Skip to main content
Log in

Spectroscopic Investigation of the Interaction Between Copper (II) 2-oxo-propionic Acid Salicyloyl Hydrazone Complex and Bovine Serum Albumin

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The interaction between copper (II) 2-oxo-propionic acid salicyloyl hydrazone (CuIIL) and bovine serum albumin (BSA) under physiological conditions was investigated by the methods of fluorescence spectroscopy, UV-Vis absorption, and circular dichroism spectroscopy. Fluorescence data showed that the fluorescence quenching of BSA by CuIIL was the result of the formation of the BSA–CuIIL complex. The apparent binding constants (K a) between CuIIL and BSA at four different temperatures were obtained according to the modified Stern–Volmer equation. The thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS), for the reaction were calculated to be −80.79 kJ mol−1 and −175.48 J mol−1 K−1 according to van’t Hoff equation. The results indicated that van der Waals force and hydrogen bonds were the dominant intermolecular force in stabilizing the complex. The binding distance (r) between CuIIL and the tryptophan residue of BSA was obtained to be 4.1 nm according to Förster’s nonradioactive energy transfer theory. The conformational investigation showed that the application of CuIIL increased the hydrophobicity of amino acid residues and decreased the α-helical content of BSA (from 62.71% to 37.31%), which confirmed some microenvironmental and conformational changes of BSA molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zsila F, Bikadi Z, Simonyi M (2003) Probing the binding of the flavonoid quercetin to human serum albumin by circular dichroism, electronic absorption spectroscopy and molecular modelling methods. Biochem Pharmacol 65:447–456

    Article  PubMed  CAS  Google Scholar 

  2. Zhang YZ, Zhou B, Liu YX, Zhou CX, Ding XL, Liu Y (2008) Fluorescence study on the interaction of bovine serum albumin with P-Aminoazobenzene. J Fluoresc 18:109–118

    Article  PubMed  CAS  Google Scholar 

  3. Shang L, Jiang X, Dong SJ (2006) In vitro study on the binding of neutral red to bovine serum albumin by molecular spectroscopy. J Photochem Photobiol A Chem 184:93–97

    CAS  Google Scholar 

  4. Company R, Serafim A, Cosson RP, Fiala-Médioni A, Camus L, Colaço A (2008) Antioxidant biochemical responses to long-term copper exposure in bathymodiolus azoricus from Menez–Gwen hydrothermal vent. Sci Total Environ 389:407–417

    Article  PubMed  CAS  Google Scholar 

  5. Takayama F, Egashira T, Yamanaka Y (2001) Singlet oxygen generation from phosphatidylcholine hydroperoxide in the presence of copper. Life Sci 68:1807–1815

    Article  PubMed  CAS  Google Scholar 

  6. Li Y, Trush MA, Yager JD (1994) DNA damage caused by reactive oxygen species originating from a copper-dependent oxidation of the 2-hydroxy catechol of estradiol. Carcinogenesis 15:1421–1427

    Article  PubMed  CAS  Google Scholar 

  7. Katyal M, Dutt Y (1975) Analytical applications of hydrazones. Talanta 22:151–166

    Article  CAS  PubMed  Google Scholar 

  8. He SY, Cao WK, Yang R, Zhao JS, Shi QZ, Wang ZM, Yan CH (2003) Crystal structure and biological activity of copper (II) complex with two aqua and 2-oxo-propionic acid salicyloyl hydrazone. Chin J Inorg Chem 19:699–704

    CAS  Google Scholar 

  9. Lu ZX, Cui T, Shi QL (1987) Applications of circular dichroism and optical rotatory dispersion in molecular biology, 1st edn. Science, Beijing, pp 79–82

    Google Scholar 

  10. Hu YJ, Liu Y, Shen XS, Fang XY, Qu SS (2005) Studies on the interaction between 1-hexylcarbamoyl-5-fluorouracil and bovine serum albumin. J Mol Struct 738:143–147

    Article  CAS  Google Scholar 

  11. Gelamo EL, Silva CHTP, Imasato H, Tabak M (2002) Interaction of bovine and human serum albumins with ionic surfactants: spectroscopy and modeling. Biochim Biophys Acta 1594:84–99

    PubMed  CAS  Google Scholar 

  12. Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen, probe for structural fluctuations in macromolecules. Biochemistry 12:4161–4170

    Article  PubMed  CAS  Google Scholar 

  13. Zhou N, Liang YZ, Wang P (2007) b-Glycyrrhetinic acid interaction with bovine serum albumin. J Photochem Photobiol A Chem 185:271–276

    Article  CAS  Google Scholar 

  14. Zhang YZ, Zhang XP, Hou HN, Dai J, Liu Y (2008) Study on the interaction between Cu(phen)3 2+ and bovine serum albumin by spectroscopic methods. Biol Trace Elem Res 121:276–287

