Skip to main content

Advertisement

Log in

Study on the Interaction Between \({\mathrm{Cu}}{\left( {{\mathrm{phen}}} \right)}^{{2 + }}_{3} \) and Bovine Serum Albumin by Spectroscopic Methods

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In this work, the interaction between \({\text{Cu}}\left( {{\text{phen}}} \right)_3^{\,\,2 + } \) and bovine serum albumin (BSA) was investigated by fluorescence spectroscopy combined with UV–vis absorption and circular dichroism (CD) spectroscopic techniques under physiological conditions. The fluorescence data proved that the fluorescence quenching of BSA by \({\text{Cu}}\left( {{\text{phen}}} \right)_3^{\,\,2 + } \) was the result of the \({\text{Cu}}\left( {{\text{phen}}} \right)_3^{\,\,2 + } - {\text{BSA}}\) complex formation. The binding constants (K a) between \({\text{Cu}}\left( {{\text{phen}}} \right)_3^{\,\,2 + } \) and BSA at four different temperatures were calculated according to the modified Stern–Volmer equation. The enthalpy change (ΔH) and entropy change (ΔS) were calculated to be 10.74 kJ mol-1 and 54.35 J mol-1 K-1, respectively, which indicated that electrostatic interactions played a major role in the formation of \({\text{Cu}}\left( {{\text{phen}}} \right)_3^{\,\,2 + } - {\text{BSA}}\) complex. The distance r between the donor (BSA) and acceptor\(\left[ {{\text{Cu}}\left( {{\text{phen}}} \right)_3^{\,\,2 + } } \right]\) was obtained to be 3.55 nm based on Förster’s energy transfer theory. The synchronous fluorescence and CD spectroscopy results showed that the polarity of the residues increased and the lost of the α-helix content of BSA (from 59.84 to 53.70%). These indicated that the microenvironment and conformation of BSA were changed in the presence of \({\text{Cu}}\left( {{\text{phen}}} \right)_3^{\,\,2 + } \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chatterjee S, Srivastava TS (2000) Spectral investigations of the interaction of some porphyrins with bovine serum albumin. J Porphyr Phthalocyanines 4:147–157

    Article  CAS  Google Scholar 

  2. Su Kowska A, Rownicka J, Bojko B, Su Kowski W (2003) Interaction of anticancer drugs with human and serum albumin. J Mol Struct 651–653:133–140

    Article  CAS  Google Scholar 

  3. Li Y, He WY, Liu JQ (2005) Binding of the bioactive component jatrorrhizine to human serum albumin. Biochim Biophys Acta 1722:15–21

    PubMed  CAS  Google Scholar 

  4. Wang YQ, Zhang HM, Zhang GC, Tao WH, Fei ZH (2007) Spectroscopic studies on the interaction between silicotungstic acid and bovine serum albumin. J Pharm Biomed Anal 43:1869–1875

    Article  PubMed  CAS  Google Scholar 

  5. Guharay J, Sengupta B, Sengupta PK (2001) Protein–flavonol interaction: fluorescence spectroscopic study. Proteins 43:75–81

    Article  PubMed  CAS  Google Scholar 

  6. Zolese G, Falcioni G, Bertoli E (2000) Steady-state and time resolved fluorescence of albumins interacting with N-oleylethanolamine, a component of the endogenous N-acylethanolamines. Proteins 40:39–48

    Article  PubMed  CAS  Google Scholar 

  7. Gelamo EL, Tabak M (2000) Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants. Spectrochim Acta Part A Mol Biomol Spectrosc 56:2255–2271

    Article  Google Scholar 

  8. Linder MC (2001) Copper and genomic stability in mammals. Mutat Res 475:141–152

    PubMed  CAS  Google Scholar 

  9. Majella G, Vivienne S, Malachy M, Micheal D, Vickie, M (1999) Synthesis and anti-candida activity of copper(II) and manganese(II) carboxylate complexes X-ray crystal structures of [Cu(sal)(bipy)]-C2H5OH-H2O and [Cu(norb)(phen)]-6.5H2O (salH2 =  salicylic acid; norbH2 =  cis-5-norbornene-endo-2,3-dicarboxylic acid; bipy = 2,2′-bipyridine; phen = 1,10-phenanthroline). Polyhedron 18:2931–2939

    Article  Google Scholar 

  10. Saha DK, Sandbhor U, Shirisha K, Padhye S, Deobagkar D, Anson CE, Powell, AK (2004) A novel mixed-ligand antimycobacterial dimeric copper complex of ciprofloxacin and phenanthroline. Bioorg Med Chem Lett 14:3027–3032

    Article  PubMed  CAS  Google Scholar 

  11. Tümer M, Köksal H, Serin S (1999) Antimicrobial activity studies of the binuclear metal complexes derived from tridentate schiff base ligands. Trans Met Chem 24:414–420

    Article  Google Scholar 

  12. Sigman DS, Perrin DM (1993) Chemical nucleases. Chem Rev 93:2295–2316

    Article  CAS  Google Scholar 

  13. Pfau J, Arvidson DN, Youderian P, Pearson LL, Sigman DS (1994) A site-specific endonuclease derived from a mutant trp repressor with altered DNA-binding specificity. Biochemistry 33:11391–11403

