Skip to main content

Integration of Cost-Efficient Carbon Electrodes into the Development of Microbial Fuel Cells

  • Chapter
  • First Online:
Nanoporous Carbons for Soft and Flexible Energy Devices

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 11))

Abstract

Microbial fuel cells are a renewable energy technology that can generate electricity from organic fuel such as wastewater, whilst simultaneously treating it. In order to implement this technology at larger scale, a major challenge is the choice of suitable electrode material that determines system performance and cost. This chapter discusses carbon-based electrodes and characteristics of carbonaceous materials that are both high performing and cost-effective in light of the technology implementation at larger scale for practical applications. The focus is on the most recent findings and incorporation of lightweight, robust and biocompatible carbon fibre electrodes in the form of carbon veil both as the anode and cathode counterparts and their suitability in larger scale designs. The chapter also presents modification strategies of this substratum with microparticles such as activated carbon as another cost-effective approach that may assist in bringing this technology closer to market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Potter, M.C.: Electrical effects accompanying the decomposition of organic compounds. Proc. R. Soc. B Biol. Sci. 84, 260–276 (1911). https://doi.org/10.1098/rspb.1911.0073

    Article  Google Scholar 

  2. Cohen, B.: The bacterial culture as an electrical half-cell. J. Bacteriol. 21, 18–19 (1931)

    CAS  Google Scholar 

  3. Putnam, D.F.: Composition and Concentrative Properties of Human Urine, Washington, DC (1971)

    Google Scholar 

  4. Pandey, P., Shinde, V.N., Deopurkar, R.L., et al.: Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl. Energy. 168, 706–723 (2016). https://doi.org/10.1016/j.apenergy.2016.01.056

    Article  CAS  Google Scholar 

  5. Gude, V.G.: Wastewater treatment in microbial fuel cells - an overview. J. Clean. Prod. 122, 287–307 (2016)

    Article  CAS  Google Scholar 

  6. Wilkinson, S.: “Gastrobots” - benefits and challenges of microbial fuel cells in food powered robot applications. Auton Robots. 9, 99–111 (2000). https://doi.org/10.1023/A:1008984516499

    Article  Google Scholar 

  7. Ieropoulos, I., Greenman, J., Melhuish, C.: Imitating metabolism: energy autonomy in biologically inspired robots. In: AISB ’03, Second International Symposium on Imitation in Animals and Artifacts, pp. 191–194, Aberystwyth (2003)

    Google Scholar 

  8. Winfield, J., Chambers, L.D., Rossiter, J., et al.: Fade to green: a biodegradable stack of microbial fuel cells. ChemSusChem. 8, 2705–2712 (2015). https://doi.org/10.1002/cssc.201500431

    Article  CAS  Google Scholar 

  9. Abrevaya, X.C., Sacco, N.J., Bonetto, M.C., et al.: Analytical applications of microbial fuel cells. Part I: biochemical oxygen demand. Biosens. Bioelectron. 63, 580–590 (2015). https://doi.org/10.1016/j.bios.2014.04.034

    Article  CAS  Google Scholar 

  10. Abrevaya, X.C., Sacco, N.J., Bonetto, M.C., et al.: Analytical applications of microbial fuel cells. Part II: toxicity, microbial activity and quantification, single analyte detection and other uses. Biosens. Bioelectron. 63, 591–601 (2015). https://doi.org/10.1016/j.bios.2014.04.053

    Article  CAS  Google Scholar 

  11. Han, Y., Yu, C., Liu, H.: A microbial fuel cell as power supply for implantable medical devices. Biosens. Bioelectron. 25, 2156–2160 (2010). https://doi.org/10.1016/j.bios.2010.02.014

    Article  CAS  Google Scholar 

  12. Winfield, J., Chambers, L.D., Stinchcombe, A., et al.: The power of glove: soft microbial fuel cell for low-power electronics. J. Power Sources. 249, 327–332 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.096

    Article  CAS  Google Scholar 

  13. Taghavi, M., Stinchcombe, A., Greenman, J., et al.: Wearable self sufficient MFC communication system powered by urine. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 131–138. Springer (2014)

