Skip to main content

Advertisement

Log in

Microbial Fuel Cell–Based Biosensors and Applications

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The sustainable development of human society in today’s high-tech world depends on some form of eco-friendly energy source because existing technologies cannot keep up with the rapid population expansion and the vast amounts of wastewater that result from human activity. A green technology called a microbial fuel cell (MFC) focuses on using biodegradable trash as a substrate to harness the power of bacteria to produce bioenergy. Production of bioenergy and wastewater treatment are the two main uses of MFC. MFCs have also been used in biosensors, water desalination, polluted soil remediation, and the manufacture of chemicals like methane and formate. MFC-based biosensors have gained a lot of attention in the last few decades due to their straightforward operating principle and long-term viability, with a wide range of applications including bioenergy production, treatment of industrial and domestic wastewater, biological oxygen demand, toxicity detection, microbial activity detection, and air quality monitoring, etc. This review focuses on several MFC types and their functions, including the detection of microbial activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

DO :

Dissolved oxygen

BOD :

Biochemical oxygen demand

COD :

Chemical oxygen demand

AG :

Activated graphite

CB :

Carbon brush

CC :

Carbon cloth

CF :

Carbon fiber

CP :

Carbon paper

CR :

Carbon rod

GF :

Graphite felt

GG :

Graphite gravel

GP :

Graphite plate

GR :

Graphite rod

SPEEK :

Sulfonated poly ether ketone

AC :

Activated carbon

SCE :

Saturated calomel electrode

Pt. :

Platinum

TWWM :

Titanium woven wire mesh

ENIG :

Electro less nickel immersion gold

AEM :

Anion exchange membrane

CEM :

Cation exchange membrane

PEM :

Proton exchange membrane

PF :

Porous filter

SDS :

Sodium dodecyl sulfate

VFA :

Volatile fatty acids

MMFCs :

Microfluidic microbial fuel cells

SAV :

Surface area-to-volume

PDMS :

Polydimethylsiloxane

PTFE :

Polytetrafluoroethylene

GAL :

-D-galactosidase

GUS :

B-d-glucuronidase

References

  1. Abbas, S. Z., Wang, J.-Y., Wang, H., Wang, J.-X., Wang, Y.-T., & Yong, Y.-C. (2022). Recent advances in soil microbial fuel cells based self-powered biosensor. Chemosphere, 303, 135036. https://doi.org/10.1016/j.chemosphere.2022.135036

    Article  CAS  PubMed  Google Scholar 

  2. Ahmed, S. F., Mofijur, M., Islam, N., Parisa, T. A., Rafa, N., Bokhari, A., et al. (2022). Insights into the development of microbial fuel cells for generating biohydrogen, bioelectricity, and treating wastewater. Energy, 254, 124163. https://doi.org/10.1016/j.energy.2022.124163

    Article  CAS  Google Scholar 

  3. Apollon, W., Luna-Maldonado, A. I., Vidales-Contreras, J. A., Rodríguez-Fuentes, H., Gómez-Leyva, J. F., & Kamaraj, S.-K. (2022). Application of microbial fuel cells and other bioelectrochemical systems: A comparative study. Microbial Fuel Cells: Emerging Trends in Electrochemical Applications. https://doi.org/10.1088/978-0-7503-4791-4ch14

    Article  Google Scholar 

  4. Dwivedi, K. A., Huang, S.-J., Wang, C.-T., & Kumar, S. (2022). Fundamental understanding of microbial fuel cell technology: recent development and challenges. Chemosphere, 288, 132446. https://doi.org/10.1016/j.chemosphere.2021.132446

    Article  CAS  PubMed  Google Scholar 

  5. Imoro, A. Z., Acheampong, N. A., Oware, S., Okrah, H., Coulibaly, V. T., Ali, A. G., et al. (2022). The potential benefits of microbial fuel cells in the context of the sustainable development goals. In: Ahmad, A., Mohamad Ibrahim, M. N., Yaqoob, A. A., Mohd Setapar, S. H., (Eds.), Microbial fuel cells for environmental remediation (pp. 167–82). Springer Nature. https://doi.org/10.1007/978-981-19-2681-5_9.

  6. Massaglia, G., & Quaglio, M. (2022). 3D composite PDMS/MWCNTs aerogel as high-performing anodes in microbial fuel cells. Nanomaterials, 12, 4335. https://doi.org/10.3390/nano12234335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prathiba, S., Kumar, P. S., & Vo, D.-V.N. (2022). Recent advancements in microbial fuel cells: a review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment. Chemosphere, 286, 131856. https://doi.org/10.1016/j.chemosphere.2021.131856

    Article  CAS  PubMed  Google Scholar 

  8. Suganya, P., Divya Navamani, J., Lavanya, A., Mrinal, R. (2022). Design and development of microbial fuel cells based low power energy harvesting mechanism for ecological monitoring and farming of agricultural applications. Journal of Circuits, Systems and Computers 2350112. https://doi.org/10.1142/S0218126623501128

  9. Touqeer, T., Miran, W., Mumtaz, M. W., Mukhtar, H. (2022). Design and configuration of microbial fuel cells. In: Ahmad, A., Mohamad Ibrahim, M. N., Yaqoob, A. A., Mohd Setapar, S. H (Eds), Microbial fuel cells for environmental remediation (pp. 25–39). Springer Nature. https://doi.org/10.1007/978-981-19-2681-5_3

  10. Dharmalingam, S., Kugarajah, V., Elumalai, V. (2022). Chapter 2 - Proton exchange membrane for microbial fuel cells. In: Kaur, G (Ed), PEM Fuel Cells (pp. 25–53). Elsevier. https://doi.org/10.1016/B978-0-12-823708-3.00011-0

  11. Mahmoud, R. H., Gomaa, O. M., & Hassan, R. Y. A. (2022). Bio-electrochemical frameworks governing microbial fuel cell performance: technical bottlenecks and proposed solutions. RSC Advances, 12, 5749–64. https://doi.org/10.1039/D1RA08487A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, S., Zhao, Z., Li, B., Wei, T., Jiang, H., & Yan, Z. (2022). Supercapacitors accumulating energy harvesting from stacked sediment microbial fuel cells and boosting input power for power management systems. International Journal of Hydrogen Energy, 47, 10689–10700. https://doi.org/10.1016/j.ijhydene.2021.11.081

