Skip to main content
Log in

Heterologous Expression and Characterization of a GH3 β-Glucosidase from Thermophilic Fungi Myceliophthora thermophila in Pichia pastoris

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel β-glucosidase of glycoside hydrolase (GH) family 3 from Myceliophthora thermophila (mtbgl3b) was successfully expressed in Pichia pastoris. The full-length gene consists of 2613 bp nucleotides encoding a protein of 870 amino acids. MtBgl3b showed maximum activity at pH 5.0 and remained more than 70 % relative activity at 3.5–6.0. The enzyme displayed the highest activity at 60 °C and kept about 90 % relative activity for 50–65 °C; besides, the enzyme showed psychrophilic trait and remains 51 % relative activity at 40 °C. MtBgl3b exhibited good stability over a wide pH range of 3.0–10.0 and was thermostable at 60 and 65 °C. The enzyme displayed highest activity towards p-nitrophenyl-β-d-glucopyranoside (pNPG), followed by p-nitrophenyl-d-cellobioside (pNPC), cellotetraose, cellotriose, cellobiose, and gentiobiose. When using 10 % cellobiose (w/v) as the substrate, the enzyme showed transglycosylation activity to produce the cellotriose. The kinetic parametric of K m and V max were 2.78 mM and 927.9 μM mg−1 min−1, respectively. Finally, the reaction mode of the enzyme and the substrates were analyzed by molecular docking approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ketudat Cairns, J. R., & Esen, A. (2010). β-Glucosidases. Cellular and Molecular Life Sciences, 67(20), 3389–3405.

    Article  CAS  Google Scholar 

  2. Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315(5813), 804–847.

    Article  CAS  Google Scholar 

  3. Bhatia, Y., Mishra, S., & Bisaria, V. S. (2002). Microbial β-glucosidases: cloning, properties, and applications. Critical Reviews in Biotechnology, 22(4), 375–407.

    Article  CAS  Google Scholar 

  4. Biver, S., Stroobants, A., Portetelle, D., & Vandenbol, M. (2014). Two promising alkaline β-glucosidases isolated by functional metagenomics from agricultural soil, including one showing high tolerance towards harsh detergents, oxidants and glucose. Journal of Industrial Microbiology and Biotechnology, 41(3), 479–488.

    Article  CAS  Google Scholar 

  5. Jeya, M., Joo, A. R., Lee, K. M., Tiwari, M. K., Lee, K. M., Kim, S. H., & Lee, J. K. (2010). Characterization of β-glucosidase from a strain of Penicillium purpurogenum KJS506. Applied Microbiology and Biotechnology, 86(5), 1473–1484.

    Article  CAS  Google Scholar 

  6. Zhou, C., Qian, L., Ma, H., Yu, X., Zhang, Y., Qu, W., Zhang, X., & Xia, W. (2012). Enhancement of amygdalin activated with β-D-glucosidase on HepG2 cells proliferation and apoptosis. Carbohydrate Polymers, 90(1), 516–523.

    Article  CAS  Google Scholar 

  7. Hassan, N., Nguyen, T. H., Intanon, M., Kori, L. D., Patel, B. K., Haltrich, D., Divne, C., & Tan, T. C. (2015). Biochemical and structural characterization of a thermostable β-glucosidase from Halothermothrix orenii for galacto-oligosaccharide synthesis. Applied Microbiology and Biotechnology, 99(4), 1731–1744.

    Article  CAS  Google Scholar 

  8. Ko, J. A., Ryu, Y. B., Kwon, H. J., Jeong, H. J., Park, S. J., Kim, C. Y., Wee, Y. J., Kim, D., Lee, W. S., & Kim, Y. M. (2013). Characterization of a novel steviol-producing β-glucosidase from Penicillium decumbens and optimal production of the steviol. Applied Microbiology and Biotechnology, 97(18), 8151–8161.

    Article  CAS  Google Scholar 

  9. Liu, D., Zhang, R., Yang, X., Zhang, Z., Song, S., Miao, Y., & Shen, Q. (2012). Characterization of a thermostable β-glucosidase from Aspergillus fumigatus Z5, and its functional expression in Pichia pastoris X33. Microbial Cell Factories, 11, 25.

