Skip to main content

Advertisement

Log in

Miniaturizing microbial fuel cells for potential portable power sources: promises and challenges

  • Review Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Microscale microbial fuel cells (MFCs) are attractive, due to small size, light weight, and potentially low cost, suitable for applications demanding miniaturized carbon-neutral and renewable energy sources to power low-power electronics and implantable medical devices. The power density of microscale MFCs has enhanced significantly in the past decade, yet the scaling effect on microscale MFCs has not been addressed effectively. This review offers how the scaling impacts the power density of microscale MFCs via mass transfer, reaction kinetics, surface area to volume ratio, and internal resistance. The power density, especially volumetric power density, increases as scaling down the characteristic length of MFCs due to fast mass transfer, fast reaction kinetics, and high surface area to volume ratio, suggesting that microscale MFCs have large potential to improve further. Yet several challenges, including high internal resistance, incompatibility with microfabrication and inefficient extracellular electron transfer due to oxygen leakage need to be adequately addressed. These challenges, along with potential mitigations are discussed in detail in this review. If these challenges are mitigated appropriately, microscale MFCs may become one of the attractive alternatives as miniaturized carbon-neutral renewable power sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40:3388–3394

    Article  Google Scholar 

  • Amini S, Garay J, Liu G, Balandin AA, Abbaschian R (2010) Growth of large-area graphene films from metal–carbon melts. J Appl Phys 108:094321

    Article  Google Scholar 

  • Ashry ME (2011) Renewables 2011 Global status report

  • Ayazi F (2011) Multi-DOF inertial MEMS: from gaming to dead reckoning. In: 16th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pp 2805–2808

  • Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley & Sons Inc, New York

    Google Scholar 

  • Baughman RH, Zakhidov AA, Heer WA (2002) Carbon nanotubes: the route toward applications. Science 297:787–792

    Article  Google Scholar 

  • Beliaev AS, Saffarini DA, McLaughlin JL, Hunnicutt D (2001) MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol Microbiol 39:722–730

    Article  Google Scholar 

  • Bentley RW (2002) Global oil and gas depletion: an overview. Energy Policy 30:189–205

    Article  Google Scholar 

  • Biffinger JC, Ringeisen BR (2008) Engineering microbial fuels cells: recent patents and new directions. Recent Pat Biotechnol 2:150–155

    Article  Google Scholar 

  • Biffinger JC, Pietron J, Ray R, Little B, Ringeisen BR (2007a) A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosens Bioelectron 22:1672–1679

    Article  Google Scholar 

  • Biffinger JC, Ray R, Little B, Ringeisen BR (2007b) Diversifying biological fuel cell designed by use of nanoporous filters. Environ Sci Technol 41:1444–1449

    Article  Google Scholar 

  • Biffinger JC, Byrd JN, Dudley BL, Ringeisen BR (2008) Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells. Biosens Bioelectron 23:820–826

    Article  Google Scholar 

  • Biffinger JC, Ribbens M, Ringeisen B, Pietron J, Finkel S, Nealson K (2009a) Characterization of electrochemically active bacteria utilizing a high-throughput voltage-based screening assay. Biotechnol Bioeng 102(2):436–444

    Article  Google Scholar 

  • Biffinger JC, Ray R, Little BJ, Fitzgerald LA, Ribbens M, Finkel SE, Ringeisen BR (2009b) Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with Shewanella oneidensis. Biotechnol Bioeng 103(3):524–531

    Article  Google Scholar 

  • Blomen LJMJ, Mugerwa MN (1993) Fuel cell systems. Plenum Press, New York

    Google Scholar 

  • Bond DR, Lovely DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    Article  Google Scholar 

  • Bond DR, Holmes DE, Tender LM, Lovely DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485

    Article  Google Scholar 

  • Borole AP, Hamilton CY, Vishnivetskaya T, Leak D, Andras C, Morrell-Falvey J, Keller M, Davison B (2009a) Integrating engineering design improvement with exoelectrogen enrichment process to increase power output from microbial fuel cells. J Power Sources 191(2):520–527

    Article  Google Scholar 

  • Borole AP, Mielenz JR, Vishnivetskaya TA, Hamilton CY (2009b) Controlling accumulation of fermentation inhibitors in biorefinery recycle water using microbial fuel cells. Biotechnol Biofuels 2:7

    Article  Google Scholar 

  • Brito AG, Melo LF (1999) Mass transfer coefficients within anaerobic biofilms: effects of external liquid velocity. Water Res 33:3673–3678

    Article  Google Scholar 

  • Call D, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol 42:3401–3406

    Article  Google Scholar 

  • Catal T, Fan Y, Li K, Bermek H, Liu H (2008) Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells. J Power Sources 180:162–166

    Article  Google Scholar 

  • Chae J, Kulah H, Najafi K (2005) A monolithic three-axis micro-g micromachined silicon capacitive accelerometer. IEEE J Microelectromech Syst 14:235–242