    Article  CAS  Google Scholar 

  13. Ma, J., Zhang, J., Zhang, Y., Guo, Q., Hu, T., Xiao, H., et al. (2023). Progress on anodic modification materials and future development directions in microbial fuel cells. Journal of Power Sources., 556, 232486. https://doi.org/10.1016/j.jpowsour.2022.232486

    Article  CAS  Google Scholar 

  14. Shabangu, K. P., Bakare, B. F., & Bwapwa, J. K. (2022). Microbial fuel cells for electrical energy: Outlook on scaling-up and application possibilities towards South African energy grid. Sustainability, 14, 14268. https://doi.org/10.3390/su142114268

    Article  CAS  Google Scholar 

  15. Nishaa, V., Spoorthi, B. V., Soumya, T. B., Meda, U. S., & Desai, V. S. (2022). Powering implantable medical devices with biological fuel cells. ECS Transactions, 107, 19197. https://doi.org/10.1149/10701.19197ecst

    Article  Google Scholar 

  16. Žalnėravičius, R., Paškevičius, A., Samukaitė-Bubnienė, U., Ramanavičius, S., Vilkienė, M., Mockevičienė, I., et al. (2022). Microbial fuel cell based on nitrogen-fixing Rhizobium anhuiense bacteria. Biosensors, 12, 113. https://doi.org/10.3390/bios12020113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coy-Aceves, L. E., & Corona-Vasquez, B. (2022). Bibliometric analysis of artificial intelligence algorithms used for microbial fuel cell research. Water Practice and Technology, 17, 2071–2082. https://doi.org/10.2166/wpt.2022.116

    Article  Google Scholar 

  18. Dwivedi, K. A., Huang, S.-J., & Wang, C.-T. (2022). Integration of various technology-based approaches for enhancing the performance of microbial fuel cell technology: a review. Chemosphere., 287, 132248. https://doi.org/10.1016/j.chemosphere.2021.132248

    Article  CAS  PubMed  Google Scholar 

  19. Kolajo, O. O., Pandit, C., Thapa, B. S., Pandit, S., Mathuriya, A. S., Gupta, P. K., et al. (2022). Impact of cathode biofouling in microbial fuel cells and mitigation techniques. Biocatalysis and Agricultural Biotechnology, 43, 102408. https://doi.org/10.1016/j.bcab.2022.102408

    Article  CAS  Google Scholar 

  20. Moqsud, M. A. (2022). Introduction to microbial fuel cell technology. Microbial Fuel Cells: Emerging Trends in Electrochemical Applications. https://doi.org/10.1088/978-0-7503-4791-4ch1

    Article  Google Scholar 

  21. Ren, Z., Ji, G., Liu, H., Yang, M., Xu, S., Ye, M., et al. (2022). Accelerated start-up and improved performance of wastewater microbial fuel cells in four circuit modes: role of anodic potential. Journal of Power Sources, 535, 231403. https://doi.org/10.1016/j.jpowsour.2022.231403

    Article  CAS  Google Scholar 

  22. ul Haque, S., Nasar, A., Duteanu, N., Pandey, S., Inamuddin. (2023). Carbon based-nanomaterials used in biofuel cells – a review. Fuel, 331:125634. https://doi.org/10.1016/j.fuel.2022.125634

  23. ul Haque S, Yasir M, Cosnier S. Recent advancements in the field of flexible/wearable enzyme fuel cells. Biosensors and Bioelectronics 2022;214:114545. https://doi.org/10.1016/j.bios.2022.114545.

  24. Wang, J., He, N., Fei, J., Ma, Z., Ji, Z., Chen, Z., et al. (2022). Flexible and wearable fuel cells: a review of configurations and applications. Journal of Power Sources, 551, 232190. https://doi.org/10.1016/j.jpowsour.2022.232190

    Article  CAS  Google Scholar 

  25. You, J., Gajda, I., Greenman, J., & Ieropoulos, I. A. (2022). Integration of cost-efficient carbon electrodes into the development of microbial fuel cells. In F. Borghi, F. Soavi, & P. Milani (Eds.), Nanoporous carbons for soft and flexible energy devices (pp. 43–57). Springer International Publishing. https://doi.org/10.1007/978-3-030-81827-2_3

    Chapter  Google Scholar 

  26. Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I. A., & Lin, Y. (2010). Graphene based electrochemical sensors and biosensors: A review. Electroanalysis, 22, 1027–1036. https://doi.org/10.1002/elan.200900571

    Article  CAS  Google Scholar 

  27. Chen, Z., Niu, Y., Zhao, S., Khan, A., Ling, Z., Chen, Y., et al. (2016). A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell. Biosensors & Bioelectronics, 85, 860–868. https://doi.org/10.1016/j.bios.2016.06.007

    Article  CAS  Google Scholar 

  28. Biofuel cell based on bacteria of the genus - ProQuest n.d. https://www.proquest.com/docview/2158431855 (Accessed 4 Mar 2022).