    Article  Google Scholar 

  10. Gao, L., Gao, F., Zhang, D., Zhang, C., Wu, G., & Chen, S. (2013). Purification and characterization of a new β-glucosidase from Penicillium piceum and its application in enzymatic degradation of delignified corn stover. Bioresource Technology, 147, 658–661.

    Article  CAS  Google Scholar 

  11. Chen, P., Fu, X., Ng, T. B., & Ye, Y. (2011). Expression of a secretory β-glucosidase from Trichoderma reesei in Pichia pastoris and its characterization. Biotechnology Letters, 33(12), 2475–2479.

    Article  CAS  Google Scholar 

  12. Haki, G. D., & Rakshit, S. K. (2003). Developments in industrially important thermostable enzymes: a review. Bioresource Technology, 89, 17–34.

    Article  CAS  Google Scholar 

  13. Murray, P., Aro, N., Collins, C., Grassick, A., Penttilä, M., Saloheimo, M., & Tuohy, M. (2004). Expression in Trichoderma reesei and characterisation of a thermostable family 3 β-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Protein Expression and Purification, 38(2), 248–257.

    Article  CAS  Google Scholar 

  14. Yan, Q., Hua, C., Yang, S., Li, Y., & Jiang, Z. (2012). High level expression of extracellular secretion of a β-glucosidase gene (PtBglu3) from Paecilomyces thermophila in Pichia pastoris. Protein Expression and Purification, 84(1), 64–72.

    Article  CAS  Google Scholar 

  15. Visser, H., Joosten, V., Punt, P. J., Gusakov, A. V., Olson, P. T., Joosten, R., Bartels, J., Visser, J., Sinitsyn, A. P., Emalfarb, M. A., Verdoes, J. C., & Wery, J. (2011). Development of a mature fungal technology and production platform for industrial enzymes based on a Myceliophthora thermophila isolate, previously known as Chrysosporium lucknowense C1. Industrial Biotechnology, 7(3), 214–223.

    Article  CAS  Google Scholar 

  16. Dashtban, M., Schraft, H., & Qin, W. (2009). Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. International Journal of Biological Sciences, 5(6), 578–595.

    Article  CAS  Google Scholar 

  17. Viikari, L., Alapuranen, M., Puranen, T., Vehmaanperä, J., & Siika-aho, M. (2007). Thermostable enzymes in lignocellulose hydrolysis. Advances in Biochemical Engineering/Biotechnology, 108, 121–145.

    Article  CAS  Google Scholar 

  18. Karnaouri, A. C., Topakas, E., & Christakopoulos, P. (2014). Cloning, expression, and characterization of a thermostable GH7 endoglucanase from Myceliophthora thermophila capable of high-consistency enzymatic liquefaction. Applied Microbiology and Biotechnology, 98(1), 231–242.

    Article  CAS  Google Scholar 

  19. Kool, M. M., Schols, H. A., Wagenknecht, M., Hinz, S. W., Moerschbacher, B. M., & Gruppen, H. (2014). Characterization of an acetyl esterase from Myceliophthora thermophila C1 able to deacetylate xanthan. Carbohydrate Polymers, 111, 222–229.

    Article  CAS  Google Scholar 

  20. Topakas, E., Moukouli, M., Dimarogona, M., & Christakopoulos, P. (2012). Expression, characterization and structural modelling of a feruloyl esterase from the thermophilic fungus Myceliophthora thermophila. Applied Microbiology and Biotechnology, 94(2), 399–411.

    Article  CAS  Google Scholar 

  21. van Gool, M. P., van Muiswinkel, G. C., Hinz, S. W., Schols, H. A., Sinitsyn, A. P., & Gruppen, H. (2013). Two novel GH11 endo-xylanases from Myceliophthora thermophila C1 act differently toward soluble and insoluble xylans. Enzyme and Microbial Technology, 53(1), 25–32.

    Article  Google Scholar 

  22. Karnaouri, A., Topakas, E., Paschos, T., Taouki, I., & Christakopoulos, P. (2013). Cloning, expression and characterization of an ethanol tolerant GH3 β-glucosidase from Myceliophthora thermophila. Peer Journal, 1, e46.

