Skip to main content

Advertisement

Log in

Spectroscopic and electrochemical studies on the molecular interaction between copper sulphide nanoparticles and bovine serum albumin

  • Biomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The interaction of covellite hexagonal phase of copper sulphide nanoparticles (CuS NPs) with bovine serum albumin (BSA) was examined systematically by using fluorescence, UV–visible, circular dichroism (CD), Fourier transform infrared (FTIR), dynamic light scattering (DLS) and molecular modelling techniques. Electrochemical method was studied to further confirm the interaction of BSA with CuS NPs. The results of fluorescence studies demonstrated that fluorescence of BSA was quenched by CuS NPs via a static quenching mechanism. The negative values of thermodynamic parameters (ΔG, ΔH and ΔS) indicated that the binding process is spontaneous, exothermic and van der Waals force or hydrogen bonding plays major roles in the interaction of CuS NPs with BSA. The interaction of CuS NPs with Trp residue was established by synchronous studies, and competitive binding studies revealed that Trp-212 of subdomain IIA was involved in the interaction with these nanoparticles. Further, the efficiency of energy transferred and the distance between fluorophore (BSA) and acceptor (CuS NPs) were calculated using Forster’s resonance energy transfer theory. The results of UV–visible, CD, FTIR and DLS revealed that the CuS NPs interact with BSA by inducing the conformational changes in secondary structure and reducing the α-helix content of BSA. Molecular modelling studies suggested that CuS NPs bind to site I of sub domain IIA of BSA. The results of spectroscopic and molecular docking studies were complimented by the electrochemical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Chithaiah PG, Vijayakumar G, Nagabhushana GP, Nagaraju G, Chandrappa GT (2014) Physica E 59:218–222

    Article  Google Scholar 

  2. Chithaiah P, Chandrappa GT, Livage JP (2012) Inorg Chem 51:2241–2246

    Article  Google Scholar 

  3. Guan J, Peng J, Jin X (2015) Anal Methods 7:5454–5461

    Article  Google Scholar 

  4. Yuan DP, Huang GP, Zhang FP, Yin D, Wang L (2016) Electrochim Acta 203:238–245

    Article  Google Scholar 

  5. Maji SK, Dutta AK, Bhadu GR, Paul P, Mondal A, Adhikary B (2013) J Mater Chem B 1:4127–4134

    Article  Google Scholar 

  6. Radhakrishnan S, Kim HY, Kim B (2016) s. Sens Actu B 233:93–99

    Article  Google Scholar 

  7. Cai L, Sun Y, Li W, Zhang W, Liu X, Dinga D, Xua N (2015) RSC Adv 5:98136–98143

    Article  Google Scholar 

  8. Lu Y, Liu X, Wang W, Cheng J, Yan H, Tang C, Kim JK, Luo Y (2015) Sci Rep 5:16584-1-10

    Google Scholar 

  9. Tian Q, Jiang F, Zou R, Liu Q, Chen Z, Zhu M, Yang S, Wang J, Hu J (2011) ACS Nano 5:9761–9771

    Article  Google Scholar 

  10. Li Y, Lu W, Huang Q, Huang M, Li C, Chen W (2010) Nanomedicine 5:1161–1171

    Article  Google Scholar 

  11. Tian Q, Tang M, Sun Y, Zou R, Chen Z, Zhu M, Yang S, Wang J, Wang J, Hu J (2011) Adv Mater 23:3542–3547

    Article  Google Scholar 

  12. Guo L, Yan DD, Yang D, Li Y, Wang X, Zalewski O, Yan B, Lu W (2014) ACS Nano 8:5670–5681

    Article  Google Scholar 

  13. Ghosh S, Dey J (2015) J Phys Chem B 119:7804–7815

    Article  Google Scholar 

  14. Ju P, Fan H, Liu T, Cui L, Ai SWu, Wu X (2011) Biol Trans Elem Res 144:1405–1418

    Article  Google Scholar 

  15. Ju P, Fan H, Liu T, Cui L, Ai S (2011) J Luminesc 131:1724–1730

    Article  Google Scholar 

  16. Weser JK, Seller ED (1976) New Eng J Med 294:311–316

    Article  Google Scholar 

  17. Lynch I, Dawson KA (2008) Nanotoday 3:41–47

    Article  Google Scholar 

  18. Esfandfar P, Falahati M, Saboury AA (2016) J Biomol Struct Dyn 34:1962–1968

    Article  Google Scholar 

  19. Zhang C, Fu YY, Zhang X, Yu C, Zhaoc Y, Sun SK (2015) Dalton Trans 44:13112–13118

    Article  Google Scholar 

  20. Han L, Zhang Y, Chen XW, Shu Y, Wang JH (2016) J Mater Chem B 4:105–112

    Article  Google Scholar 

  21. Mallappa M, Shivaraj Y, Nagaraju K, Vusa CSR (2016) Sens Actuators, A 248:104–113

    Article  Google Scholar 

  22. Ishtikhara M, Alib MS, Attab AM, Al-Lohedanb H, Badrc G, Khana RH (2016) Int J Biol Macromol 82:844–855

    Article  Google Scholar 

  23. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605–1612

    Article  Google Scholar 

  24. Trott Oleg, Olson Arthur J, Vina AutoDock (2010) Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    Google Scholar 