  29. Yang, G.-X., Sun, Y.-M., Kong, X.-Y., Zhen, F., Li, Y., Li, L.-H., et al. (2013). Factors affecting the performance of a single-chamber microbial fuel cell-type biological oxygen demand sensor. Water Science and Technology, 68, 1914–1919. https://doi.org/10.2166/wst.2013.415

    Article  CAS  PubMed  Google Scholar 

  30. Chang, I. S., Jang, J. K., Gil, G. C., Kim, M., Kim, H. J., Cho, B. W., et al. (2004). Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosensors & Bioelectronics, 19, 607–613. https://doi.org/10.1016/s0956-5663(03)00272-0

    Article  CAS  Google Scholar 

  31. Ayyaru, S., & Dharmalingam, S. (2014). Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor. Analytica Chimica Acta, 818, 15–22. https://doi.org/10.1016/j.aca.2014.01.059

    Article  CAS  PubMed  Google Scholar 

  32. Modin, O., & Wilén, B.-M. (2012). A novel bioelectrochemical BOD sensor operating with voltage input. Water Research, 46, 6113–6120. https://doi.org/10.1016/j.watres.2012.08.042

    Article  CAS  PubMed  Google Scholar 

  33. Pasternak, G., Greenman, J., & Ieropoulos, I. (2017). Self-powered, autonomous biological oxygen demand biosensor for online water quality monitoring. Sensors and Actuators B: Chemical, 244, 815–822. https://doi.org/10.1016/j.snb.2017.01.019

    Article  CAS  PubMed  Google Scholar 

  34. Di Lorenzo, M., Thomson, A. R., Schneider, K., Cameron, P. J., & Ieropoulos, I. (2014). A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality. Biosensors & Bioelectronics, 62, 182–188. https://doi.org/10.1016/j.bios.2014.06.050

    Article  CAS  Google Scholar 

  35. Xu, L., Zhao, Y., Fan, C., Fan, Z., & Zhao, F. (2017). First study to explore the feasibility of applying microbial fuel cells into constructed wetlands for COD monitoring. Bioresource Technology, 243, 846–854. https://doi.org/10.1016/j.biortech.2017.06.179

    Article  CAS  PubMed  Google Scholar 

  36. Kretzschmar, J., Koch, C., Liebetrau, J., Mertig, M., Harnisch, F. (2016). Electroactive biofilms as sensor for volatile fatty acids: cross sensitivity, response dynamics, latency and stability. Sensors and Actuators B: Chemical, 241. https://doi.org/10.1016/j.snb.2016.10.097

  37. Jin, X., Li, X., Zhao, N., Angelidaki, I., & Zhang, Y. (2017). Bio-electrolytic sensor for rapid monitoring of volatile fatty acids in anaerobic digestion process. Water Research, 111, 74–80. https://doi.org/10.1016/j.watres.2016.12.045

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, Y., & Angelidaki, I. (2012). A simple and rapid method for monitoring dissolved oxygen in water with a submersible microbial fuel cell (SBMFC). Biosensors & Bioelectronics, 38, 189–194. https://doi.org/10.1016/j.bios.2012.05.032

    Article  CAS  Google Scholar 

  39. Song, N., Yan, Z., Xu, H., Yao, Z., Wang, C., Chen, M., et al. (2019). Development of a sediment microbial fuel cell-based biosensor for simultaneous online monitoring of dissolved oxygen concentrations along various depths in lake water. Science of the Total Environment, 673, 272–280. https://doi.org/10.1016/j.scitotenv.2019.04.032

    Article  CAS  PubMed  Google Scholar 

  40. Zhou, T., Han, H., Liu, P., Xiong, J., Tian, F., & Li, X. (2017). Microbial fuels cell-based biosensor for toxicity detection: A review. Sensors (Basel), 17, 2230. https://doi.org/10.3390/s17102230

    Article  CAS  PubMed  Google Scholar 

  41. Kim, M., Sik Hyun, M., Gadd, G. M., & Joo, K. H. (2007). A novel biomonitoring system using microbial fuel cells. Journal of Environmental Monitoring, 9, 1323–1328. https://doi.org/10.1039/b713114c

    Article  CAS  PubMed  Google Scholar 

  42. (PDF) Microbial Fuel Cell-Based Biosensors n.d. https://www.researchgate.net/publication/334653412_Microbial_Fuel_Cell-Based_Biosensors (Accessed 4 Mar 2022).

  43. Schneider, G., Czeller, M., Rostás, V., & Kovács, T. (2015). Microbial fuel cell-based diagnostic platform to reveal antibacterial effect of beta-lactam antibiotics. Enyzme and Microbial Technology, 73–74, 59–64. https://doi.org/10.1016/j.enzmictec.2015.04.004

    Article  CAS  Google Scholar 

  44. Jiang, Y., Liang, P., Liu, P., Wang, D., Miao, B., & Huang, X. (2017). A novel microbial fuel cell sensor with biocathode sensing element. Biosensors & Bioelectronics, 94, 344–350. https://doi.org/10.1016/j.bios.2017.02.052

    Article  CAS  Google Scholar 

  45. Zhang, Y., & Angelidaki, I. (2011). Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: Focusing on impact of anodic biofilm on sensor applicability. Biotechnology and Bioengineering, 108, 2339–2347. https://doi.org/10.1002/bit.23204

    Article  CAS  PubMed  Google Scholar 

  46. Schmidt-Rohr, K. (2020). Oxygen is the high-energy molecule powering complex multicellular life: Fundamental corrections to traditional bioenergetics. ACS Omega, 5, 2221–2233. https://doi.org/10.1021/acsomega.9b03352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rewatkar, P., & Goel, S. (2020). 3D printed bioelectrodes for enzymatic biofuel cell: Simple, rapid, optimized and enhanced approach. IEEE Transactions on Nanobioscience, 19, 4–10. https://doi.org/10.1109/TNB.2019.2941196

    Article  PubMed  Google Scholar 

  48. Khaled, F., Ondel, O., & Allard, B. (2016). Microbial fuel cells as power supply of a low-power temperature sensor. Journal of Power Sources, 306, 354–360. https://doi.org/10.1016/j.jpowsour.2015.12.040

    Article  CAS  Google Scholar 

  49. Singh, A., & Yakhmi, J. (2014). Microbial fuel cells – applications for generation of electrical power and beyond. Critical Reviews in Microbiology, 42, 1–17. https://doi.org/10.3109/1040841X.2014.905513

    Article  CAS  Google Scholar 

  50. Water quality monitoring in developing countries; can microbial fuel cells be the answer? - PubMed n.d. https://pubmed.ncbi.nlm.nih.gov/26193327/ (Accessed 9 Mar 2022)

  51. Elmekawy, A., Sandipam, S., Vanbroekhoven, K., De Wever, H., & Pant, D. (2014). Bioelectro-catalytic valorization of dark fermentation effluents by acetate oxidizing bacteria in bioelectrochemical system (BES). Journal of Power Sources, 262, 183–191. https://doi.org/10.1016/j.jpowsour.2014.03.111

