Skip to main content
Log in

Aspergillus niger Enhance Bioactive Compounds Biosynthesis As Well As Expression of Functional Genes in Adventitious Roots of Glycyrrhiza uralensis Fisch

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present study, the culture conditions for the accumulation of Glycyrrhiza uralensis adventitious root metabolites in balloon-type bubble bioreactors (BTBBs) have been optimized. The results of the culture showed that the best culture conditions were a cone angle of 90° bioreactor and 0.4–0.6–0.4-vvm aeration volume. Aspergillus niger can be used as a fungal elicitor to enhance the production of defense compounds in plants. With the addition of a fungal elicitor (derived from Aspergillus niger), the maximum accumulation of total flavonoids (16.12 mg g−1) and glycyrrhetinic acid (0.18 mg g−1) occurred at a dose of 400 mg L−1 of Aspergillus niger resulting in a 3.47-fold and 1.8-fold increase over control roots. However, the highest concentration of polysaccharide (106.06 mg g−1) was achieved with a mixture of elicitors (Aspergillus niger and salicylic acid) added to the medium, resulting in a 1.09-fold increase over Aspergillus niger treatment alone. Electrospray ionization tandem mass spectrometry (ESI-MSn) analysis was performed, showing that seven compounds were present after treatment with the elicitors, including uralsaponin B, licorice saponin B2, liquiritin, and (3R)-vestitol, only identified in the mixed elicitor treatment group. It has also been found that elicitors (Aspergillus niger and salicylic acid) significantly upregulated the expression of the cinnamate 4-hydroxylase (C4H), β-amyrin synthase (β-AS), squalene epoxidase (SE) and a cytochrome P450 monooxygenase (CYP72A154) genes, which are involved in the biosynthesis of bioactive compounds, and increased superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A. niger :

Aspergillus niger

SA:

Salicylic acid

SODs:

Superoxide dismutases

CATs:

Catalases

PODs:

Peroxidases

G. uralensis Glycyrrhiza uralensis :

Glycyrrhiza uralensis Fisch

ROS:

Reactive oxygen species

C4H:

Cinnamate 4-hydroxylase

SE:

Squalene epoxidase

β-AS:

β-Amyrin synthase

BTBB:

Balloon-type bubble bioreactor

MS:

Murashige and Skoog (1962)

IBA:

Indole-3-butric acid

References

  1. Farag, M. A., Porzel, A., & Wessjohann, L. A. (2015). Unequivocal glycyrrhizin isomer determination and comparative in vitro bioactivities of root extracts in four Glycyrrhiza species. Journal of Advanced Research, 6, 99–104.

    Article  CAS  Google Scholar 

  2. Isbrucker, R. A., & Burdock, G. A. (2006). Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regulatory Toxicology and Pharmacology, 46, 167–192.

    Article  CAS  Google Scholar 

  3. Man, S. L., Wang, J., Gao, W. Y., Guo, S. B., Li, Y. Y., Zhang, L. M., & Xiao, P. G. (2013). Chemical analysis and anti-inflammatory comparison of the cell culture of Glycyrrhiza with its field cultivated variety. Food Chemistry, 136, 513–517.

    Article  CAS  Google Scholar 

  4. Wang, F. C., & Cheng, A. W. (2009). Polysaccharide isolated from Glycyrrhiza uralensis Fisch induces intracellular enzyme activity of macrophages. Mediterranean Journal of Nutrition and Metabolism, 1, 165–169.

    Article  Google Scholar 

  5. Schrofelbauer, B., Raffetseder, J., Hauner, M., Wolkerstorfer, A., & Szolar, E. W. O. H. (2009). Glycyrrhizin, the main active compound in liquorice, attenuates proinflammatory responses by interfering with membrane-dependent receptor signalling. Biochemical Journal, 421, 473–482.

    Article  Google Scholar 

  6. Zhang, H. C., Liu, J. M., Chen, H. M., Gao, C. C., Lu, H. Y., Zhou, H., Li, Y., & Gao, S. L. (2011). Up-regulation of licochalcone A biosynthesis and secretion by Tween 80 in hairy root cultures of Glycyrrhiza uralensis Fisch. Molecular Biotechnology, 47, 50–56.