    Google Scholar 

  14. Wei, J., Liang, P., Huang, X.: Recent progress in electrodes for microbial fuel cells. Bioresour. Technol. 102, 9335–9344 (2011). https://doi.org/10.1016/j.biortech.2011.07.019

    Article  CAS  Google Scholar 

  15. Palanisamy, G., Jung, H.-Y., Sadhasivam, T., et al.: A comprehensive review on microbial fuel cell technologies: processes, utilization, and advanced developments in electrodes and membranes. J. Clean. Prod. 221, 598–621 (2019). https://doi.org/10.1016/J.JCLEPRO.2019.02.172

    Article  CAS  Google Scholar 

  16. Luo, Y., Zhang, F., Wei, B., et al.: The use of cloth fabric diffusion layers for scalable microbial fuel cells. Biochem. Eng. J. 73, 49–52 (2013). https://doi.org/10.1016/j.bej.2013.01.011

    Article  CAS  Google Scholar 

  17. Zhang, Y., Sun, J., Hu, Y., et al.: Bio-cathode materials evaluation in microbial fuel cells: a comparison of graphite felt, carbon paper and stainless steel mesh materials. Int. J. Hydrog. Energy. 37, 16935–16942 (2012). https://doi.org/10.1016/j.ijhydene.2012.08.064

    Article  CAS  Google Scholar 

  18. Ieropoulos, I., Greenman, J., Melhuish, C.: Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability. Int. J. Energy Res. 32, 1228–1240 (2008). https://doi.org/10.1002/er.1419

    Article  CAS  Google Scholar 

  19. Wu, S., Li, H., Zhou, X., et al.: A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment. Water Res. 98, 396–403 (2016). https://doi.org/10.1016/j.watres.2016.04.043

    Article  CAS  Google Scholar 

  20. Ge, Z., He, Z.: Long-term performance of a 200 liter modularized microbial fuel cell system treating municipal wastewater: treatment, energy, and cost. Environ. Sci. Water Res. Technol. 2, 274–281 (2016). https://doi.org/10.1039/c6ew00020g

    Article  CAS  Google Scholar 

  21. Li, S., Cheng, C., Thomas, A.: Carbon-based microbial-fuel-cell electrodes: from conductive supports to active catalysts. Adv. Mater. 29, 1602547 (2017). https://doi.org/10.1002/adma.201602547

    Article  CAS  Google Scholar 

  22. Yamashita, T., Yokoyama, H.: Molybdenum anode: a novel electrode for enhanced power generation in microbial fuel cells, identified via extensive screening of metal electrodes. Biotechnol. Biofuels. 11, 39 (2018). https://doi.org/10.1186/s13068-018-1046-7

    Article  CAS  Google Scholar 

  23. Beuth, L., Pfeiffer, C.P., Schröder, U.: Copper-bottomed: electrochemically active bacteria exploit conductive sulphide networks for enhanced electrogeneity. Energy Environ. Sci. 13, 3102–3109 (2020). https://doi.org/10.1039/d0ee01281e

    Article  CAS  Google Scholar 

  24. Li, M., Zhang, H., Xiao, T., et al.: Low-cost biochar derived from corncob as oxygen reduction catalyst in air cathode microbial fuel cells. Electrochim. Acta. 283, 780–788 (2018). https://doi.org/10.1016/j.electacta.2018.07.010

    Article  CAS  Google Scholar 

  25. Bose, D., Sridharan, S., Dhawan, H., et al.: Biomass derived activated carbon cathode performance for sustainable power generation from microbial fuel cells. Fuel. 236, 325–337 (2019). https://doi.org/10.1016/j.fuel.2018.09.002

    Article  CAS  Google Scholar 

  26. Gajda, I., Greenman, J., Ieropoulos, I.: Microbial fuel cell stack performance enhancement through carbon veil anode modification with activated carbon powder. Appl. Energy. 262 (2020). https://doi.org/10.1016/j.apenergy.2019.114475

  27. Zhang, L., He, W., Yang, J., et al.: Bread-derived 3D macroporous carbon foams as high performance free-standing anode in microbial fuel cells. Biosens. Bioelectron. 122, 217–223 (2018). https://doi.org/10.1016/j.bios.2018.09.005