    Article  CAS  Google Scholar 

  52. Di Lorenzo, M., Curtis, T. P., Head, I. M., & Scott, K. (2009). A single-chamber microbial fuel cell as a biosensor for wastewaters. Water Research, 43, 3145–3154. https://doi.org/10.1016/j.watres.2009.01.005

    Article  CAS  PubMed  Google Scholar 

  53. Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: Novel biotechnology for energy generation. Trends in Biotechnology, 23, 291–298. https://doi.org/10.1016/j.tibtech.2005.04.008

    Article  CAS  PubMed  Google Scholar 

  54. Du, Z., Li, H., & Gu, T. (2007). A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25, 464–482. https://doi.org/10.1016/j.biotechadv.2007.05.004

    Article  CAS  PubMed  Google Scholar 

  55. Perumal, V., & Hashim, U. (2014). Advances in biosensors: Principle, architecture and applications. Journal of Applied Biomedicine, 12, 1–15. https://doi.org/10.1016/j.jab.2013.02.001

    Article  Google Scholar 

  56. Clauwaert, P., Aelterman, P., Pham, T., Schamphelaire, L., Carballa, M., Rabaey, K., et al. (2008). Minimizing losses in bio-electrochemical systems: The road to applications. Applied Microbiology and Biotechnology, 79, 901–913. https://doi.org/10.1007/s00253-008-1522-2

    Article  CAS  PubMed  Google Scholar 

  57. Yaqoob, A. A., Khatoon, A., Mohd Setapar, S. H., Umar, K., Parveen, T., Mohamad Ibrahim, M. N., et al. (2020). Outlook on the role of microbial fuel cells in remediation of environmental pollutants with electricity generation. Catalysts, 10, 819. https://doi.org/10.3390/catal10080819

    Article  CAS  Google Scholar 

  58. Kjeang, E., Djilali, N., & Sinton, D. (2009). Microfluidic fuel cells: A review. Journal of Power Sources, 186, 353–369. https://doi.org/10.1016/j.jpowsour.2008.10.011

    Article  CAS  Google Scholar 

  59. Ho, B., & Kjeang, E. (2011). Microfluidic fuel cell systems. Open. Engineering, 1, 123–131. https://doi.org/10.2478/s13531-011-0012-y

    Article  CAS  Google Scholar 

  60. Safdar, M., Jänis, J., & Sánchez, S. (2016). Microfluidic fuel cells for energy generation. Lab on a Chip, 16, 2754–2758. https://doi.org/10.1039/C6LC90070D

    Article  CAS  PubMed  Google Scholar 

  61. Ren, H., Lee, H. S., & Chae, J. (2012). Miniaturizing microbial fuel cells for potential portable power sources: Promises and challenges. Microfluidics and Nanofluidics, 13, 353–381. https://doi.org/10.1007/s10404-012-0986-7

    Article  CAS  Google Scholar 

  62. Micro- and nanoscale fluid mechanics: transport in microfluidic devices. SiloPub 2018. https://silo.pub/micro-and-nanoscale-fluid-mechanics-transport-in-microfluidic-devices.html (Accessed 9 Mar 2022).

  63. Alrifaiy, A., Lindahl, O. A., & Ramser, K. (2012). Polymer-based microfluidic devices for pharmacy, biology and tissue engineering. Polymers, 4, 1349–1398. https://doi.org/10.3390/polym4031349

    Article  CAS  Google Scholar 

  64. Weibel, D. B., Diluzio, W. R., & Whitesides, G. M. (2007). Microfabrication meets microbiology. Nature Reviews Microbiology, 5, 209–218. https://doi.org/10.1038/nrmicro1616

    Article  CAS  PubMed  Google Scholar 

  65. Xia, Y., & Whitesides, G. M. (1998). Soft lithography. Angewandte Chemie (International Edition in English), 37, 550–575. https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5%3c550::AID-ANIE550%3e3.0.CO;2-G

    Article  CAS  Google Scholar 

  66. Jiang, H., Ali, M. A., Xu, Z., Halverson, L. J., & Dong, L. (2017). Integrated microfluidic flow-through microbial fuel cells. Science and Reports, 7, 41208. https://doi.org/10.1038/srep41208

    Article  CAS  Google Scholar 

  67. Chiao, M., Lam, K. B., & Lin, L. (2006). Micromachined microbial and photosynthetic fuel cells. Journal of Micromechanics and Microengineering, 16, 2547–2553. https://doi.org/10.1088/0960-1317/16/12/005

    Article  CAS  Google Scholar 

  68. Luo, X., Xie, W., Wang, R., Wu, X., Yu, L., & Qiao, Y. (2018). Fast start-up microfluidic microbial fuel cells with serpentine microchannel. Frontiers in Microbiology, 9, 2816. https://doi.org/10.3389/fmicb.2018.02816

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lim, K. G., & Palmore, G. T. R. (2007). Microfluidic biofuel cells: The influence of electrode diffusion layer on performance. Biosensors & Bioelectronics, 22, 941–947. https://doi.org/10.1016/j.bios.2006.04.019

    Article  CAS  Google Scholar 

  70. Wu, R., Ye, D., Chen, R., Zhang, B., Zhu, X., Guo, H. et al. (2019). A membraneless microfluidic fuel cell with continuous multistream flow through cotton threads. International Journal of Energy Research, 44. https://doi.org/10.1002/er.5085

  71. Fraiwan, A., Adusumilli, S. P., Han, D., Steckl, A. J., Call, D. F., Westgate, C. R., et al. (2014). Microbial power-generating capabilities on micro-/nano-structured anodes in micro-sized microbial fuel cells. Fuel Cells, 14, 801–809. https://doi.org/10.1002/fuce.201400041

    Article  CAS  Google Scholar 

  72. Amirdehi, M. A., Khodaparastasgarabad, N., Landari, H., Zarabadi, M. P., Miled, A., & Greener, J. (2020). A high performance membraneless microfluidic microbial fuel cell for stable, long-term benchtop operation under strong flow. ChemElectroChem, 7, 2227–2235. https://doi.org/10.1002/celc.202000040

    Article  CAS  Google Scholar 

  73. Saadi, M., Pezard, J., Haddour, N., Erouel, M., Vogel, T., Khirouni, K. (2020). Stainless steel coated with carbon nanofiber/PDMS composite as anodes in microbial fuel cells. Materials Research Express, 7. https://doi.org/10.1088/2053-1591/ab6c99.