    Article  Google Scholar 

  • Chang HT, Rittmann BE, Amar D, Heim R, Ehlinger O, Lesty Y (1991) Biofilm detachment mechanisms in a liquid fluidized bed. Biotechnol Bioeng 38:499–506

    Article  Google Scholar 

  • Chang IS, Jang JK, Gil GC, Kim M, Kim HJ, Cho BW, Kim BH (2004) Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 19:607–613

    Article  Google Scholar 

  • Chang IS, Moon H, Bretschger O, Jang JK, Park HI, Nealson KH, Kim BH (2006) Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J Microbiol Biotechnol 16:163–177

    Google Scholar 

  • Chaudhuri SK, Lovely DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21(10):1229–1232

    Article  Google Scholar 

  • Chauwaert P, Ha DVD, Verstraete W (2008) Energy recovery from energy rich vegetable products with microbial fuel cells. Biotechnol Lett 30:1947–1951

    Article  Google Scholar 

  • Chen MJ, Zhang Z, Bott TR (1998) Direct measurement of the adhesive strength of biofilms in pipes by micromanipulation. Biotechnol Tech 12(12):875–880

    Article  Google Scholar 

  • Chen YP, Zhao Y, Qiu KQ, Chu J, Lu R, Sun M, Liu XW, Sheng GP, Yu HQ, Chen J, Li WJ, Liu G, Tian YC, Xiong Y (2011) An innovative miniature microbial fuel cell fabricated using photolithography. Biosens Bioelectron 26:2841–2846

    Google Scholar 

  • Cheng S, Logan BE (2007) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9:492–496

    Article  Google Scholar 

  • Cheng S, Logan BE (2011) High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresour Technol 102:3571–3574

    Article  Google Scholar 

  • Cheng S, Dempsey BA, Logan BE (2007) Electricity generation from synthetic acid-mine drainage waster using fuel cell technologies. Environ Sci Technol 41:8149–8153

    Article  Google Scholar 

  • Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958

    Article  Google Scholar 

  • Cheng S, Deng X, Logan BE (2011) Electricity generation of single-chamber microbial fuel cells at low temperatures. Biosens Bioelectron 26:1913–1917

    Article  Google Scholar 

  • Chiao M, Lam KB, Su Y, Lin L (2002) A miniaturized microbial fuel cell. In: Technical Digest of the 2002 Solid-State Sensors and Actuators Workshop, pp 59–60

  • Chiao M, Lam KB, Lin L (2003) Micromachined microbial fuel cells. In: Proceedings of 16th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp 383–386

  • Chiao M, Lam KB, Lin L (2006) Micromachined microbial and photosynthetic fuel cells. J Micromech Microeng 16:2547–2553

    Article  Google Scholar 

  • Choi S, Chae J (2012) An array of microliter-sized microbial fuel cells generating 100 μW of power. Sens Actuators A 177:10–15

    Article  Google Scholar 

  • Choi S, Yang Y, Chae J (2008) Surface plasmon resonance protein sensor using Vroman effect. Biosens Bioelectron 24(4):893–899

    Article  Google Scholar 

  • Choi S, Lee HS, Yang Y, Rittmann BE, Chae J (2011a) A μL-scale micromachined microbial fuel cell having high power density. Lab Chip 11:1110

    Article  Google Scholar 

  • Choi S, Goryll M, Sin LYM, Wong PK, Chae J (2011b) Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins. Microfluid Nanofluid 10(2):231–247

    Article  Google Scholar 

  • Clauwaert P, Verstraete W (2009) Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biotechnol 82:829–836

    Article  Google Scholar 

  • Cooke KG, Gay MO, Radachowsky SE, Guzman JJ, Chiu MA (2010) BackyardNet: distributed sensor network powered by terrestrial microbial fuel cell technology. SPIE Defense, Security, and Sensing May, 2010

  • Cornnors KA (1990) Chemical kinetics: the study of reaction rates in solution. VCH publishers Inc, New York

    Google Scholar 

  • Cusick RD, Bryan B, Parker DS, Merrill MD, Mehanna M, Kiely PD, Liu G, Logan BE (2011) Performance of a pilot scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biotechnol 89:2053–2063

    Article  Google Scholar 

  • Darby R (2001) Chemical engineering fluid mechanics, 2nd edn. Marcel Dekker, Inc., New York

  • Dávila D, Esquivel JP, Sabaté N, Mas J (2011) Silicon-based microfabricated microbial fuel cell toxicity sensor. Biosens Bioelectron 26:2426–2430

    Article  Google Scholar 

  • Debabov VG (2008) Electricity from microorganisms. Microbiology 77:123–131

    Article  Google Scholar 

  • Dekker A, Heijne AT, Saakes M, Hamelers HVM, Buisman CJN (2009) Analysis and improvement of a scaled-up and stacked microbial fuel cell. Environ Sci Technol 43:9038–9042

    Article  Google Scholar 

  • Delaney GM, Bennetto HP, Mason JR, Roller SD, Stirling JL, Thurston CF (1984) Electron-transfer coupling in microbial fuel-cells. 2. Performance of fuel-cells containing selected microorganism mediator substrate combinations. J Chem Technol Biotechnol B Biotechnol 34(1):13–27