    Article  Google Scholar 

  23. Berka, R. M., Grigoriev, I. V., Otillar, R., Salamov, A., Grimwood, J., Reid, I., Ishmael, N., John, T., Darmond, C., Moisan, M. C., Henrissat, B., Coutinho, P. M., Lombard, V., Natvig, D. O., Lindquist, E., Schmutz, J., Lucas, S., Harris, P., Powlowski, J., Bellemare, A., Taylor, D., Butler, G., de Vries, R. P., Allijn, I. E., van den Brink, J., Ushinsky, S., Storms, R., Powell, A. J., Paulsen, I. T., Elbourne, L. D., Baker, S. E., Magnuson, J., Laboissiere, S., Clutterbuck, A. J., Martinez, D., Wogulis, M., de Leon, A. L., Rey, M. W., & Tsang, A. (2011). Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nature Biotechnology, 29(10), 922–927.

    Article  CAS  Google Scholar 

  24. Joo, A. R., Jeya, M., Lee, K. M., Sim, W. I., Kim, J. S., Kim, I. W., Kim, Y. S., Oh, D. K., Gunasekaran, P., & Lee, J. K. (2009). Purification and characterization of a β-1,4-glucosidase from a newly isolated strain of Fomitopsis pinicola. Applied Microbiology and Biotechnology, 83(2), 285–294.

    Article  CAS  Google Scholar 

  25. Yan, T., & Lin, C. (1996). Purification and characterization of a glucose-tolerant β-glucosidase from Aspergillus niger CCRC 31494. Bioscience Biotechnology and Biochemistry, 61(6), 965–970.

    Article  Google Scholar 

  26. Dan, S., Marton, I., Dekel, M., Bravdo, B. A., He, S., Withers, S. G., & Shoseyov, O. (2000). Cloning, expression, characterization, and nucleophile identification of family 3, Aspergillus niger β-glucosidase. The Journal of Biological Chemistry, 275(7), 4973–4980.

    Article  CAS  Google Scholar 

  27. Harnpicharnchai, P., Champreda, V., Sornlake, W., & Eurwilaichitr, L. (2009). A thermotolerant β-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. Protein Expression and Purification, 67(2), 61–69.

    Article  CAS  Google Scholar 

  28. Hong, J., Tamaki, H., & Kumagai, H. (2007). Cloning and functional expression of thermostable β-glucosidase gene from Thermoascus aurantiacus. Applied Microbiology and Biotechnology, 73(6), 1331–1339.

    Article  CAS  Google Scholar 

  29. Xu, R., Teng, F., Zhang, C., & Li, D. (2011). Cloning of a gene encoding β-glucosidase from Chaetomium thermophilum CT2 and its expression in Pichia pastoris. Journal of Molecular Microbiology and Biotechnology, 20(1), 16–23.

    Article  Google Scholar 

  30. Kaur, J., Bhupinder, S. C., Badhan, A. K., & Ghatora, K. S. (2007). Purification and characterization of β-glucosidase from Melanocarpus sp. MTCC 3922. Electronic Journal of Biotechnology, 10(2), 261–270.

    Article  Google Scholar 

  31. Magalhães, P. O., Ferraz, A., & Milagres, A. F. (2006). Enzymatic properties of two β-glucosidases from Ceriporiopsis subvermispora produced in biopulping conditions. Journal of Applied Microbiology, 101(2), 480–486.

    Article  Google Scholar 

  32. Rashid, M. H., & Siddiqui, K. S. (1997). Purification and characterization of a β-glucosidase from Aspergillus niger. Folia Microbiologica, 42(6), 544–550.

    Article  CAS  Google Scholar 

  33. Yoon, J. J., Kim, K. Y., & Cha, C. J. (2008). Purification and characterization of thermostable β-glucosidase from the brown-rot basidiomycete Fomitopsis palustris grown on microcrystalline cellulose. The Journal of Microbiology, 46(1), 51–55.

    Article  CAS  Google Scholar 

  34. Amouri, B., & Gargouri, A. (2006). Characterization of a novel β-glucosidase from a Stachybotrys strain. Biochemical Engineering Journal, 32(3), 191–197.

    Article  CAS  Google Scholar 

  35. Chen, H. L., Chen, Y. C., Lu, M. Y., Chang, J. J., Wang, H. T., Ke, H. M., Wang, T. Y., Ruan, S. K., Wang, T. Y., Hung, K. Y., Cho, H. Y., Lin, W. T., Shih, M. C., & Li, W. H. (2012). A highly efficient β-glucosidase from the buffalo rumen fungus Neocallimastix patriciarum W5. Biotechnoly for Biofuels, 5(1), 24.