  74. Togo, M., Takamura, A., Asai, T., Kaji, H., & Nishizawa, M. (2007). An enzyme-based microfluidic biofuel cell using vitamin K3-mediated glucose oxidation. Electrochimica Acta, 52, 4669–4674. https://doi.org/10.1016/j.electacta.2007.01.067

    Article  CAS  Google Scholar 

  75. Déctor, A., Dector, D., Moreno, A., On-Torres, S., An-Valencia, M., Arriaga, L. G., et al. (2016). Glucose microfluidic fuel cell using air as oxidant. International Journal of Hydrogen Energy, 41, 23394–23400. https://doi.org/10.1016/j.ijhydene.2016.04.238

    Article  CAS  Google Scholar 

  76. Ammam, M., & Fransaer, J. (2012). Glucose/O2 biofuel cell based on enzymes, redox mediators, and multiple-walled carbon nanotubes deposited by AC-electrophoresis then stabilized by electropolymerized polypyrrole. Biotechnology and Bioengineering, 109, 1601–1609. https://doi.org/10.1002/bit.24438

    Article  CAS  PubMed  Google Scholar 

  77. Arjun, A. M., Vimal, M., & Sandhyarani, N. (2019). A hybrid hydrogel separated biofuel cell with a novel enzymatic anode and glucose tolerant cathode. International Journal of Hydrogen Energy, 44, 27056–27066. https://doi.org/10.1016/j.ijhydene.2019.08.131

    Article  CAS  Google Scholar 

  78. Selloum, D., Tingry, S., Techer, V., Renaud, L., Innocent, C., & Zouaoui, A. (2014). Optimized electrode arrangement and activation of bioelectrodes activity by carbon nanoparticles for efficient ethanol microfluidic biofuel cells. Journal of Power Sources, 269, 834–840. https://doi.org/10.1016/j.jpowsour.2014.07.052

    Article  CAS  Google Scholar 

  79. Tang, J., Yan, X., Engelbrekt, C., Ulstrup, J., Magner, E., Xiao, X., et al. (2020). Development of graphene-based enzymatic biofuel cells: a minireview. Bioelectrochemistry., 134, 107537. https://doi.org/10.1016/j.bioelechem.2020.107537

    Article  CAS  PubMed  Google Scholar 

  80. Li, X., Li, D., Zhang, Y., Lv, P., Feng, Q., & Wei, Q. (2020). Encapsulation of enzyme by metal-organic framework for single-enzymatic biofuel cell-based self-powered biosensor. Nano Energy, 68, 104308. https://doi.org/10.1016/j.nanoen.2019.104308

    Article  CAS  Google Scholar 

  81. Desmaële, D., Nguyen-Boisse, T. T., Renaud, L., & Tingry, S. (2016). Integration of cantilevered porous electrodes into microfluidic co-laminar enzymatic biofuel cells: Toward higher enzyme loadings for enhanced performance. Microelectronic Engineering, 165, 23–26. https://doi.org/10.1016/j.mee.2016.08.008

    Article  CAS  Google Scholar 

  82. Escalona-Villalpando, R. A., Reid, R. C., Milton, R. D., Arriaga, L. G., Minteer, S. D., & Ledesma-García, J. (2017). Improving the performance of lactate/oxygen biofuel cells using a microfluidic design. Journal of Power Sources, 342, 546–552. https://doi.org/10.1016/j.jpowsour.2016.12.082

    Article  CAS  Google Scholar 

  83. Pramanik, H., & Rathoure, A. K. (2017). Electrooxidation study of NaBH4 in a membraneless microfluidic fuel cell with air breathing cathode for portable power application. International Journal of Hydrogen Energy, 8, 5340–5350. https://doi.org/10.1016/j.ijhydene.2016.11.143

    Article  CAS  Google Scholar 

  84. Ji, J., Ro, S., & Kwon, Y. (2020). Membraneless biofuel cells using new cathodic catalyst including hemin bonded with amine functionalized carbon nanotube and glucose oxidase sandwiched by poly(dimethyl-diallylammonium chloride). Journal of Industrial and Engineering Chemistry, 87, 242–249. https://doi.org/10.1016/j.jiec.2020.04.010

    Article  CAS  Google Scholar 

  85. Togo, M., Takamura, A., Asai, T., Kaji, H., & Nishizawa, M. (2008). Structural studies of enzyme-based microfluidic biofuel cells. Journal of Power Sources, 178, 53–58. https://doi.org/10.1016/j.jpowsour.2007.12.052

    Article  CAS  Google Scholar 

  86. Siu, C.-P.-B., & Chiao, M. (2009). A microfabricated PDMS microbial fuel cell. Journal of Microelectromechanical Systems, 17, 1329–41. https://doi.org/10.1109/JMEMS.2008.2006816

    Article  CAS  Google Scholar 

  87. Banerjee, R., Jeevan Kumar, P., Mehendale, N., Sevda, S., & Garlapati, V. K. (2019). Intervention of microfluidics in biofuel and bioenergy sectors: technological considerations and future prospects. Renewable and Sustainable Energy Reviews, 101, 548–58. https://doi.org/10.1016/j.rser.2018.11.040

    Article  CAS  Google Scholar 

  88. Kulkarni, T., & Slaughter, G. (2015). Enzymatic glucose biofuel cell and its application. Journal of Biochips & Tissue Chips, 5, 1000111. https://doi.org/10.4172/21530777.1000111

    Article  Google Scholar 

  89. Luz, R. A. S., Pereira, A. R., de Souza, J. C. P., Sales, F. C. P. F., & Crespilho, F. N. (2014). Enzyme biofuel cells: Thermodynamics, kinetics and challenges in applicability. ChemElectroChem, 1, 1751–1777. https://doi.org/10.1002/celc.201402141

    Article  CAS  Google Scholar 

  90. Zebda, A., Innocent, C., Renaud, L., Cretin, M., Pichot, F., Ferrigno. R, et al. (2011). Enzyme-based microfluidic biofuel cell to generate micropower. IntechOpen. https://doi.org/10.5772/17190.

