Skip to main content

Advertisement

Log in

Energetically autonomous robots: Food for thought

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper reports on the robot EcoBot-II, which is designed to power itself solely by converting unrefined insect biomass into useful energy using on-board microbial fuel cells with oxygen cathodes. In bench experiments different ‘fuels’ (sugar, fruit and dead flies) were explored in the microbial fuel cell system and their efficiency of conversion to electricity is compared with the maximum available energy calculated from bomb calorimetry trials. In endurance tests EcoBot-II was able to run for 12 days while carrying out phototaxis, temperature sensing and radio transmission of sensed data approximately every 14 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashby, W.R. 1952. Design for a Brain. Chapman & Hall, London, UK.

    MATH  Google Scholar 

  • Bennetto, H.P. 1990. Electricity generation by microorganisms. Biotech. Ed., 1(4):163–168.

    Google Scholar 

  • Bond, D.R., Holmes, D.E., Tender, L.M., and Lovley, D.R. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 295:483–485.

    Article  Google Scholar 

  • Bond, D.R. and Lovley, D.R. 2003. Electricity production by geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol., 69(3):1548–1555.

    Article  Google Scholar 

  • Caccavo, Jr. et al. 1994. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate- oxidising dissimilatory metal-reducing microorganism. App. Environ. Microbiol., 60(10):3752–3759.

    Google Scholar 

  • Greenman, G., Kelly, I., Kendall, K., McFarland, D., and Melhuish, C. 2003. Towards robot autonomy in the natural world: A robot in Predator's Clothing. Mechatronics., 13(3):195–228.

    Article  Google Scholar 

  • Habermann, W. and Pommer, E.-H. 1991. Biological fuel cells with sulphide storage capacity. Appl. Microbiol. Biotechnol., 35:128–133.

    Article  Google Scholar 

  • Hernandez, M.E. and Newman, D.K. 2001. Extracellular electron transfer. Cell. Mol. Life. Sci., 58:1562–1571.

    Article  Google Scholar 

  • Holland, O. 1998. Towards true autonomy. In Proc. 29th Int. Symp. Robot. (ISR98), Birmingham, UK, pp. 84–87.

  • Ieropoulos, I., Greenman, J., and Melhuish, C. 2003a. Imitating metabolism: Energy autonomy in biologically inspired robotics. In Proc. AISB ‘03, 2nd Int. Symp. on Imit. Animals Artifacts, Aberystwyth, Wales, pp. 191–194.

  • Ieropoulos, I., Melhuish, C., and Greenman, J. 2003b. Artificial Metabolism: Towards True Energetic Autonomy in Artificial Life. In Proc. 7th Euro. Conf. Artif. Life (ECAL), Dortmund, Germany, pp. 792–799.

  • Ieropoulos, I., Melhuish, C., and Greenman, J. 2004. Energetically Autonomous Robots. In Proc. 8th Conf. Intell. Autonom. Sys. (IAS-8), Amsterdam, The Netherlands, pp. 128–135.

  • Ieropoulos, I., Greenman, J., Melhuish, C., and Hart, J. 2005a. Comparison of three different types of Microbial Fuel Cell. Enz. Microb. Technol., 37(2):238–245.

    Article  Google Scholar 

  • Ieropoulos, I., Melhuish, C., Greenman, J., and Hart, J. 2005b. Energy accumulation and improved performance in microbial fuel cells. Power Sources, 145(2):253–256.

    Article  Google Scholar 

  • Ieropoulos, I., Melhuish, C., Greenman, J., and Horsfiled, I. 2006. EcoBot-II: An artificial agent with a natural metabolism. Int. J. Adv. Robot. Syst. (in press).

  • Kaufmann, S. 2000. Investigations, Oxford University Press, New York, USA.

    Google Scholar 

  • Kester, D., Duedall, I., Connors, D., and Pytkowicz, R. 1967. Preparation of artificial seawater. Limnol. Oceanogr., 12:176–179.

    Article  Google Scholar 

  • Kim, B.H. 1998. Development of a Mediator-less Microbial Fuel Cell. In Abst. 98th Gener. Meet. Amer. Soc. Microbiol., Washington, DC, USA, Paper # 0–12, Session 116-0.

  • Kubo, M. and Melhuish, C. 2004. Robot Trophallaxis: Managing Energy Autonomy in Multiple Robots. In Proc. Towards Autonom. Robot. Sys. (TAROS 04), Colchester, UK, pp. 77–84.

  • Liu, H., Ramnarayanan, R., and Logan, B.E. 2004. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol., 38(7):2281–2285.

    Article  Google Scholar 

  • McFarland, D. and Spier, E. 1997. Basic cycles, utility and opportunism in self-sufficient robots. Robot. Autonom. Sys., 20:179–190.

    Article  Google Scholar 

  • Melhuish, C. and Kubo, M. 2004. Collective Energy Distribution: Maintaining the Energy balance in Distributed Autonomous Robots. In Proc. 7th Int. Symp. Distrib. Autonom. Robot. Sys., Toulouse, France, pp. 261–270.

  • Min, B. and Logan, B.E. 2004. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol., 38(21):5809–5814.

    Article  Google Scholar 

  • Rabaey, K., Boon, N., Siciliano, D., Verhaege, M., and Verstraete, W. 2004. Biofuel cells select for microbial consortia that self-mediate electron transfer. App. Environ. Microbiol., 70(9):5373–5382.

    Article  Google Scholar 

  • Sigfridsson, K. 1998. Plastocyanine, an electron-transfer protein. Photosynth. Res., 57:1–28.

    Article  Google Scholar 

  • Squyres, W.S., Arvidson, R.E., Bell, III J.F., Bruckner, J., Cabrol, N.A., Calvin, W. et al. 2004. The Spirit Rover's Athena Science Investigation at Gusev Crater, Mars. Science, 305:794–799.

    Article  Google Scholar 

  • Wilkinson, S. 2001. Hungry for success—future directions in gastrobotics research. Industrial Robot, 28(3):213–219.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Melhuish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melhuish, C., Ieropoulos, I., Greenman, J. et al. Energetically autonomous robots: Food for thought. Auton Robot 21, 187–198 (2006). https://doi.org/10.1007/s10514-006-6574-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-006-6574-5

Keywords

Navigation