    Article  PubMed  CAS  Google Scholar 

  14. Dhar S, Senapati D, Das PK, Chattopadhyay P, Nethaji M, Chakravarty AR (2003) Ternary copper complexes for photocleavage of DNA by red light: direct evidence for sulfur-to-copper charge transfer and d-d band involvement. J Am Chem Soc 125:12118–12124

    Article  PubMed  CAS  Google Scholar 

  15. Ni YN, Lin DQ, Kokot S (2006) Synchronous fluorescence, UV–visible spectrophotometric, and voltammetric studies of the competitive interaction of bis(1,10-phenanthroline)copper(II) complex and neutral red with DNA. Anal Biochem 352:231–242

    Article  PubMed  CAS  Google Scholar 

  16. Dhar S, Nethaji M, Chakravarty AR (2005) Synthesis, crystal structure and photo-induced DNA cleavage activity of ternary copper (II) complexes of NSO-donor schiff bases and NN-donor heterocyclic ligands. Inorg Chim Acta 358:2437–2444

    Article  CAS  Google Scholar 

  17. Inskeep RG (1962) The spectra of the tris complexes of 1,10-Phenanthroline and 2,2-bipyridine with the transition metals iron(II) through zinc(II). J Inorg Nucl Chem 24:763–776

    Article  Google Scholar 

  18. Hu YJ, Liu Y, Pi ZB, Qu SS (2005) Interaction of cromolyn sodium with human serum albumin: a fluorescence quenching study. Bioorg Med Chem 13:6609–6614

    Article  PubMed  CAS  Google Scholar 

  19. Mallick A, Maity S, Haldar B, Purkayastha P, Chattopadhyay N (2003) Photophysics of 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolozine: emission from two states. Chem Phys Lett 371:688–693

    Article  CAS  Google Scholar 

  20. Lakowicz JR (1999) In: Principles of fluorescence spectroscopy, 2nd edn. Plenum, New York, Chapter 8, pp 237–265

  21. Lehrer SS (1971) The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10:3254–3263

    Article  PubMed  CAS  Google Scholar 

  22. Ross PD, Subramanian S (1981) Thermodynamic of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102

    Article  PubMed  CAS  Google Scholar 

  23. Ma CQ, Li KA, Zhao FL, Tong SY (1999) A study on the reaction mechanism between chrome-azurol S and bovine serum albumin. Acta Chimi Sin 57:389–395

    CAS  Google Scholar 

  24. Föster T (1965) Delocalized excitation and excitation transfer. In: Sinanoglu O (ed) Modern quantum chemistry, vol. 3. Academic, New York, pp 93–137

    Google Scholar 

  25. Föster T (1948) Intermolecular energy migration and fluorescence. Ann Phys 2:55–75

    Article  Google Scholar 

  26. Hu YJ, Liu Y, Wang JB (2004) Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin. J Pharm Biomed Anal 36:915–919

    Article  PubMed  CAS  Google Scholar 

  27. Cyril L, Earl JK, Sperry WM (1961) In: Biochemists’ handbook, E. & F.N. Spon, London, p 84

  28. Valeur B (2001) Molecular fluorescence: principles and application. Wiley, New York, pp 250–257

    Google Scholar 

  29. Hu YJ, Liu Y, Sun TQ, Bai AM, Lu JQ (2006) Binding of anti-inflammatory drug cromolyn sodium to bovine serum albumin. Int J Biol Macromol 39:280–285

    Article  PubMed  CAS  Google Scholar 

  30. Miller JN (1979) Recent advances in molecular luminescence analysis. Proc Anal Div Chem Soc 16:203–209

    CAS  Google Scholar 

  31. B, Bryszewska M (2002) Fluorescence studies on PAMAM dendrimers interactions with bovine serum albumin. Bioelectrochemistry 55:33–35

    Article  PubMed  CAS  Google Scholar 

  32. Kamat BP, Seetharamappa J (2004) In vitro study on the interaction of mechanism of tricyclic compounds with bovine serum albumin. J Pharm Biomed Anal 35:655–664

    Article  PubMed  CAS  Google Scholar 

  33. Tian JN, Liu JQ, Hu ZD, Chen XG (2005) Interaction of wogonin with bovine serum albumin. Bioorg Med Chem 13:4124–4129

    Article  PubMed  CAS  Google Scholar 

  34. Cui FL, Fan J, Li JP, Hu ZD (2004) nteractions between 1-benzoyl-4-p-chlorophenyl thiosemicarbazide and serum albumin: investigation by fluorescence spectroscopy. Bioorg Med Chem 12:151–157

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the financial support of National Natural Science Foundation of China (Grant No. 30570015, 20621502), Natural Science Foundation of Hubei Province (2005ABC002), and Research Foundation of Chinese Ministry of Education ([2006]8-IRT0543).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, YZ., Zhang, XP., Hou, HN. et al. Study on the Interaction Between \({\mathrm{Cu}}{\left( {{\mathrm{phen}}} \right)}^{{2 + }}_{3} \) and Bovine Serum Albumin by Spectroscopic Methods. Biol Trace Elem Res 121, 276–287 (2008). https://doi.org/10.1007/s12011-007-8045-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-8045-z

Keywords

Navigation