    Article  Google Scholar 

  • Drews J, Fehrmann G, Staub R, Wolf R (2001) Primary batteries for implantable pacemakers and defibrillators. J Power Sources 97–98:747–749

    Article  Google Scholar 

  • Dyer CK (2002) Fuel cells for portable applications. J Power Sources 106:31–34

    Article  Google Scholar 

  • Faaij APC (2006) Bio-energy in Europe: changing technology choices. Energy Policy 34:322–342

    Article  Google Scholar 

  • Fan Y, Hu H, Liu H (2007) Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171:348–354

    Google Scholar 

  • Fan Y, Sharbrough E, Liu H (2008) Quantification of the internal resistance distribution of microbial fuel cells. Environ Sci Technol 42:8101–8107

    Article  Google Scholar 

  • Fogler HS (2006) Elements of chemical reaction engineering, 4th edn. Prentice-Hall PTR, Upper Saddle River, NJ

    Google Scholar 

  • Franks AE, Nevin KP, Jia H, Izallalen M, Woodard TL, Lovely DR (2009) Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm. Energy Environ Sci 2:113–119

    Article  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  • Gil GC, Chang IS, Kim BH, Kim M, Jang JK, Park HS, Kim HJ (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron 18(4):327–334

    Article  Google Scholar 

  • Gold S, Chu KL, Lu C, Shannon MA, Masel R (2004) Acid loaded porous silicon as a proton exchange membrane for micro-fuel cells. J Power Sources 135:198–203

    Article  Google Scholar 

  • Gorby YA, Yanina S, Mclean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SV, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan BE, Nealson KA, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. PNAS 103:11358–11363

    Article  Google Scholar 

  • Gregory KB, Lovely DR (2005) Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 39:8943–8947

    Article  Google Scholar 

  • Guzman JJ, Cooke KG, Gay MO, Radachowsky SE, Griguis PR, Chiu MA (2010) Benthic microbial fuel cells: long-term power sources for wireless marine sensor networks. Proc SPIE 7666:76662M

    Article  Google Scholar 

  • Hamelers HVM, Heijne AT, Sleutels THJA, Jeremiasse AW, Strik DPBTB, Buisman CJN (2010) New applications and performance of bioelectrochemical systems. Appl Microbiol Biotechnol 85:1673–1685

    Article  Google Scholar 

  • Han Y, Yu C, Liu H (2010) A microbial fuel cell as power supply for implantable medical devices. Biosens Bioelectron 25:2156–2160

    Article  Google Scholar 

  • Harnisch F, Schröder U, Scholz F (2008) The suitability of monopolar and bipolar ion exchange membranes as separators for biological fuel cells. Environ Sci Technol 42:1740–1746

    Article  Google Scholar 

  • He Z, Angenent LT (2006) Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18:2009–2015

    Article  Google Scholar 

  • He Z, Minteer SD, Angenent LT (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39:5262–5267

    Article  Google Scholar 

  • He Z, Wagner N, Minteer SD, Angenent LT (2006) The upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ Sci Technol 40:5212–5217

    Article  Google Scholar 

  • Hou H, Li L, Cho H, de Figueiredo P, Han A (2009) Microfabricated microbial fuel cell arrays reveal electrochemically active microbes. PLoS ONE 4:e6570

    Article  Google Scholar 

  • Hsu TR (2002) MEMS and microsystems: design and manufacture, McGraw-Hill, New York

  • Huang L, Cheng S, Rezaei F, Logan BE (2009) Reducing organic loads in wastewater effluents from paper recycling plants using microbial fuel cells. Environ Technol 30(5):499–504

    Article  Google Scholar 

  • Ibrahim H, Ilinca A, Perron J (2008) Energy storage systems: characteristics and comparisons. Renew Sustain Energy Rev 12:1221–1250

    Article  Google Scholar 

  • Ieropoulos I, Melhuish C, Greenman J (2007) Artificial gills for robots: MFC behavior in water. Bioinsp Biomim 2:S83–S93

    Article  Google Scholar 

  • Ieropoulos I, Anderson I, Gisby T, Wang CH, Rossiter J (2008a) Microbial-powered artificial muscles for autonomous robots. In: Proceedings of the Towards Autonomous Robotic Systems (TAROS’08) Conference, pp 209−216

  • Ieropoulos I, Greenman J, Melhuish C (2008b) Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability. Int J Energy Res 32:1228–1240

    Article  Google Scholar 

  • Ieropoulos I, Melhuish C, Greenman J, Horsfield I (2008c) EcoBot-II: an artificial agent with a natural metabolism. Int J Adv Robotic Syst, ISSN: 1729-8806 InTech, November

  • Inoue S, Parra EA, Higa A, Jiang Y, Wang P, Buie CR, Coates JD, Lin L (2011) Structural optimization of contact electrodes in microbial fuel cells for current density enhancements. Sens Actuators A 177:30–36

    Google Scholar 

  • Jacobson KS, Drew DM, He Z (2011) Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater. Environ Sci Technol 45:4652–4657