    Article  CAS  Google Scholar 

  36. Karnchanatat, A., Petsom, A., Sangvanich, P., Piaphukiew, J., Whalley, A. J., Reynolds, C. D., & Sihanonth, P. (2007). Purification and biochemical characterization of an extracellular β-glucosidase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.:Fr.) Rehm. FEMS Microbiology Letters, 270(1), 162–170.

    Article  CAS  Google Scholar 

  37. Mao, X., Hong, Y., Shao, Z., Zhao, Y., & Liu, Z. (2010). A novel cold-active and alkali-stable β-glucosidase gene isolated from the marine bacterium Martelella mediterranea. Applied Biochemistry and Biotechnology, 162(8), 2136–2148.

    Article  CAS  Google Scholar 

  38. Fang, W., Song, R., Zhang, X., Zhang, X., Zhang, X., Wang, X., Fang, Z., & Xiao, Y. (2014). Characterization of a novel β-glucosidase from Gongronella sp. W5 and its application in the hydrolysis of soybean isoflavone glycosides. Journal of Agricultural and Food Chemistry, 62(48), 11688–11695.

    Article  CAS  Google Scholar 

  39. Park, D. J., Lee, Y. S., & Choi, Y. L. (2013). Characterization of a cold-active β-glucosidase from Paenibacillus xylanilyticus KJ-03 capable of hydrolyzing isoflavones daidzein and genistein. Protein Journal, 32(7), 579–584.

    Article  CAS  Google Scholar 

  40. Zhou, J., Zhang, R., Shi, P., Huang, H., Meng, K., Yuan, T., Yang, P., & Yao, B. (2011). A novel low-temperature-active β-glucosidase from symbiotic Serratia sp. TN49 reveals four essential positions for substrate accommodation. Applied Microbiology and Biotechnology, 92(2), 305–315.

    Article  CAS  Google Scholar 

  41. Li, X., Zhao, J., Shi, P., Yang, P., Wang, Y., Luo, H., & Yao, B. (2013). Molecular cloning and expression of a novel β-glucosidase gene from Phialophora sp. G5. Applied Biochemistry and Biotechnology, 169(3), 941–949.

    Article  CAS  Google Scholar 

  42. Zhang, M., Liu, N., Qian, C., Wang, Q., Wang, Q., Long, Y., Huang, Y., Zhou, Z., & Yan, X. (2014). Phylogenetic and functional analysis of gut microbiota of a fungus-growing higher termite: Bacteroidetes from higher termites are a rich source of β-glucosidase genes. Microbial Ecology, 68(2), 416–425.

    Article  Google Scholar 

  43. Yang, S., Hua, C., Yan, Q., Li, Y., & Jiang, Z. (2013). Biochemical properties of a novel glycoside hydrolase family 1 β-glucosidase (PtBglu1) from Paecilomyces thermophila expressed in Pichia pastoris. Carbohydrate Polymers, 92(1), 784–791.

    Article  CAS  Google Scholar 

  44. Suzuki, K., Sumitani, J., Nam, Y. W., Nishimaki, T., Tani, S., Wakagi, T., Kawaguchi, T., & Fushinobu, S. (2013). Crystal structures of glycoside hydrolase family 3 β-glucosidase 1 from Aspergillus aculeatus. The Biochemical Journal, 452(2), 211–221.

    Article  CAS  Google Scholar 

  45. Rouyi, C., Baiya, S., Lee, S. K., Mahong, B., Jeon, J. S., Ketudat-Cairns, J. R., & Ketudat-Cairns, M. (2014). Recombinant expression and characterization of the cytoplasmic rice β-glucosidase Os1BGlu4. PLoS One, 9, e96712.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National High-Tech Research and Development Program (863 Program, No. 2012AA022203 and No. SS2014AA021301) and Tianjin Zhuanxiang Project (13ZCDZSY05000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoguang Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Guo, C., Tian, C. et al. Heterologous Expression and Characterization of a GH3 β-Glucosidase from Thermophilic Fungi Myceliophthora thermophila in Pichia pastoris . Appl Biochem Biotechnol 177, 511–527 (2015). https://doi.org/10.1007/s12010-015-1759-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1759-z

Keywords

Navigation