Skip to main content
Log in

Purification and characterization of thermostable β-glucosidase from the brown-rot basidiomycete Fomitopsis palustris grown on microcrystalline cellulose

  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

An extracellular β-glucosidase was purified 154-fold to electrophoretic homogeneity from the brown-rot basidiomycete Fomitopsis palustris grown on 2.0% microcrystalline cellulose. SDS-polyacrylamide gel electrophoresis gel gave a single protein band and the molecular mass of purified enzyme was estimated to be approximately 138 kDa. The amino acid sequences of the proteolytic fragments determined by nano-LC-MS/MS suggested that the protein has high homology with fungal β-glucosidases that belong to glycosyl hydrolase family 3. The K m s for p-nitorophenyl-β-d-glucoside (p-NPG) and cellobiose hydrolyses were 0.117 and 4.81 mM, and the K cat values were 721 and 101.8 per sec, respectively. The enzyme was competitively inhibited by both glucose (K i = 0.35 mM) and gluconolactone (K i 0.008 mM), when p-NPG was used as substrate. The optimal activity of the purified β-glucosidase was observed at pH 4.5 and 70°C. The F. palustris protein exhibited half-lives of 97 h at 55°C and 15 h at 65°C, indicating some degree of thermostability. The enzyme has high activity against p-NPG and cellobiose but has very little or no activity against p-nitrophenyl-β-lactoside, p-nitrophenyl-β-xyloside, p-nitrophenyl-α-arabinofuranoside, xylan, and carboxymethyl cellulose. Thus, our results revealed that the β-glucosidase from F. palustris can be classified as an aryl-β-glucosidase with cellobiase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, S. and M. Takagi. 1991. Simultaneous saccharification and fermentation of cellulose to lactic acid. Biotechnol. Bioeng. 37, 93–96.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Cai, Y.J., J.A. Buswell, and S.T. Chang. 1998. β-Glucosidase components of the cellulolytic system of the edible straw mushroom, Volvariella volvacea. Enzyme Microb. Technol. 22, 122–129.

    Article  CAS  Google Scholar 

  • Cantarella, M., L. Cantarella, A. Gallifuoco, A. Spera, and F. Alfani. 2004. Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnol. Prog. 20, 200–206.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H., M. Hayn, and H. Esterbauer. 1992. Purification and characterization of two extracellular beta-glucosidases from Trichoderma reesei. Biochim. Biophys. Acta. 1121, 54–60.

    PubMed  CAS  Google Scholar 

  • Chirico, W.J. and R.D. Brown, Jr. 1987. Purification and characterization of a beta-glucosidase from Trichoderma reesei. Eur. J. Biochem. 165, 343–351.

    Article  PubMed  CAS  Google Scholar 

  • Claeyssens, M., H. Van Tilbeurgh, P. Tomme, T.M. Wood, and I. McCrae. 1989. Fungal cellulase systems. Comparison of the specificities of the cellobiohydrolases isolated from Penicillium pinophilum and Trichoderma reesei. Biochem. J. 261, 819–826.

    PubMed  CAS  Google Scholar 

  • Eriksson, K.-E.L., R.A. Blanchette, and P. Ander. 1990. Microbial and enzymatic degradation of wood and wood components. Springer Verlag, Berlin/Heidelberg, Germany.

    Google Scholar 

  • Lee, J.-W., J.-Y. Park, K.-S. Gwak, B.-W. Koo, and I.-G. Choi. 2007. Characterization of β-glucosidase from brown rot fungus, Laetiporus sulphureus. Korean J. Wood Sci. Technol. 35, 100–108.

    Google Scholar 

  • Lo, A.C., G. Willick, R. Bernier, and M. Desrochers. 1988. Purification and assay of β-glucosidase from Schizophyllum commune. Methods Enzymol. 160, 432–437.

    Article  CAS  Google Scholar 

  • Lymar, E.S., B. Li, and V. Renganathan. 1995. Purification and characterization of a cellulose-binding (beta)-glucosidase from cellulose-degrading cultures of Phanerochaete chrysosporium. Appl. Environ. Microbiol. 61, 2976–2980.

    PubMed  CAS  Google Scholar 

  • Magalhães, P.O., A. Ferraz, and A.F.M. Milaqres. 2006. Enzymatic properties of two beta-glucosidases from Ceriporiopsis subvermispora produced in biopulping conditions. J. Appl. Microbiol. 101, 480–486.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, G., L.F. Larrondo, N. Putnam, M.D.S. Gelpke, K. Huang, J. Chapman, K.G. Helfenbein, P. Ramaiya, J.C. Detter, F. Larimer, P.M. Coutinho, B. Henrissat, R. Berka, D. Cullen, and D. Rokhsar. 2004. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature Biotechnol. 22, 1–6.

    Article  CAS  Google Scholar 

  • Saha, B.C., S.N. Freer, and R.J. Bothast. 1994. Production, purification, and properties of a thermostable beta-glucosidase from a color variant strain of Aureobasidium pullulans. Appl. Environ. Microbiol. 60, 3774–3780.

    PubMed  CAS  Google Scholar 

  • Shevchenko, A., M. Wilm, O. Vorm, and M. Mann. 1996. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858.

    Article  PubMed  CAS  Google Scholar 

  • Uzcategui, E., G. Johansson, B. Ek, and G. Pettersson. 1991. The 1,4-β-d-glucan glucanohydrolases from Phanerochaete chrysosporium. Reassessment of their significance in cellulose degradation mechanisms. J. Biotechnol. 21, 143–159.

    Article  PubMed  CAS  Google Scholar 

  • Woodward, J., M. Lima, and N.E. Lee. 1982. The role of cellulose concentration in determining the degree of synergism in the hydrolysis of microcrystalline cellulose. Biochem. J. 255, 895–899.

    Google Scholar 

  • Yoon, J.-J., C.-J. Cha, Y.-S. Kim, D.-W. Son, and Y.-K. Kim. 2007. The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose. J. Microbiol. Biotechnol. 17, 800–805.

    PubMed  CAS  Google Scholar 

  • Yoon, J.-J. and Y.-K. Kim. 2005. Degradation of crystalline cellulose by the brown-rot basidiomycete Fomitopsis palustris. J. Microbiol. 43, 487–492.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jun Cha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, JJ., Kim, KY. & Cha, CJ. Purification and characterization of thermostable β-glucosidase from the brown-rot basidiomycete Fomitopsis palustris grown on microcrystalline cellulose. J Microbiol. 46, 51–55 (2008). https://doi.org/10.1007/s12275-007-0230-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-007-0230-4

Keywords

Navigation