    Article  Google Scholar 

  7. Wei, R. W., Qiu, F., Kong, W. J., Wei, J. H., Yang, M. H., Luo, Z. L., Qin, J. P., & Ma, X. J. (2013). Co-occurrence of aflatoxin B1, B2, G1, G2 and ochrotoxin A in Glycyrrhiza uralensis analyzed by HPLC-MS/MS. Food Control, 32, 216–221.

    Article  CAS  Google Scholar 

  8. Zhu, S., Sugiyama, R., Batkhuu, J., Sanchir, C., Zou, K., & Komatsu, K. (2009). Survey of Glycyrrhizae Radix resources in Mongolia: chemical assessment of the underground part of Glycyrrhiza uralensis and comparison with Chinese Glycyrrhizea Radix. Journal of Natural Medicines, 63, 137–146.

    Article  CAS  Google Scholar 

  9. Dewir, Y. H., Chakrabarty, D., Wu, C. H., Hahn, E. J., Jeon, W. K., & Paek, K. Y. (2010). Influences of polyunsaturated fatty acids (PUFAs) on growth and secondary metabolite accumulation in Panax ginseng C. A. Mayer adventitious roots cultured in air-lift bioreactors. South African Journal of Botany, 76, 354–358.

    Article  CAS  Google Scholar 

  10. Oh, S. Y., Wu, C. H., Popova, E., Hahn, E. J., & Paek, K. Y. (2009). Cryopreservation of Panax ginseng adventitious roots. Journal of Plant Biology, 52, 348–354.

    Article  CAS  Google Scholar 

  11. Wu, C. H., Dewir, Y. H., Hahn, E. J., & Paek, K. Y. (2006). Optimization of culturing conditions for the production of biomass and phenolics from adventitious roots of Echinacea angustifolia. Journal of Plant Biology, 49, 193–199.

    Article  CAS  Google Scholar 

  12. Chetana, R., & Ramawat, K. G. (2009). Elicitor-induced accumulation of stilbenes in cell suspension cultures of Cayratia trifolia (L.) Domin. Plant Biotechnology Report, 3, 135–138.

    Article  Google Scholar 

  13. Claudio, D. O., Agnieszka, C., Christopher, D., & Paul, K. B. (2009). Induction of secondary metabolism in grape cell cultures by jasmonates. Functional Plant Biology, 36, 323–338.

    Article  Google Scholar 

  14. Shukor, M. F. A., Ismail, I., Zainal, Z., & Noor, N. M. (2013). Development of a Polygonum minus cell suspension culture system and analysis of secondary metabolites enhanced by elicitation. Acta Physiologiae Plantarum, 35, 1675–1689.

    Article  CAS  Google Scholar 

  15. Karwasara, V. S., Tomar, P., & Dixit, V. K. (2011). Influence of fungal elicitation on glycyrrhizin production in transformed cell cultures of Abrus precatorius Linn. Pharmacognosy Magazine, 7, 307–313.

    Article  CAS  Google Scholar 

  16. Karwasara, V. S., Jain, R., Tomar, P., & Dixit, V. K. (2010). Elicitation as yield enhancement strategy for glycyrrhizin production by cell cultures of Abrus precatorius Linn. In Vitro Cellular & Developmental Biology - Plant, 46, 354–362.

    Article  CAS  Google Scholar 

  17. Vakil, M. M. A., & Mendhulkar, V. D. (2013). Enhanced synthesis of andrographolide by Aspergillus niger and Penicillium expansum elicitors in cell suspension culture of Andrographis paniculata (Burm. f.) Nees. Botanical Studies, 54, 49.

    Article  Google Scholar 

  18. Cai, S. B., Wang, O., Wu, W., Zhu, S. J., Zhou, F. J., Gao, B. P., Zhang, F. Y., Liu, D., & Cheng, J. Q. (2012). Comparative study of the effects of solid-state fermentation with three filamentous fungi on the total phenolics content (TPC), flavonoids, and antioxidant activities of subfractions from oats (Avena sativa L.). Journal of Agricultural and Food Chemistry, 60, 507–513.

