed., Study group on alkaline phosphatase. A reference method for measurement of alkaline phosphatase activity in human serum. Clin. Chem. 29, 751 (1983).

    Google Scholar 

  24. M. M. Bradfod, A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72, 248–254 (1976).

    Article  Google Scholar 

  25. L. F. Bonewald, S. E. Harris, J. Rosser, S. L. Dallas, and N. P. Camacho, Von kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation, Calcif. Tissue. Int. 72, 537–547 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. G. Oner, B. Bhaumick, and R. M. Bala, Effects of zinc deficiency on serum somatomedin levels and skeletal growth in young rats, Endocrinology 114, 1860–1863 (1984).

    Article  PubMed  CAS  Google Scholar 

  27. M. Yamaguchi and R. Yamaguchi, Action of zinc on bone metabolism in rats. Increases in alkaline phosphatase activity and DNA content, Biochem. Pharmacol. 35, 773–777 (1986).

    Article  PubMed  CAS  Google Scholar 

  28. M. S. Cooper, M. Hewison, and P. M. Stewart, Glucocorticoid activity, inactivity and the osteoblast, J. Endocrinol. 163, 159–164 (1999).

    Article  PubMed  CAS  Google Scholar 

  29. X. Wu, N. Itoh, T. Taniguchi, T. Nakanishi, and Y. Tatsu, Zinc induced sodium dependent vitamin C transporter 2 expression: potent roles in osteoblast differentiation, Arch. Biochem. Biophys. 420, 114–120 (2003).

    Article  PubMed  CAS  Google Scholar 

  30. A. Prasad, D. Oberleas, P. Wolf, and J. P. Horwitz, Studies on zinc deficiency: changes in trace elements and enzyme activities in tissues of zinc-deficient rats, J. Clin. Invest. 46, 217–224 (1967).

    Google Scholar 

  31. P. Dimai, S. Hall, and J. Farley, Effects of dietary zinc on bone formation and resorption indices in adult female mice, J. Bone Miner. Res. 11(Suppl. 1), s228 (1996).

    Google Scholar 

  32. W. H. Fishman, Alkaline phosphatase isoenzymes: recent progress, Clin. Biochem. 23, 99–104 (1990).

    Article  PubMed  CAS  Google Scholar 

  33. J. C. King and C. L. Keen, Zinc, in Modern Nutrition in Health and Disease, M. E. Shils, J. A. Olson, and M. Shike, ed., Lea and Febiger, Philadelphia (1994).

    Google Scholar 

  34. J. E. Aubin, F. Liu, L. Malaval, and A. K. Gupta, Osteoblast and chondroblast differentiation, Bone 17, 77S-83S (1995).

    Article  PubMed  CAS  Google Scholar 

  35. B. A. Watkins, H. E. Lippman, L. L. Bouteiller, Y. Li, and M. F. Seifert, Bioactive fatty acids: role in bone biology and bone cell function, Progr. Lipid Res. 40, 125–148 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerovic, A., Miletic, I., Sobajic, S. et al. Effects of zinc on the mineralization of bone nodules from human osteoblast-like cells. Biol Trace Elem Res 116, 61–71 (2007). https://doi.org/10.1007/BF02685919

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02685919

Index Entries

Navigation