    Article  Google Scholar 

  • Jang JK, Chang IS, Moon H, Kang KH, Kim BH (2006) Nitrilotriacetic acid degraduation under microbial fuel cell environment. Biotechnol Bioeng 95(4):772–774

    Google Scholar 

  • Je S, Kim J, Harrison J, Kozicki M, Chae J (2008) In situ tuning of omni-directional micro-electro-mechanical systems microphones to improve performance fit in hearing aids. Appl Phys Lett 93:123501

    Article  Google Scholar 

  • Jiang X, Hu J, Fitzgerald LA, Biffinger JC, Xie P, Ringeisen BR, Lieber CM (2010) Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging. PNAS 107(39):16806–16810

    Article  Google Scholar 

  • Jiang D, Curtis M, Troop E, Scheible K, McGrath J, Hu B, Suib S, Raymond S, Li B (2011) A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. Int J Hydrogen Energy 36:876–884

    Article  Google Scholar 

  • Kang KH, Jang JK, Pham TH, Moon H, Chang IS, Kim BH (2003) A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol Lett 25:1357–1361

    Article  Google Scholar 

  • Kim BH, Chang IS, Gil GC, Park HS, Kim HJ (2003) Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett 25:541–545

    Article  Google Scholar 

  • Kim BH, Chang IS, Moon H (2006) Microbial fuel cell-type biochemical oxygen demand sensor. Encycl Sens 10:1–12

    Google Scholar 

  • Kim BH, Chang IS, Gadd GM (2007a) Challenges in microbial fuel cell development and operation. Appl Microbiol Biotechnol 76:485–494

    Article  Google Scholar 

  • Kim JR, Cheng S, Oh SE, Logan BE (2007b) Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol 41:1004–1009

    Article  Google Scholar 

  • Kim JR, Dec J, Bruns MA, Logan BE (2008) Removal of odors from swine wastewater by using microbial fuel cells. Appl Microbiol Biotechnol 74:2540–2543

    Google Scholar 

  • Kwok WK, Picioreanu C, Ong SL, Loosdrecht MCMV, Ng WJ, Heijnen JJ (1998) Influence of biomass production and detachment force on biofilm structures in a biofilm airlift suspension reactor. Biotechnol Bioeng 58:400–407

    Article  Google Scholar 

  • Larminie J, Dicks A (2003) Fuel cell systems explained, 2nd edn. John Wiley & Sons, Chichester

    Google Scholar 

  • Lau JH, Lee CK, Premachandran CS, Yu A (2009) Advanced MEMS packaging. McGraw-Hill, New York

  • Lee JW, Kjeang E (2010) A perspective on microfluidic biofuel cells. Biomicrofluidics 4:041301

    Article  Google Scholar 

  • Lee HS, Rittmann BE (2010a) Characterization of energy loss in an upflow single chamber microbial electrolysis cell. Int J Hydrogen Energy 35:920–927

    Article  Google Scholar 

  • Lee HS, Rittmann BE (2010b) Significance of biological hydrogen oxidation in a continuous single chamber microbial electrolysis cell. Environ Sci Technol 44:948–954

    Article  Google Scholar 

  • Lee HS, Torres CI, Rittman BE (2009) Effect of substrate diffusion and anode potential on kinetic parameters for anode-respiring bacteria. Environ Sci Technol 43(19):7571–7577

    Article  Google Scholar 

  • Lee HS, Cermaas WFJ, Rittmann BE (2010) Biological hydrogen production: prospects and challenges. Trends Biotechnol 28:262–271

    Article  Google Scholar 

  • Li X, Cai W, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314

    Article  Google Scholar 

  • Li Z, Rosenbaum MA, Venkataraman A, Tam TK, Katz E, Angenent LT (2011) Bacteria-based AND logic gate: a decision-making and self-powered biosensor. Chem Commun 47:3060–3062

    Article  Google Scholar 

  • Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046

    Article  Google Scholar 

  • Liu Y, Tay J (2002) The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res 36:1653–1665

    Article  Google Scholar 

  • Liu Z, Yang L, Mao Z, Zhuge W, Zhang Y, Wang L (2006) Behavior of PEMFC in starvation. J Power Sources 157:166–176

    Article  Google Scholar 

  • Liu H, Cheng S, Huang L, Logan BE (2008) Scale-up membrane-free single chamber microbial fuel cells. J Power Sources 179:274–279

    Article  Google Scholar 

  • Logan BE (1999) Environmental transport processes. Wiley, New York

    Google Scholar 

  • Logan BE (2008a) Microbial fuel cell for the future. Nature 454:943–944

    Article  Google Scholar 

  • Logan BE (2008b) Microbial fuel cells, Wiley, New York

  • Logan BE (2009a) Energy sustainability of the water infrastructure. The 2009 Clarke Prize Lecture

  • Logan BE (2009b) Exoelectrogenic bacteria that power microbial fuel cells. Nature Rev Microbiol 7:375–381