    Article  CAS  Google Scholar 

  19. Chodisetti, B., Rao, K., Gandi, S., & Giri, A. (2013). Improved gymnemic acid production in the suspension cultures of Gymnema sylvestre through biotic elicitation. Plant Biotechnology Report, 4, 519–525.

    Article  Google Scholar 

  20. Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23, 283–333.

    Article  CAS  Google Scholar 

  21. Li, T.T., Hu, Y.Y., Du, X.H., Tang, H., Shen, C.H., Wu, J.S. (2014). Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. Plos One, 9, doi:10.1371/journal.pone.0109492

  22. Gao, F. K., Yong, Y. H., & Dai, C. C. (2011). Effects of endophytic fungal elicitor on two kinds of terpenoids production and physiological indexes in Euphorbia pekinensis suspension cells. Journal of Medicinal Plant Research: Planta Medica, 18, 4418–4425.

    Google Scholar 

  23. Weisshaar, B., & Jenkins, G. I. (1998). Phenylpropanoid biosynthesis and its regulation. Current Opinion in Plant Biology, 1, 251–257.

    Article  CAS  Google Scholar 

  24. Ni, Z. Y., Li, B., Peter, N. M., Lu, M., & Fan, L. (2014). Isolation and expression analysis of two genes encoding cinnamate 4-hydroxylase from cotton (Gossypium hirsutum). Journal of Integrative Agriculture, 13, 2102–2112.

    Article  CAS  Google Scholar 

  25. Seki, H., Tamura, K., & Muranaka, T. (2015). P450s and UGTs: key players in the structural diversity of triterpenoid saponins. Plant & Cell Physiology, 8, 1463–1471.

    Article  Google Scholar 

  26. Han, J. Y., In, J. G., Kwon, Y. S., & Choia, Y. E. (2010). Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng. Phytochemistry, 71, 36–46.

    Article  CAS  Google Scholar 

  27. Lee, E. J., Park, S. Y., & Paek, K. Y. (2015). Enhancement strategies of bioactive compound production in adventitious root cultures of Eleutherococcus koreanum Nakai subjected to methyl jasmonate and salicylic acid elicitation through airlift bioreactors. Plant Cell Tissue And Organ, 120, 1–10.

    Article  CAS  Google Scholar 

  28. Yin, S., Zhang, S., Gao, Y., Wang, W. Y., Man, J., & Liu, S. L. H. (2014). Effects of nitrogen source and phosphate concentration on biomass and metabolites accumulation in adventitious root culture of Glycyrrhiza uralensis Fisch. Acta Physiologiae Plantarum, 36, 915–921.

    Article  CAS  Google Scholar 

  29. Chen, J. H., Xie, M. Y., Nie, S. P., Wang, Y. X., & Peng, R. H. (2005). Determination of polysaccharides in Panax quinquefolium L. Journal of Food Science and Biotechnology, 24, 72–76.

    Google Scholar 

  30. Wang, J., Zhang, J., Gao, W. Y., Wang, Q., Yin, S. S., Liu, H., & Man, S. L. (2013). Identification of triterpenoids and flavonoids, step-wise aeration treatment as well as antioxidant capacity of Glycyrrhiza uralensis Fisch. cell. Industrial Crop Production, 49, 675–681.

    Article  CAS  Google Scholar 

  31. Dong, J., Wan, G. W., & Liang, Z. S. (2010). Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. Journal of Biotechnology, 148, 99–104.

    Article  CAS  Google Scholar 

  32. Thimmaraju, R., Bhagyalakshmi, N., Narayan, M. S., & Ravishankar, G. A. (2003). Kinetics of pigment release from hairy root cultures of Beta vulgaris under the influence of pH, sonication, temperature and oxygen stress. Process Biochemistry, 38, 1069–1076.