    Article  CAS  Google Scholar 

  28. Obreja, V.V.N.: On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material-a review. Phys. E Low-Dimensional Syst. Nanostruct. 40, 2596–2605 (2008). https://doi.org/10.1016/j.physe.2007.09.044

    Article  CAS  Google Scholar 

  29. Ren, H., Tian, H., Gardner, C.L., et al.: A miniaturized microbial fuel cell with three-dimensional graphene macroporous scaffold anode demonstrating a record power density of over 10000 W m-3. Nanoscale. 8, 3539–3547 (2016). https://doi.org/10.1039/c5nr07267k

    Article  CAS  Google Scholar 

  30. Xiao, L., Damien, J., Luo, J., et al.: Crumpled graphene particles for microbial fuel cell electrodes. J. Power Sources. 208, 187–192 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.036

    Article  CAS  Google Scholar 

  31. Wu, X., Shi, Z., Zou, L., et al.: Pectin assisted one-pot synthesis of three dimensional porous NiO/graphene composite for enhanced bioelectrocatalysis in microbial fuel cells. J. Power Sources. 378, 119–124 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.023

    Article  CAS  Google Scholar 

  32. Slate, A.J., Whitehead, K.A., Brownson, D.A.C., Banks, C.E.: Microbial fuel cells: an overview of current technology. Renew. Sust. Energ. Rev. 101, 60–81 (2019). https://doi.org/10.1016/j.rser.2018.09.044

    Article  CAS  Google Scholar 

  33. Trapero, J.R., Horcajada, L., Linares, J.J., Lobato, J.: Is microbial fuel cell technology ready? An economic answer towards industrial commercialization. Appl. Energy. 185, 698–707 (2017). https://doi.org/10.1016/j.apenergy.2016.10.109

    Article  CAS  Google Scholar 

  34. De La Casa-Lillo, M.A., Lamari-Darkrim, F., Cazorla-Amorós, D., Linares-Solano, A.: Hydrogen storage in activated carbons and activated carbon fibers. J. Phys. Chem. B. 106, 10930–10934 (2002). https://doi.org/10.1021/jp014543m

    Article  CAS  Google Scholar 

  35. Sarici-Özdemir, Ç., Önal, Y.: Study to observe the applicability of the adsorption isotherms used for the adsorption of medicine organics onto activated carbon. Part. Sci. Technol. 36, 254–261 (2018). https://doi.org/10.1080/02726351.2016.1246497

    Article  CAS  Google Scholar 

  36. Korotta-Gamage, S.M., Sathasivan, A.: A review: potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process. Chemosphere. 167, 120–138 (2017)

    Article  CAS  Google Scholar 

  37. Suzuki, M.: Activated carbon fiber: fundamentals and applications. Carbon N Y. 32, 577–586 (1994). https://doi.org/10.1016/0008-6223(94)90075-2

    Article  CAS  Google Scholar 

  38. Marsh, H., Rodríguez-Reinoso, F.: Activated Carbon. Elsevier Ltd (2006)

    Book  Google Scholar 

  39. Gao, Y., Yue, Q., Gao, B., Li, A.: Insight into activated carbon from different kinds of chemical activating agents: a review. Sci. Total Environ. 746, 141094 (2020). https://doi.org/10.1016/j.scitotenv.2020.141094

    Article  CAS  Google Scholar 

  40. Yang, X., Ma, X., Wang, K., et al.: Eighteen-month assessment of 3D graphene oxide aerogel-modified 3D graphite fiber brush electrode as a high-performance microbial fuel cell anode. Electrochim. Acta. 210, 846–853 (2016). https://doi.org/10.1016/j.electacta.2016.05.215

    Article  CAS  Google Scholar 

  41. Champigneux, P., Delia, M.L., Bergel, A.: Impact of electrode micro- and nano-scale topography on the formation and performance of microbial electrodes. Biosens. Bioelectron. 118, 231–246 (2018)

    Article  CAS  Google Scholar 

  42. Sun, D., Chen, J., Huang, H., et al.: The effect of biofilm thickness on electrochemical activity of Geobacter sulfurreducens. Int. J. Hydrog. Energy. 41, 16523–16528 (2016). https://doi.org/10.1016/J.IJHYDENE.2016.04.163