    Article  PubMed  CAS  Google Scholar 

  15. Zhang YZ, Dai J, Zhang XP, Yang X, Liu Y (2008) Studies of the interaction between Sudan I and bovine serum albumin by spectroscopic methods. J Mol Struct (in press), DOI 10.1016/j.molstruc.2007.11.043

  16. Lehrer S (1971) Solute perturbation of protein fluorescence. Quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10:3254–3263

    Article  PubMed  CAS  Google Scholar 

  17. Hu YJ, Liu Y, Hou AX, Zhao RM, Qu XS, Qu SS (2004) Studies on the interaction between rare-earth salts of heteropoly EuHSiMo10W2O40 25H2O and bovine serum albumin. Acta Chim Sin 62:1519–1523

    CAS  Google Scholar 

  18. Sulkowska A (2002) Interaction of drugs with bovine and human serum albumin. J Mol Struct 614:227–232

    Article  CAS  Google Scholar 

  19. Wang YQ, Zhang HM, Zhang GC, Tao WH, Fei ZH, Liu ZT (2007) Spectroscopic studies on the interaction between silicotungstic acid and bovine serum albumin. J Pharm Biomed Anal 43:1869–1875

    Article  PubMed  CAS  Google Scholar 

  20. Leckband D (2000) Measuring the forces that control protein interactions. Annu Rev Biophys Biomol Struct 29:1–26

    Article  PubMed  CAS  Google Scholar 

  21. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemisry 20:3096–3102

    Article  CAS  Google Scholar 

  22. Maiti TK, Ghosh KS, Samanta A, Dasgupta S (2008) The interaction of silibinin with human serum albumin: A spectroscopic investigation. J Photochem Photobiol A Chem 194:297–307

    Article  CAS  Google Scholar 

  23. Förster (1965) Delocalized excitation and excitation transfer. In: Sinanoglu O (ed) Modern quantum chemistry. vol. 3. Academic, New York, p 93–137

    Google Scholar 

  24. Sklar LA, Hudson BS, Simoni RD (1977) Conjugated polyene fatty acids as fluorescent probes: synthetic phospholipid membrane studies. Biochemistry 16:819–828

    Article  PubMed  CAS  Google Scholar 

  25. Mahammed A, Gray HB, Weaver JJ, Sorasaenee K, Gross Z (2004) Amphiphilic corroles bind tightly to human serum albumin. Bioconjug Chem 15:738–746

    Article  PubMed  CAS  Google Scholar 

  26. Horrocks WD, Collier WE (1981) Lanthanide ion luminescence probes. Measurement of distance between intrinsic protein fluorophores and bound metal ions: quantitation of energy transfer between tryptophan and terbium(III) or europium(III) in the calcium-binding protein parvalbumin. J Am Chem Soc 103:2856–2862

    Article  CAS  Google Scholar 

  27. Li DJ, Zhu JF, Jin J, Yao XJ (2007) Studies on the binding of nevadensin to human serum albumin by molecular spectroscopy and modeling. J Mol Struct 846:34–41

    Article  CAS  Google Scholar 

  28. Hu YJ, Liu Y, Pi ZB, Qu SS (2005) Interaction of cromolyn sodium with human serum albumin: a fluorescence quenching study. Bioorg Med Chem 13:6609–6614

    Article  PubMed  CAS  Google Scholar 

  29. Zhang G, Que Q, Pan J, Guo J (2008) Study of the interaction between icariin and human serum albumin by fluorescence spectroscopy. J Mol Struct (in press), DOI 10.1016/j.molstruc.2007.09.002

  30. Hu YJ, Liu Y, Jiang W, Zhao RM, Qu SS (2005) Fluorometric investigation of the interaction of bovine serum albumin with surfactants and 6-mercaptopurine. J Photochem Photobiol B Biol 80:235–242

    Article  CAS  Google Scholar 

  31. Liu JQ, Tian JN, Tian X (2004) Interaction of isofraxidin with human serum albumin. Bioorg Med Chem 12:469–474

    Article  PubMed  CAS  Google Scholar 

  32. Cui FT, Fan J, Hu ZD (2004) Interactions between 1-benzoyl-4-p-chlorophenyl thiosemicarbazide and serum albumin: investigation by fluorescence spectroscopy. Bioorg Med Chem 12:151–157

    Article  PubMed  CAS  Google Scholar 

  33. Tian JN, Liu JQ, Hu ZD, Chen XG (2005) Interaction of wogonin with bovine serum albumin. Bioorg Med Chem 13:4124–4129

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of National Natural Science Foundation of China (Grant nos. 30570015, 20621502), Natural Science Foundation of Hubei Province (2005ABC002), and the Research Foundation of Chinese Ministry of Education (no. [2006]8-IRT0543).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mei, P., Zhang, YZ., Zhang, XP. et al. Spectroscopic Investigation of the Interaction Between Copper (II) 2-oxo-propionic Acid Salicyloyl Hydrazone Complex and Bovine Serum Albumin. Biol Trace Elem Res 124, 269–282 (2008). https://doi.org/10.1007/s12011-008-8147-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-008-8147-2

Keywords

Navigation