    Article  CAS  Google Scholar 

  33. Wang, Q., Wang, J., Chai, H. Y., Li, J., Man, S. L., & Gao, W. Y. (2015). Optimization of balloon-type bubble bioreactor angle and methyl jasmonate concentration to enhance metabolite production in adventitious roots of Pseudostellaria heterophylla. Research on Chemical Intermediates, 8, 5555–5563.

    Article  Google Scholar 

  34. Nazmul, H. A. M., Ulrika, E., & Cyrus, K. A. (2015). Bioreactor technology for clonal propagation of plants and metabolite production. Frontiers in Biology, 10, 177–193.

    Article  Google Scholar 

  35. Shin, K. S., Murthy, H. N., Ko, J. Y., & Paek, K. Y. (2002). Growth and betacyanin production by hairy root cultures of Beta vulgaris L. in air lift bioreactors. Biotechnological Letters, 24, 2067–2069.

    Article  CAS  Google Scholar 

  36. Ahmed, S., Hahn, E. J., & Paek, K. Y. (2008). Aeration volume and photosynthetic photon flux affect cell growth and secondary metabolite contents in bioreactor cultures of Morinda citrifolia. Journal of Plant Biology, 51, 209–212.

    Article  CAS  Google Scholar 

  37. Zhong, J. J., Fujiyama, K., Seki, T., & Yoshida, T. (1993). On-line monitoring of cell concentration of Perilla frutescens in a bioreactor. Biotechnology and Bioengineering, 42, 542–546.

    Article  CAS  Google Scholar 

  38. Meijer, J. J., Hoopen, H. J. G., & Libbenga, K. R. (1993). Effects of hydrodynamic stress on cultured plant cell: a literature survey. Enzyme and Microbial Technology, 15, 234–238.

    Article  CAS  Google Scholar 

  39. Wang, G. R., & Qi, N. M. (2010). Influence of mist intervals and aeration rate on growth and second metabolite production of Pseudostellaria heterophylla adventitious roots in a siphon-mist bioreactor. Biotechnology and Bioprocess Engineering, 15, 1059–1064.

    Article  CAS  Google Scholar 

  40. Xu, M. J., Dong, J. F., & Zhu, M. Y. (2005). Nitric oxide mediates the fungal elicitor-induced hypericin production of Hypericum perforatum cell suspension cultures through a jasmonic-acid-dependent signal pathway. Plant Physiology, 139, 991–998.

    Article  CAS  Google Scholar 

  41. Liu, C., Wang, Y., Xu, X., Ouyang, F., Ye, H., & Li, G. (1999). Improvement of artemisinin accumulation in hairy root cultures of Artemisia annua L by fungal elicitor. Bioprocess Engineering, 20, 161–164.

    CAS  Google Scholar 

  42. Raskin, I., Skubatz, H., Tang, W., & Meeuse, B. J. D. (1990). Salicylic acid levels in thermogenic and non-sermogenic plants. Annals of Botany, 66, 369–373.

    CAS  Google Scholar 

  43. Shulaev, V., Leon, J., & Raskin, I. (1995). Is salicylic acid a translocated signal of systemic acquired resistance in tobacco. Plant Cell, 7, 1691–1701.

    Article  CAS  Google Scholar 

  44. Yuan, Y. J., Wei, Z. J., Miao, Z. Q., & Wu, J. C. (2002). Acting paths of elicitors on Taxol biosynthesis pathway and their synergistic effect. Biochemical Engineering Journal, 10, 77–83.

    Article  CAS  Google Scholar 

  45. Zhao, J., Zhu, W. H., & Hu, Q. (2001). Enhanced catharanthine production in Catharanthus roseus cell culture by combined elicitor treatment in shake flasks and bioreactors. Enzyme and Microbial Technology, 28, 673–681.

    Article  CAS  Google Scholar 

  46. Cai, Z. Z., Smetanska, I., Kastell, A., & Knorr, D. (2012). Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Reports, 31, 461–477.