  91. Miyake, T., Oike, M., Yoshino, S., Yatagawa, Y., Haneda, K., & Nishizawa, M. (2010). Automatic, sequential power generation for prolonging the net lifetime of a miniature biofuel cell stack. Lab on a Chip, 10, 2574–2578. https://doi.org/10.1039/C004322B

    Article  CAS  PubMed  Google Scholar 

  92. Zebda, A., Renaud, L., Cretin, M., Innocent, C., Ferrigno, R., & Tingry, S. (2010). Membraneless microchannel glucose biofuel cell with improved electrical performances. Sensors and Actuators B: Chemical, 149, 44–50. https://doi.org/10.1016/j.snb.2010.06.032

    Article  CAS  Google Scholar 

  93. Kim, T., & Han, J.-I. (2013). Fast detection and quantification of Escherichia coli using the base principle of the microbial fuel cell. Journal of Environmental Management, 130, 267–275. https://doi.org/10.1016/j.jenvman.2013.08.051

    Article  CAS  PubMed  Google Scholar 

  94. Patel, A., Mahboubi, A., Horváth, I. S., Taherzadeh, M. J., Rova, U., Christakopoulos, P, et al. (2021). Volatile fatty acids (VFAs) generated by anaerobic digestion serve as feedstock for freshwater and marine oleaginous microorganisms to produce biodiesel and added-value compounds. Frontiers in Microbiology, 12.

  95. Nieto-Taype, M. A., Garcia-Ortega, X., Albiol, J., Montesinos-Seguí, J. L., Valero, F. (2020). Continuous cultivation as a tool toward the rational bioprocess development with Pichia pastoris cell factory. Frontiers in Bioengineering and Biotechnology, 8.

  96. Understanding Graphene Batteries. AZoNanoCom 2016. https://www.azonano.com/article.aspx?ArticleID=4326 (Accessed 10 Mar 2022).

  97. Kaur, A., Ibrahim, S., Pickett, C., Michie, I., Dinsdale, R., Guwy, A., et al. (2014). Anode modification to improve the performance of a microbial fuel cell volatile fatty acid biosensor. Sensors and Actuators B: Chemical, 201, 266–273. https://doi.org/10.1016/j.snb.2014.04.062

    Article  CAS  Google Scholar 

  98. Jiang, Y., Liang, P., Liu, P.-P., Miao, B., Bian, Y., Zhang, H. (2017). Enhancement of the sensitivity of microbial fuel cell sensor by transient-state operation. Environmental Science: Water Research & Technology, 3. https://doi.org/10.1039/C6EW00346J.

  99. Nagel, B., Dellweg, H., & Gierasch, L. M. (1992). Glossary for chemists of terms used in biotechnology (IUPAC Recommendations 1992). Pure and Applied Chemistry, 64, 143–168. https://doi.org/10.1351/pac199264010143

    Article  CAS  Google Scholar 

  100. Karube, I., Matsunaga, T., Mitsuda, S., & Suzuki, S. (1977). Microbial electrode BOD sensors. Biotechnology and Bioengineering, 19, 1535–1547. https://doi.org/10.1002/bit.260191010

    Article  CAS  PubMed  Google Scholar 

  101. Yang, Z., Suzuki, H., Sasaki, S., & Karube, I. (1996). Disposable sensor for biochemical oxygen demand. Applied Microbiology and Biotechnology, 46, 10–14. https://doi.org/10.1007/s002530050776

    Article  CAS  PubMed  Google Scholar 

  102. Tan, T. C., Li, F., Neoh, K. G., & Lee, Y. K. (1992). Microbial membrane-modified dissolved oxygen probe for rapid biochemical oxygen demand measurement. Sensors and Actuators B: Chemical, 8, 167–172. https://doi.org/10.1016/0925-4005(92)80175-W

    Article  CAS  Google Scholar 

  103. Kim, B. H., Chang, I. S., Cheol Gil, G., Park, H. S., & Kim, H. J. (2003). Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnology Letters, 25, 541–545. https://doi.org/10.1023/A:1022891231369

    Article  CAS  PubMed  Google Scholar 

  104. Liu, J., & Mattiasson, B. (2002). Microbial BOD sensors for wastewater analysis. Water Research, 36, 3786–3802. https://doi.org/10.1016/s0043-1354(02)00101-x

    Article  CAS  PubMed  Google Scholar 

  105. Feng, Y., Barr, W., & Harper, W. F. (2013). Neural network processing of microbial fuel cell signals for the identification of chemicals present in water. Journal of Environmental Management, 120, 84–92. https://doi.org/10.1016/j.jenvman.2013.01.018

    Article  CAS  PubMed  Google Scholar 

  106. Melhuish, C., Ieropoulos, I., Greenman, J., & Horsfield, I. (2006). Energetically autonomous robots: Food for thought. Autonomous Robots, 21, 187–198. https://doi.org/10.1007/s10514-006-6574-5

    Article  Google Scholar 

  107. Peixoto, L., Min, B., Martins, G., Brito, A. G., Kroff, P., Parpot, P., et al. (2011). In situ microbial fuel cell-based biosensor for organic carbon. Bioelectrochemistry, 81, 99–103. https://doi.org/10.1016/j.bioelechem.2011.02.002

    Article  CAS  PubMed  Google Scholar 

  108. Hsieh, M.-C., Cheng, C.-Y., Liu, M.-H., & Chung, Y.-C. (2015). Effects of operating parameters on measurements of biochemical oxygen demand using a mediatorless microbial fuel cell biosensor. Sensors (Basel), 16, 35. https://doi.org/10.3390/s16010035