  25. Krishna RH, Nagabhushana BM, Nagabhushana H, Murthy NS, Sharma SC, Shivakumara C, Chakradhar RPS (2013) J Phys Chem C 117:1915–1924

    Article  Google Scholar 

  26. Jalali F, Dorraji PS, Mahdiuni H (2014) J Luminesc 148:347–352

    Article  Google Scholar 

  27. Shahabadi N, Maghsudi M, Rouhani S (2012) Food Chem 135:1836–1841

    Article  Google Scholar 

  28. Kathiravan A, Paramaguru G, Renganathan R (2009) J Mol Struct 934:129–137

    Article  Google Scholar 

  29. Zaidi N, Ahmad E, Rehan M, Rabbani G, Ajmal MR, Zaidi Y, Subbarao N, Khan RH (2013) J Phys Chem B 117:2595–2604

    Article  Google Scholar 

  30. Khan AB, Khan JM, Ali MS, Khan RH, Din K (2012) Spectrochim. Acta A Mol Biomol. Spectrosc 97:119–124

    Google Scholar 

  31. Mariam J, Dongre PM, Kothari DC (2011) J Fluoresc 21:2193–2199

    Article  Google Scholar 

  32. Ross PD, Subramanian S (1981) Biochemistry 20:3096–3102

    Article  Google Scholar 

  33. Lloyd JBF, Evett IW (1977) Anal Chem 49:1710–1715

    Article  Google Scholar 

  34. Shen GF, Liu TT, Wang Q, Jiang M, Shi JH (2015) J Photochem Photobiol B Biol 153:380–390

    Article  Google Scholar 

  35. Sudlow G, Birkett DJ, Wade DN (1976) Mol Pharmacol 12:1052–1061

    Google Scholar 

  36. Iranfar H, Rajabi O, Salari R, Chamani J (2012) J Phys Chem B 116:1951–1964

    Article  Google Scholar 

  37. Forster T (1948) Ann Phys 2:55–75

    Article  Google Scholar 

  38. Jattinagoudar L, Meti M, Nandibewoor S, Chimatadar S (2016) Spectrochim Acta A Mole Biomol Spectrosc 156:164–171

    Article  Google Scholar 

  39. Chatterjee S, Mukherjee TK (2014) Phys Chem Chem Phys 16:8400–8408

    Article  Google Scholar 

  40. Rashidipour S, Naeeminejad S, Chamani J (2016) J Biomol Struct Dyn 34:57–77

    Article  Google Scholar 

  41. Huanga S, Qiua H, Liub Y, Huanga C, Shenga J, Sua W (2015) Col Sur B Biointer 136:955–962

    Article  Google Scholar 

  42. Chaturvedi SK, Ahmad E, Khan JM, Alam P, Ishtikhar M, Khan RH (2015) Mol BioSyst 11:307–316

    Article  Google Scholar 

  43. Ahmad F, Zhou Y, Ling Z, Xianga Q, Zhouc X (2016) RSC Adv 6:35719–35730

    Article  Google Scholar 

  44. Lian GQ, Ran L, Lei JF, Cheng TJ, Wei LL, Yi L (2009) Acta Phys Chim Sin 25:2147–2154

    Google Scholar 

  45. Wang J, Xiang C, Tian FF, Xu ZQ, Jiang FL, Liu Y (2014) RSC Adv 4:18205–18216

    Article  Google Scholar 

  46. Zhang J, Li R, Jiang FL, Zhou B, Luo QY, Yu QLY, Han XL, Lin Y, He H, Liu Y, Wang YL (2014) Col Sur B Biointer 117:68–74

    Article  Google Scholar 

  47. Huang S, Zhu F, Xiao Q, Liang Y, Zhou Q, Su W (2015) RSC Adv 5:42889–42902

    Article  Google Scholar 

  48. Li DL, Zou XQ, Shen Q, Dong S (2007) J. Electrochem Commun 9:191–196

    Article  Google Scholar 

Download references

Acknowledgements

Shivaraj Yellappa acknowledge the Raman Fellowship received from University Grants Commission [F. No. 5-120/2016(IC)], India, Prof. Raghavan Varadarajan, Department of Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, to provide a circular dichroism spectrophotometer instrument facility and Prof. Francis D’souza, Department of Chemistry, University of North Texas, USA for technical discussion. Thanks to Mr. Sandeep, Application specialist, Malvern-Aimil application centre for assisting the DLS studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivaraj Yellappa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1.98 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahanthappa, M., Savanur, M.A., Puthusseri, B. et al. Spectroscopic and electrochemical studies on the molecular interaction between copper sulphide nanoparticles and bovine serum albumin. J Mater Sci 53, 202–214 (2018). https://doi.org/10.1007/s10853-017-1521-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1521-8

Keywords

Navigation