    Article  CAS  Google Scholar 

  47. Lee, Y. S., Ju, H. K., Kim, Y. J., Lim, T. G., Uddin, M. R., Kim, Y. B., Baek, H., Kwon, S. W., Lee, K. W., Seo, H. S., Park, S. U., & Yang, T. J. (2013). Enhancement of anti-inflammatory activity of Aloe vera adventitious root extracts through the alteration of primary and secondary metabolites via salicylic acid elicitation. Plos One. doi:10.1371/journal.pone.0082479Lee.

    Google Scholar 

  48. Yu, L. J., Lan, W. Z., Chen, C., & Yang, Y. (2004). Glutathione levels control glucose-6-phosphate dehydrogenase activity during elicitor-induced oxidative stress in cell suspension cultures of Taxus chinensis. Plant Science, 167, 329–335.

    Article  CAS  Google Scholar 

  49. Qin, W. M., Lan, W. Z., & Yang, X. (2004). Involvement of NADPH oxidase in hydrogen peroxide accumulation by Aspergillus niger elicitor-induced Taxus chinensis cell cultures. Journal of Plant Physiology, 161, 355–361.

    Article  CAS  Google Scholar 

  50. Huang, R. H., Liu, J. H., Lu, Y. M., & Xia, R. X. (2008). Effect of salicylic acid on the antioxidant system in the pulp of ‘Cara cara’ navel orange (Citrus sinensis L. Osbeck) at different storage temperatures. Postharvest Biology and Technology, 47, 168–175.

    Article  CAS  Google Scholar 

  51. Venugopalan, A., & Srivastava, S. (2015). Enhanced camptothecin production by ethanol addition in the suspension culture of the endophyte, Fusarium solani. Bioresource Technology, 188, 251–257.

    Article  CAS  Google Scholar 

  52. Mukherjeea, C., Sircarb, D., Chatterjeec, M., Dasc, S., & Mitra, A. (2014). Combating photooxidative stress in green hairy roots of Daucus carota cultivated under light irradiation. Journal of Plant Physiology, 171, 179–187.

    Article  Google Scholar 

  53. Kim, D. G., Kim, Y. J., Lee, S. H., & Lee, I. (2005). Effect of wounding and chemical treatments on expression of the gene encoding cinnamate-4-hydroxylase in Camptotheca acuminata leaves. Journal of Plant Biology, 48, 298–303.

    Article  CAS  Google Scholar 

  54. Neslihan, T. K., & Sule, A. (2011). Analysis of elicitor inducible cytochrome P450 induction in Astragalus chrysochlorus cells. Plant Omics, 4, 264–269.

    Google Scholar 

  55. Xu, X. J., Hu, X. Y., Neill, S. J., Fang, J. Y., & Cai, W. M. (2005). Fungal elicitor induces singlet oxygen generation, ethylene release and saponin synthesis in cultured cells of Panax ginseng C. A. Meyer. Plant & Cell Physiology, 46, 947–954.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the 863 Program (2014AA022201-04), Central Significant Increase or Decrease Program, China (2060302), and National Science and Technology Support Program (2012BAI29B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyuan Gao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

The primers of genes used in RT-PCR (DOC 46 kb)

Table S2

HPLC–MSn data of triterpenoid saponins and flavonoids in adventitious root culture of G. uralensis (DOC 51 kb)

Fig. S1

General phenylpropanoid and flavonoid biosynthetic pathway (DOC 268 kb)

Fig. S2

Biosynthetic pathways of glycyrrhizic acid in G. uralensis (DOC 319 kb)

Fig. S3

LC-MSn spectra of liquiritin (a, b), isoliquiritin (c, d), glycyrrhizic acid (e, f), and (3R)-vestitol (g, h) (DOC 277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, J., Li, J. et al. Aspergillus niger Enhance Bioactive Compounds Biosynthesis As Well As Expression of Functional Genes in Adventitious Roots of Glycyrrhiza uralensis Fisch. Appl Biochem Biotechnol 178, 576–593 (2016). https://doi.org/10.1007/s12010-015-1895-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1895-5

Keywords

Navigation