    Article  CAS  PubMed  Google Scholar 

  109. Torres, C. I., Marcus, A. K., Parameswaran, P., & Rittmann, B. E. (2008). Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode. Environmental Science and Technology, 42, 6593–6597. https://doi.org/10.1021/es800970w

    Article  CAS  PubMed  Google Scholar 

  110. Tardy, G., Lóránt, B., Gyalai-Korpos, M., Bakos, V., Simpson, D., & Goryanin, I. (2021). Microbial fuel cell biosensor for the determination of biochemical oxygen demand of wastewater samples containing readily and slowly biodegradable organics. Biotechnology Letters, 43, 1–10. https://doi.org/10.1007/s10529-020-03050-5

    Article  CAS  Google Scholar 

  111. Kim, B. H., Park, H. S., Kim, H. J., Kim, G. T., Chang, I. S., Lee, J., et al. (2004). Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Applied Microbiology and Biotechnology, 63, 672–681. https://doi.org/10.1007/s00253-003-1412-6

    Article  CAS  PubMed  Google Scholar 

  112. Sun, J., Kingori, G., Si, R., Zhai, D.-D., Liao, Z.-H., Sun, D.-Z., et al. (2015). Microbial fuel cell-based biosensors for environmental monitoring: A review. Water Science and Technology, 71, 801–809. https://doi.org/10.2166/wst.2015.035

    Article  CAS  PubMed  Google Scholar 

  113. Bowler, M. W., Montgomery, M. G., Leslie, A. G. W., & Walker, J. E. (2006). How azide inhibits ATP hydrolysis by the F-ATPases. Proceedings of the National Academy of Sciences U.S.A, 103, 8646–8649. https://doi.org/10.1073/pnas.0602915103

    Article  CAS  Google Scholar 

  114. Harvey, J., Hardy, S. C., & Ashford, M. L. (1999). Dual actions of the metabolic inhibitor, sodium azide on K(ATP) channel currents in the rat CRI-G1 insulinoma cell line. British Journal of Pharmacology, 126, 51–60. https://doi.org/10.1038/sj.bjp.0702267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Petrie, B., Barden, R., & Kasprzyk-Hordern, B. (2015). A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Research, 72, 3–27. https://doi.org/10.1016/j.watres.2014.08.053

    Article  CAS  PubMed  Google Scholar 

  116. Choi, S. H., & Gu, M. B. (2003). Toxicity biomonitoring of degradation byproducts using freeze-dried recombinant bioluminescent bacteria. Analytica Chimica Acta, 481, 229–238. https://doi.org/10.1016/S0003-2670(03)00091-6

    Article  CAS  Google Scholar 

  117. Yang, H., Zhou, M., Liu, M., Yang, W., & Gu, T. (2015). Microbial fuel cells for biosensor applications. Biotechnology Letters, 37, 2357–2364. https://doi.org/10.1007/s10529-015-1929-7

    Article  CAS  PubMed  Google Scholar 

  118. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Experientia Supplementum, 101, 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  PubMed  Google Scholar 

  119. Giller, K. E., Witter, E., & Mcgrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biology and Biochemistry, 30, 1389–1414. https://doi.org/10.1016/S0038-0717(97)00270-8

    Article  CAS  Google Scholar 

  120. Yu, D., Bai, L., Zhai, J., Wang, Y., & Dong, S. (2017). Toxicity detection in water containing heavy metal ions with a self-powered microbial fuel cell-based biosensor. Talanta, 168, 210–216. https://doi.org/10.1016/j.talanta.2017.03.048

    Article  CAS  PubMed  Google Scholar 

  121. Xu, Z., Liu, B., Dong, Q., Lei, Y., Li, Y., Ren, J., et al. (2015). Flat microliter membrane-based microbial fuel cell as “on-line sticker sensor” for self-supported in situ monitoring of wastewater shocks. Bioresource Technology, 197, 244–251. https://doi.org/10.1016/j.biortech.2015.08.081

    Article  CAS  PubMed  Google Scholar 

  122. Cheung, K. H., & Gu, J.-D. (2007). Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: A review. International Biodeterioration & Biodegradation, 59, 8–15. https://doi.org/10.1016/j.ibiod.2006.05.002

    Article  CAS  Google Scholar 

  123. Wang, G.-H., Cheng, C.-Y., Liu, M.-H., Chen, T.-Y., Hsieh, M.-C., & Chung, Y.-C. (2016). Utility of Ochrobactrum anthropi YC152 in a microbial fuel cell as an early warning device for hexavalent chromium determination. Sensors (Basel), 16, E1272. https://doi.org/10.3390/s16081272

    Article  CAS  Google Scholar 

  124. Wu, L.-C., Tsai, T.-H., Liu, M.-H., Kuo, J.-L., Chang, Y.-C., & Chung, Y.-C. (2017). A green microbial fuel cell-based biosensor for in situ chromium (VI) measurement in electroplating wastewater. Sensors (Basel), 17, E2461. https://doi.org/10.3390/s17112461

    Article  CAS  Google Scholar 

  125. Tran, P. H. N., Luong, T. T. T., Nguyen, T. T. T., Nguyen, H. Q., Duong, H. V., Kim, B. H., et al. (2015). Possibility of using a lithotrophic iron-oxidizing microbial fuel cell as a biosensor for detecting iron and manganese in water samples. Environmental Science: Processes & Impacts, 17, 1806–1815. https://doi.org/10.1039/C5EM00099H

    Article  CAS  Google Scholar 

  126. Zhao, S., Liu, P., Niu, Y., Chen, Z., Khan, A., Zhang, P., et al. (2018). A novel early warning system based on a sediment microbial fuel cell for in situ and real time hexavalent chromium detection in industrial wastewater. Sensors, 18, 642. https://doi.org/10.3390/s18020642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wu, S., Han, C., Liu, L., Zhong, W. (2018). A novel sediment microbial fuel cell based sensor for on-line and in situ monitoring copper shock in water. Electroanalysis, 30. https://doi.org/10.1002/elan.201800424