    Article  Google Scholar 

  • Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85:1665–1671

    Article  Google Scholar 

  • Logan BE, Regan JM (2006a) Microbial fuel cells: challenges and applications. Environ Sci Technol 40:5172–5180

    Article  Google Scholar 

  • Logan BE, Regan JM (2006b) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518

    Article  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schröder U, Alterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192

    Google Scholar 

  • Lopes FA, Vieira MJ, Melo LF (2000) Chemical composition and activity of a biofilm during the start-up of an airlift reactor. Water Sci Technol 41:105–111

    Google Scholar 

  • Lovely DR (2006a) Bug juice: harvesting electricity with microorganisms. Nature Rev Microbiol 4:497–508

    Article  Google Scholar 

  • Lovely DR (2006b) Microbial energizers: fuel cells that keep on going. Microbe 1(7):323–329

    Google Scholar 

  • Lovely DR (2006c) Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17:327–332

    Article  Google Scholar 

  • Lovely DR (2008) Extracellular electron transfer: wires, capacitors, iron lungs and more. Geobiology 6:225–231

    Article  Google Scholar 

  • Lovely DR (2011) Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environ Microbiol Rep 3:27–35

    Article  Google Scholar 

  • Lu L, Xing D, Xie T, Ren N, Logan BE (2010) Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells. Biosens Bioelectron 25:2690–2695

    Article  Google Scholar 

  • Madou MJ (2002) Fundamentals of Microfabrication, 2nd edn. CRC Press, New York

    Google Scholar 

  • Magnuson TS, Isoyama N, Hodges-Myerson AL, Davidson G, Maroney MJ, Geesey GG, Lovely DR (2001) Isolation, characterization and gene sequence analysis of a membrane associated 89 kDa Fe(III) reducing cytochrome c from Geobacter sulfurreducens. Biochem J 359:147–152

    Article  Google Scholar 

  • Malvankar NS, Madeline V, Nevin KP, Franks AE, Leang C, Kim BC, Inoue K, Mester T, Kovalla SF, Johnson JP, Rotello VM, Tuominen MT, Lovely DR (2011) Tunable metallic-like conductivity in microbial nanowire networks. Nat Nanotechnol 6:573–579

    Article  Google Scholar 

  • Malvankar NS, Tuominen MT, Lovely DR (2012) Biofilm conductivity is a decisive variable for high-current-density Geobacter sulfurreducens microbial fuel cells. Energy Environ Sci 5(2):5790–5797

    Article  Google Scholar 

  • Marcus AK, Torres CI, Rittman BE (2011) Analysis of a microbial electrochemical cell using the proton condition in biofilm (PCBIOFILM) model. Bioresour Technol 102(1):253–262

    Article  Google Scholar 

  • Massey LK (2002) Permeability properties of plastics and elastomers, 2nd edn. Plastics Design Library/William Andrew Publishing, New York

  • Merkel TC, Bondar VI, Nagai K, Freeman BD, Pinnau I (2000) Gas sorption, diffusion, and permeation in poly(dimethylsioxane). J Polym Sci Part B Polym Phys 38(3):415–434

    Article  Google Scholar 

  • Moghaddam S, Pengwang E, Jiang YB, Garcia AR, Burnett DJ, Brinker CJ, Masel RI, Shannon MA (2010) An inorganic–organic proton exchange membrane for fuel cells with a controlled nanoscale pore structure. Nat Nanotechnol 5:230–236

    Article  Google Scholar 

  • Moon H, Chang IS, Jang JK, Kim KS, Lee J, Lovitt RW, Kim BH (2005) On-line monitoring of low biochemical oxygen demand through continuous operation of a mediator-less microbial fuel cell. J Microbiol Biotechnol 15:192–196

    Google Scholar 

  • Morris JM, Jin S (2008) Feasibility of using microbial fuel cell technology for bioremediation of hydrocarbons in groundwater. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 43:18–23

    Article  Google Scholar 

  • Myers CR, Myers JM (1992) Localization of cytochromes to the outer-membrane of anaerobically grown Shewanella putrefaciens MR-1. J Bacteriol 174:3429–3438

    Google Scholar 

  • Myers JM, Myers CR (2001) Role for outer membrane cytochromes omca and omcb of Shewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl Environ Microb 67:260–269

    Article  Google Scholar 

  • Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovely DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1:e00103–e00110

    Google Scholar 

  • Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Lovely DR (2011) Electrosynthesis of organic compounds from carbon dioxide catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77:2882–2886

    Article  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  • Oh SE, Logan BE (2007) Voltage reversal during microbial fuel cell stack operation. J Power Sources 167:11–17

    Article  Google Scholar 

  • Oh ST, Kim JR, Premier GC, Lee TH, Kim C, Sloan WT (2010) Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnol Adv 28:871–881

    Article  Google Scholar 

  • Ohashi A, Harada H (1994) Adhesion strength of biofilm developed in an attached-growth reactor. Water Sci Tech 29:10–11

    Google Scholar 

  • Pant D, Bogaert GV, Smet MD, Diels L, Vanbroekhoven K (2010) Use of novel permeable membrane and air cathodes in acetate microbial fuel cells. Electrochim Acta 55:7710–7716