    Article  CAS  Google Scholar 

  43. Chen, S., Patil, S.A., Brown, R.K., Schröder, U.: Strategies for optimizing the power output of microbial fuel cells: transitioning from fundamental studies to practical implementation. Appl. Energy. 233–234, 15–28 (2019). https://doi.org/10.1016/J.APENERGY.2018.10.015

    Article  Google Scholar 

  44. Gajda, I., You, J., Santoro, C., et al.: A new method for urine electrofiltration and long term power enhancement using surface modified anodes with activated carbon in ceramic microbial fuel cells. Electrochim Acta. 136388 (2020). https://doi.org/10.1016/j.electacta.2020.136388

  45. You, J., Santoro, C., Greenman, J., et al.: Micro-porous layer (MPL)-based anode for microbial fuel cells. Int. J. Hydrog. Energy. 39, 21811–21818 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.136

    Article  CAS  Google Scholar 

  46. Bian, B., Shi, D., Cai, X., et al.: 3D printed porous carbon anode for enhanced power generation in microbial fuel cell. Nano Energy. 44, 174–180 (2018). https://doi.org/10.1016/j.nanoen.2017.11.070

    Article  CAS  Google Scholar 

  47. Lorenzetti, M., Dogša, I., Stošicki, T., et al.: The influence of surface modification on bacterial adhesion to titanium-based substrates. ACS Appl. Mater. Interfaces. 7, 1644–1651 (2015). https://doi.org/10.1021/am507148n

    Article  CAS  Google Scholar 

  48. Gajda, I., Greenman, J., Melhuish, C., Ieropoulos, I.: Photosynthetic cathodes for microbial fuel cells. Int. J. Hydrog. Energy. 38, 11559–11564 (2013). https://doi.org/10.1016/j.ijhydene.2013.02.111

    Article  CAS  Google Scholar 

  49. Ieropoulos, I., Greenman, J., Melhuish, C.: Improved energy output levels from small-scale microbial fuel cells. Bioelectrochemistry. 78, 44–50 (2010). https://doi.org/10.1016/j.bioelechem.2009.05.009

    Article  CAS  Google Scholar 

  50. Gajda, I., Greenman, J., Melhuish, C., et al.: Electro-osmotic-based catholyte production by microbial fuel cells for carbon capture. Water Res. 86, 108–115 (2015). https://doi.org/10.1016/J.WATRES.2015.08.014

    Article  CAS  Google Scholar 

  51. Papaharalabos, G., Greenman, J., Melhuish, C., et al.: Increased power output from micro porous layer (MPL) cathode microbial fuel cells (MFC). Int. J. Hydrog. Energy. 38, 11552–11558 (2013). https://doi.org/10.1016/j.ijhydene.2013.05.138

    Article  CAS  Google Scholar 

  52. Ieropoulos, I.A., Stinchcombe, A., Gajda, I., et al.: Pee power urinal – microbial fuel cell technology field trials in the context of sanitation. Environ. Sci. Water Res. Technol. 2, 336–343 (2016). https://doi.org/10.1039/C5EW00270B

    Article  CAS  Google Scholar 

  53. Gajda, I., Stinchcombe, A., Greenman, J., et al.: Microbial fuel cell - a novel self-powered wastewater electrolyser for electrocoagulation of heavy metals. Int. J. Hydrogen Energy, 1–7 (2016). https://doi.org/10.1016/j.ijhydene.2016.06.161

  54. Jadhav, D.A., Das, I., Ghangrekar, M.M., Pant, D.: Moving towards practical applications of microbial fuel cells for sanitation and resource recovery. J. Water Process Eng. 38, 101566 (2020). https://doi.org/10.1016/j.jwpe.2020.101566

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiseon You or Ioannis A. Ieropoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

You, J., Gajda, I., Greenman, J., Ieropoulos, I.A. (2022). Integration of Cost-Efficient Carbon Electrodes into the Development of Microbial Fuel Cells. In: Borghi, F., Soavi, F., Milani, P. (eds) Nanoporous Carbons for Soft and Flexible Energy Devices. Carbon Materials: Chemistry and Physics, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-81827-2_3

Download citation

Publish with us

Policies and ethics