  128. Prévoteau, A., Clauwaert, P., Kerckhof, F.-M., & Rabaey, K. (2019). Oxygen-reducing microbial cathodes monitoring toxic shocks in tap water. Biosensors and Bioelectronics, 132, 115–121. https://doi.org/10.1016/j.bios.2019.02.037

    Article  CAS  PubMed  Google Scholar 

  129. Kraemer, S. A., Ramachandran, A., & Perron, G. G. (2019). Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms, 7, 180. https://doi.org/10.3390/microorganisms7060180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wu, W., Lesnik, K. L., Xu, S., Wang, L., & Liu, H. (2014). Impact of tobramycin on the performance of microbial fuel cell. Microbial Cell Factories, 13, 91. https://doi.org/10.1186/s12934-014-0091-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chouler, J., & Di Lorenzo, M. (2015). Water quality monitoring in developing countries; can microbial fuel cells be the answer? Biosensors (Basel), 5, 450–470. https://doi.org/10.3390/bios5030450

    Article  CAS  PubMed  Google Scholar 

  132. Zeng, L., Li, X., Shi, Y., Qi, Y., Huang, D., Tadé, M., et al. (2017). FePO4 based single chamber air-cathode microbial fuel cell for online monitoring levofloxacin. Biosensors & Bioelectronics, 91, 367–373. https://doi.org/10.1016/j.bios.2016.12.021

    Article  CAS  Google Scholar 

  133. Yang, W., Wei, X., Fraiwan, A., Coogan, C., Lee, H., Choi, S. (2015). Fast and sensitive water quality assessment: a μL-scale microbial fuel cell-based biosensor integrated with an air-bubble trap and electrochemical sensing functionality. Sensors and Actuators B: Chemical, 226. https://doi.org/10.1016/j.snb.2015.12.002.

  134. Chouler, J., Cruz-Izquierdo, Á., Rengaraj, S., Scott, J. L., & Di Lorenzo, M. (2018). A screen-printed paper microbial fuel cell biosensor for detection of toxic compounds in water. Biosensors & Bioelectronics, 102, 49–56. https://doi.org/10.1016/j.bios.2017.11.018

    Article  CAS  Google Scholar 

  135. Shen, Y. J., Lefebvre, O., Tan, Z., & Ng, H. Y. (2012). Microbial fuel-cell-based toxicity sensor for fast monitoring of acidic toxicity. Water Science and Technology, 65, 1223–1228. https://doi.org/10.2166/wst.2012.957

    Article  CAS  PubMed  Google Scholar 

  136. Jiang, Y., Liang, P., Liu, P.-P., Yan, X., Bian, Y. (2016). A cathode-shared microbial fuel cell senor array for water alert system. International Journal of Hydrogen Energy, 42. https://doi.org/10.1016/j.ijhydene.2016.12.050.

  137. De Schamphelaire, L., Van den Bossche, L., Dang, H. S., Höfte, M., Boon, N., Rabaey, K., et al. (2008). Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environmental Science and Technology, 42, 3053–3058. https://doi.org/10.1021/es071938w

    Article  CAS  PubMed  Google Scholar 

  138. Li, T., Wang, X., Zhou, Q., Liao, C., Zhou, L., Wan, L., et al. (2018). Swift acid rain sensing by synergistic rhizospheric bioelectrochemical responses. ACS Sens, 3, 1424–1430. https://doi.org/10.1021/acssensors.8b00401

    Article  CAS  PubMed  Google Scholar 

  139. Abrevaya, X. C., Sacco, N. J., Bonetto, M. C., Hilding-Ohlsson, A., & Cortón, E. (2015). Analytical applications of microbial fuel cells. Part II: Toxicity, microbial activity and quantification, single analyte detection and other uses. Biosensors and Bioelectronics, 63, 591–601. https://doi.org/10.1016/j.bios.2014.04.053

    Article  CAS  PubMed  Google Scholar 

  140. Miller, L. G., & Oremland, R. S. (2008). Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes. Extremophiles, 12, 837–848. https://doi.org/10.1007/s00792-008-0191-5

    Article  CAS  PubMed  Google Scholar 

  141. Abrevaya, X. C., Mauas, P. J. D., & Cortón, E. (2010). Microbial fuel cells applied to the metabolically based detection of extraterrestrial life. Astrobiology, 10, 965–971. https://doi.org/10.1089/ast.2009.0460

    Article  CAS  PubMed  Google Scholar 

  142. Liu, Z., Liu, J., Zhang, S., Xing, X.-H., & Su, Z. (2011). Microbial fuel cell based biosensor for in situ monitoring of anaerobic digestion process. Bioresource Technology, 102, 10221–10229. https://doi.org/10.1016/j.biortech.2011.08.053

    Article  CAS  PubMed  Google Scholar 

  143. Kim, I., Chae, K.-J., Choi, M.-J., Verstraete, W., Kim, I. S., Chae, K.-J., Choi, M.-J., & Verstraete, W. (2008). Microbial fuel cells: recent advances, bacterial communities and application beyond electricity generation. Environmental Engineering Research, 13, 51–65. https://doi.org/10.4491/eer.2008.13.2.051

    Article  Google Scholar 

  144. Le, C., Zha, Y., Li, Y., Sun, D., Lu, H., & Yin, B. (2010). Eutrophication of lake waters in China: Cost, causes, and control. Environmental Management, 45, 662–668. https://doi.org/10.1007/s00267-010-9440-3

    Article  CAS  PubMed  Google Scholar 

  145. Yang, M. (2011). A current global view of environmental and occupational cancers. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 29, 223–249. https://doi.org/10.1080/10590501.2011.601848

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally.

Corresponding author

Correspondence to Soumya Pandit.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

All the authors have their consent to participate.

Consent to Publish

All the authors have their consent to publish their work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varshney, A., Sharma, L., pandit, C. et al. Microbial Fuel Cell–Based Biosensors and Applications. Appl Biochem Biotechnol 195, 3508–3531 (2023). https://doi.org/10.1007/s12010-023-04397-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04397-x

Keywords

Navigation