    Article  Google Scholar 

  • Parameswaran P, Torres CI, Lee HS, Brown RK, Rittmann BE (2009) Syntrophic interactions among anode respiring bacteria (ARB) and non-ARB in a biofilm anode: electron balances. Biotechnol Bioeng 103(3):69–78

    Article  Google Scholar 

  • Parameswaran P, Zhang H, Torres CI, Rittmann BE, Brown RK (2010) Microbial community structure in a biofilm anode fed with a fermentable substrate: the significance of hydrogen scavengers. Biotechnol Bioeng 105(1):69–78

    Article  Google Scholar 

  • Parameswaran P, Torres CI, Lee HS, Brown RK, Rittmann BE (2011) Hydrogen consumption in microbial electrochemical systems (MXCs): the role of homo-acetogenic bacteria. Bioresour Technol 102:263–271

    Article  Google Scholar 

  • Park DH, Zeikus ZG (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81:348–355

    Article  Google Scholar 

  • Parra E, Lin L (2009) Microbial fuel cell based on electrode–exoelectrogenic bacteria interface. In: Proceedings of 19th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp 31–34

  • Peng L, You SJ, Wang JY (2010) Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis. Biosens Bioelectron 25:1248–1251

    Article  Google Scholar 

  • Pham CA, Jung SJ, Phung NT, Lee J, Chang IS, Kim BH, Yi H, Chun J (2003) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett 223:129–134

    Article  Google Scholar 

  • Pham HT, Boon N, Aelterman P, Clauwaert P, Schamphelaire LD, Oostveldt PV, Verbeken K, Rabaey K, Verstraete W (2008) High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell. Microb Biotechnol 1(6):487–496

    Article  Google Scholar 

  • Pham TH, Aelterman P, Verstraete W (2009) Bioanode performance in bioelectrochemical systems: recent improvement and prospects. Trends Biotechnol 27(3):168–178

    Article  Google Scholar 

  • Pocaznoi D, Erable B, Delia ML, Bergel A (2012) Ultra microelectrodes increase the current density provided by electroactive biofilms by improving their electron transport ability. Energy Environ Sci 5:5287–5296

    Article  Google Scholar 

  • Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Royal Soc (Formerly Proceedings of the Royal Society) B 84:260–276

    Google Scholar 

  • Qian F, Morse DE (2011) Miniaturizing microbial fuel cells. Trends Biotechnol 29(2):62–69

    Article  Google Scholar 

  • Qian F, Baum M, Gu Q, Morse DE (2009) A 1.5 μl microbial fuel cell for on-chip bioelectricity generation. Lab Chip 9:3076–3081

    Article  Google Scholar 

  • Qian F, He Z, Thelen MP, Li Y (2011) A microfluidic microbial fuel cell fabricated by soft lithography. Bioresour Technol 102(10):5836–5840

    Article  Google Scholar 

  • Qiao Y, Li CM, Bao SJ, Bao QL (2007) Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J Power Sources 170:79–84

    Article  Google Scholar 

  • Rabaey K, Keller J (2008) Microbial fuel cell cathodes: from bottleneck to prime opportunity? Water Sci Technol 57:655–659

    Article  Google Scholar 

  • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23(6):291–298

    Article  Google Scholar 

  • Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382

    Article  Google Scholar 

  • Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39:8077–8082

    Article  Google Scholar 

  • Rabaey K, Rodríguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH (2007) Microbial ecology meets electrochemistry: electricity driven and driving communities. ISME J 1:9–18

    Article  Google Scholar 

  • Rader GK, Logan BE (2010) Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate. Int J Hydrogen Energy 35:8848–8854

    Article  Google Scholar 

  • Ramasamy RP, Ren Z, Mench MM, Regan JM (2008) Impact of initial biofilm growth on the anode impedance of microbial fuel cells. Biotechnol Bioeng 101(1):101–108

    Article  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovely DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  Google Scholar 

  • Reguera G, Nevin KP, Nicoll JS, Covalla F, Woodard TL, Lovely DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sullfurreducens fuel cells. Appl Environ Microbiol 72:7345–7348

    Article  Google Scholar 

  • Reimers CE, Tender LM, Fertig S, Wang W (2001) Harvesting energy from the marine sediment–water interface. Environ Sci Technol 35:192–195

    Article  Google Scholar 

  • Richter H, McCarthy K, Nevin KP, Johnson JP, Rotello VM, Lovely DR (2008) Electricity generation by Geobacter sulfurreducens attached to gold electrodes. Langmuir 24(8):4376–4379

    Google Scholar 

  • Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40:2629–2634

    Google Scholar 

  • Ringeisen BR, Ray R, Little B (2007) A miniature microbial fuel cell operating with aerobic anode chamber. J Power Sources 165:591–597

    Article  Google Scholar 

  • Rittmann BE (1982) The effect of shear stress on biofilm loss rate. Biotechnol Bioeng 24:501–506

    Article  Google Scholar 

  • Rittmann BE (2006) Microbial ecology to manage processes in environmental. Biotechnology 24(6):261–266

    Google Scholar 

  • Rittmann BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw-Hill, Boston

  • Rittmann BE, Hausner M, Loffler F, Love NG, Muyzer G, Okabe S, Oerther DB, Peccia J, Raskin L, Wagner M (2006) A vista for microbial ecology and environmental biotechnology. Environ Sci Technol 40:1096–1103

    Article  Google Scholar 

  • Rittmann BE, Brown RK, Halden RU (2008) Pre-genomic, genomic and post genomic study of microbial communites involved in bioenergy. Nature 6:604–612

    Google Scholar 

  • Robinson JT, Perkins FK, Snow E, Zalalutidinov M, Houston BH, Baldwin JW, Wei Z, Sheehan PE (2009) Chemically modified graphene for sensing and nanomechanical applications. NRL Rev 2009:88–96

  • Rodrigo MA, Cañizares P, Lobato J, Paz R, Sáez C, Linares JJ (2007) Production of electricity from the treatment of urban waste water using a microbial fuel cell. J Power Sources 169:198–204

    Article  Google Scholar 

  • Rosenbaum M, Schröder U (2010) Photomicrobial solar and fuel cells. Electroanalysis 22:844–855

    Article  Google Scholar 

  • Rosenbaum M, Cotta MA, Angenent LT (2010) Aerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production. Biotechnol Bioeng 105(5):880–888

    Google Scholar 

  • Rozendal RA, Hamelers HVM, Molenkamp RJ, Buisman CJN (2007) Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Res 41:1984–1994

    Article  Google Scholar 

  • Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN (2008a) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26(8):450–459

    Article  Google Scholar 

  • Rozendal RA, Sleutels THJA, Hamelers HVM, Buisman CJN (2008b) Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of waste water. Water Sci Technol 57:1757–1762

    Article  Google Scholar 

  • Scholz F, Schröder U (2003) Bacterial batteries. Nat Biotechnol 21:3–4

    Article  Google Scholar 

  • Schröder U (2007) Anodic electron transfer mechanisms in microbial fuel cell and their efficiency. Phys Chem Chem Phys 9:2619–2629

    Article  Google Scholar 

  • Schwerdt H, Xu W, Shekhar S, Abbaspour-Tamijani A, Towe B, Miranda F, Chae J (2011) A fully passive wireless microsystem for recording of neuropotentials using RF backscattering methods. IEEE J Microelectromech Syst 20(5):1119–1130

    Article  Google Scholar 

  • Scott K, Rimbu GA, Katuri KP, Prasad KK, Head IM (2007) Application of modified carbon anodes in microbial fuel cells. Process Saf Environ Prot 85:481–488

    Article  Google Scholar 

  • Sharma T, Reddy ALM, Chandra TS, Ramaprabhu S (2008) Development of carbon nanotube and nanofluids based microbial fuel cell. Int J Hydrogen Energy 33:6749–6754

    Article  Google Scholar 

  • Shiku H, Saito T, Wu CC, Yasukawa T, Yokoo M, Abe H, Matsue T, Yamada H (2006) Oxygen permeability of surface-modified poly (dimethylsiloxane) characterized by scanning electrochemical microscopy. Chem Lett 35(2):234–235

    Article  Google Scholar 

  • Shimoyama T, Komukai S, Yamazawa A, Ueno Y, Logan BE, Watanabe K (2008) Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell. Appl Microbiol Biotechnol 80:325–330

    Google Scholar 

  • Siu C, Chiao M (2007) Microbial fuel cell with flexible substrate and micropillar structure. US patent: 200707059665

  • Siu C, Chiao M (2008) A microfabricated PDMS microbial fuel cell. IEEE J Microelectromech Syst 17:1329–1341

    Article  Google Scholar 

  • Sorrel S, Speirs J, Bentley R, Brandt A, Miller R (2009) 2009 Global oil depletion: an assessment of the evidence for a near-term peak in global oil production. ISBN number: 1-903144-0-35

  • Stein NE, Hamelers HVM, Buisman CNJ (2010) Stabilizing the baseline current of a microbial fuel cell-based biosensor through overpotential control under non-toxic conditions. Bioelectrochemistry 78(1):87–91

    Article  Google Scholar 

  • Sun M, Justin GA, Roche PA, Zhao J, Wessel BL, Zhang Y, Sclabassi RJ (2006) Passing data and supplying power to neural implants. IEEE Eng Med Biol Magzine 25(5):39–46

    Article  Google Scholar 

  • Tender LM, Gray SA, Groveman E, Lowy DA, Kauffman P, Melhado J, Tyce RC, Flynn D, Petrecca R, Dobarro J (2008) The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy. J Power Sources 179:571–575

    Article  Google Scholar 

  • Timur S, Anik U, Odaci D, Gorton L (2007) Development of a microbial biosensor based on carbon nanotube (CNT) modified electrodes. Electrochem Commun 9:1810–1815

    Article  Google Scholar 

  • Torres CI, Marcus AK, Rittmann BE (2008) Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol Bioeng 100(5):872–881

    Article  Google Scholar 

  • Torres CI, Marcus AK, Lee HS, Parameswaran P, Brown RK, Rittmann BE (2010) A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol Rev 34:3–17

    Article  Google Scholar 

  • Trulear MG, Characklis WG (1980) Dynamics of biofilm processes. In: the 53rd Annual Conference of the Water Pollution Control Federation, Las Vegas

  • Tsai HY, Wu CC, Lee CY, Shih EP (2009) Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes. J Power Sources 194:199–205

    Article  Google Scholar 

  • Voiland A (2009) 2009: Second Warmest Year on Record; End of Warmest Decade. NASA Goddard Institute for Space Studies. http://www.giss.nasa.gov/research/news/20100121. Accessed 1 Feb 2012

  • Wang HY, Bernarda A, Huang CY, Lee DJ, Chang JS (2011a) Micro-sized microbial fuel cell: a mini-review. Bioresour Technol 102(1):235–243

    Article  Google Scholar 

  • Wang CT, Shaw CK, Hu TY (2011b) Optimization of flow in microbial fuel cells: an investigation into promoting micro-mixer efficiency with obstacle. Tamkang J Sci Eng 14(1):25–31

    Google Scholar 

  • Wang CT, Yang CM, Chen ZS, Tseng S (2011c) Effect of biometric flow channel on the power generation at different Reynolds numbers in the single chamber of rumen microbial fuel cells (RMFCs). Int J Hydrogen Energy 36:9242–9251

    Article  Google Scholar 

  • Watson VJ, Saito T, Hickner MA, Logan BE (2011) Polymer coatings as separator layers for microbial fuel cell cathodes. J Power Sources 196:3009–3014

    Article  Google Scholar 

  • Wendisch VF, Bott M, Eikmanns BJ (2006) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9:268–274

    Article  Google Scholar 

  • Wilkinson S (2000) “Gastrobots”—benefits and challenges of microbial fuel cells in food powered robot applications. Auton Robots 9:99–111

    Article  MathSciNet  Google Scholar 

  • Wu PK, Biffinger JC, Fitzgerald LA, Ringeisen BR (2011) A low power DC/DC booster circuit designed for microbial fuel cells. Process Biochem. http://dx.doi.org/10.1016/j.bbr.2011.03.031

  • Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  Google Scholar 

  • Xing D, Zuo Y, Cheng S, Regan JM, Logan BE (2008) Electricity generation by Rhodopseudomonas palustris DX-1. Environ Sci Technol 42:4146–4151

    Article  Google Scholar 

  • Xu W, Choi S, Chae J (2010) A contour-mode film bulk acoustic resonator of high quality factor in a liquid environment for biosensing applications. Appl Phys Lett 96:053703

    Article  Google Scholar 

  • Yam KL (2009) The Wiley Encyclopedia of Packaging Technology, 3rd edn

  • You SJ, Ren NQ, Zhao QL, Wang JY, Yang FL (2009) Power generation and electrochemical analysis of biocathode microbial fuel cell using graphite fiber brush as cathode material. Fuel cells 5:588–596

    Article  Google Scholar 

  • Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei S (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93:113103

    Article  Google Scholar 

  • Yuan Y, Kim S (2008) Polypyrrole-coated reticulated vitreous carbon as anode in microbial fuel cell for higher energy output. Bull Korean Chem Soc 29:168–172

    Article  Google Scholar 

  • Zhang T, Cui C, Chen S, Ai X, Yang H, Shen P, Peng Z (2006) A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli. Chem Commun 21:2257–2259

    Article  Google Scholar 

  • Zhang X, Cheng S, Huang X, Logan BE (2010a) The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells. Energy Environ Sci 3:659–664

    Article  Google Scholar 

  • Zhang X, Cheng S, Huang X, Logan BE (2010b) Improved performance of single-chamber microbial fuel cells through control of membrane deformation. Biosens Bioelectron 25:1825–1828

    Article  Google Scholar 

  • Zhang JN, Zhao QL, You SJ, Wang JY, Yang FL (2010c) Power generation in bio-cathode microbial fuel cell with different cathode materials. Chem J Chin Univ 31:162–166

    Google Scholar 

  • Zhang F, Tian L, He Z (2011) Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes. J Power Sources 196:9568–9573

    Article  Google Scholar 

  • Zhao F, Harnisch F, Schröder U, Scholz F, Bogdanoff P, Herrmann I (2005) Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7:1405–1410

    Article  Google Scholar 

  • Zuo Y, Cheng S, Logan BE (2008) Ion exchange membrane cathodes for scalable microbial fuel cells. Environ Sci Technol 42:6967–6972

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junseok Chae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, H., Lee, HS. & Chae, J. Miniaturizing microbial fuel cells for potential portable power sources: promises and challenges. Microfluid Nanofluid 13, 353–381 (2012). https://doi.org/10.1007/s10404-012-0986-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-0986-7

Keywords

Navigation